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FAMILIES OF GEODESICS WHICH
DISTINGUISH FLAT TORI

Nosuniro INNAMI

0. Introduction. The flat tori play distinguished roles in the study of
manifolds with nonpositive sectional curvature and of nonnegative sectional
(or Ricci) curvature. Namely, the Riemannian metrics on a torus having one
of these curvature conditions are flat. And, the behavior of geodesics on
these manifolds are very different. This suggests to us that some behavior
of geodesics distinguishes flat tori from any other Riemannian manifold. In
the present paper we study the conditions(0.1)—(0.4) on surfaces.

Throughout the paper let M be a complete Riemannian manifold which is
homeomorphic to a plane and N a complete Riemannian manifold with dimension
2. We denote by N= M/ D a quotient manifold, where D is the group of iso-
metries acting freely on M which is properly discontinuous. All geodesics
are always parametrized by arc-length, unless otherwise stated. Let SN be
the unit tangent bundle of N and = : SN — N the projection. For any v €
SN let 7, : (—o0, ) = N be the geodesic with ¥,(0) = v, but the interval
may be restricted if stated.

(0.1) For any v € SN there exists a section z» : N— SN, r,(#a(v)) =
v, such that fy = mog’o 1, is a flow on N, where g : SN — SN is the geo-
desic flow of N. ‘

(0.2) Each non-trivial homotopy class of closed curves in N contains a
family of geodesics which cover N simply.

(0.3) The set of all tangent vectors of geodesics which are dense in N
is dense in SN.

(0.4) For any non-contractible closed curve K and for any point p in
N there exists at most two geodesic ray emanating from p which does not
intersect K.

The flat tori T? satisfy these conditions. We shall show that the con-
verse of (0.1),(0.2) and (0.4) are true in Section 1,3 and 5, resp.. In
Section 2 we provide the properties of axial isometries on M which is used
in Section 3, 4,5. We discuss the condition(0.1) and(0.2) in Section 4 and
obtain some results concerning(0.3). The results are sometimes obtained
by applying a theorem of E. Hopf([9]) that the tori T* without conjugate
points are flat. And, the study of Busemann-Pedersen([6]) concerning axial
isometries would be very useful to the investigation here. In the paper they
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have studied G-spaces (see[4]) which are much more general than complete
Riemannian manifolds. Hence, if the readers are interested in the theory of
G-spaces, all conclusions should be understood that the universal covering
G-surfaces are straight and satisfy the parallel axiom(for the definitions of
“straight” and “parallel axiom” see [4]).

1. Surfaces having flows whose orbits are geodesics. The important
property of surfaces is that a curve can separate the space locally and some-
times globally. This is the principal tools of the investigation here. Let A
be an open domain in N. We say that A is covered simply by a family I" of
geodesics if the geodesic in I through p uniquely exists locally for each point
p € A and is maximal in A, i.e., any extension does not stay in A. In the
definition, “locally” means “globally” also. If A is simply connected, then we
can give all geodesics of the family an orientation so that the tangent vectors
v(x) of all geodesics depend continuously on their foot points x in A. And,
each geodesic of the family decomposes A into two components.

Lemma 1.1. Let A be a simply connected open domain in N which is
covered simply by a family I' of geodesics. Then, all subarcs of all geodesics
in I’ are the unique geodesic in A connecting their endpoints. In particular,
all geodesics of I' are minimizing in A and the vectors v(x) depend differenti-
ably on the points x € A.

Proof. Let v(x) be the tangent vector at x € A of the geodesic of I
determined by x. We take the signed angle of unit vectors at x from v(x) for
any x € A. Suppose there is a geodesic a : [0, L] = N joining p and ¢ in A
both of which are in a geodesic ¥ of I" such that a is not a subarc of 7. If
a(L,),0 < L, < L, is the first intersection point of @ and ¥, then the signs
of a(L,) and a(0) are different. Hence, the angle of a(L,) is either zero or
x for some Ly, 0 < Lo, < L,. This implies that e or the reversed geodesic
of a is a subarc of a geodesic of I" because of the simplicity of the family of
geodesics, a contradiction.

The existence of a family of geodesics which entirely covers N simply
would be controlled by the topological structure of N.

Lemma 1.2. Suppose N is compact. If N is covered simply by a family
I' of geodesics, then N is topologically either the torus or one-sided torus.
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Proof. It suffices to prove that the statement is true if N is orientable.
Let N= M/D, where M is the universal covering space of N. The lift I" of
I" to M also covers M simply. Define an orientation of I" and denote by v(x)
the tangent vector at x of the geodesic of I" passing through x. Since N is
orientable, the vector field v is invariant under D. This implies that v
induces the vector field on N. Since it has no singular points, it follows
from the Hopf-Lefschetz fixed point theorem that N is topologically the torus.

It should be noted that N is orientable if N has two families of geodesics
which cover N simply in such a way that the tangent vectors at each point of
N of the geodesics are linearly independent.

Theorem 1.3. Suppose N is compact. If the geodesic frow on N satisfies
the property(0.1), then N is a flat torus.

Proof. For any unit vector v € SN the section 7, induces a family I" of
geodesics which cover N simply with y, € I'. By Lemma 1.2, N is topolog-
ically either the torus or one-sided torus. To apply the theorem of E. Hopf
we must prove that N has no conjugate points. Since the lift of 7, to the
universal covering space M of N is minimizing, there is no conjugate points
along 7. Thus, N is flat. This completes the proof.

2. Axial isometries and the structure of surfaces. Let ¢ be an iso-
metry of M. The function do : M — R given by do(p) = d(p, ¢p) for any
p € M is called the displacement funciion of ¢. We say that ¢ is axial if
there is a minimizing geodesic 7 : (—o0, ) = M such that @y(t) = y(i+
a) for any t € (—o00, o) and some constant a > 0. The 7 is called an axis
of ¢. We can find important results on axial isometries in a paper of
Busemann- Pedersen ([6], and also see [5] pp. 64 —67).

(2.1) If 7 is an axis of ¢, then a = min d,, and 7 is also an axis of
" n=1.

(2.2) Let @ be an isometry which preserves an orientation of M. If
y: (—o00,0) = Mis an axis of 9", n > 1, then 7 is also an axis of ¢.

(2.3) Let ¢ be an isometry which preserves an orientation of M. If
0 < do(p) = min dy for some p € M, then the geodesic y : (—00,00) = M,
with 7(0) = p and ¥(ds(p)) = @p, is minimizing and hence an axis of ¢.

We see in a book of Cheeger-Ebin([7] p. 156) that

(2.4) If N=M/D is compact, where D is the group of isometries, then
all dy, ¢ € D, assume their minimums on M.
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Lemma 2.1. Let M be oriented and let ¢ be an axial isomeiry of M. If
the displacement function dy of ¢ is bounded, then ¢ preserves the orientation

of M.
Proof. Let 7 : (—o0,0) = M be an axis of ¢. Suppose ¢ dose not

preserve the orientation of M. Then, it follows that

do(p) = 2d(p, y(—00, ®))

for any p € M, since all minimizing geodesics joining p and @p intersect
y(— o0, ), This contradicts that d, is bounded on M.

Now we characterize the torus by a property of displacement functions.
The idea of the proof is seen in a paper of Eberlein-O’Neill ([8], Proposition
6.8).

Proposition 2.2. Suppose N= M/D is compact and oriented. If the
displacement function of an isometry in D—{1} is bounded on M, then all the
displacement functions of D are bounded on M and D is abelian. In particular,
N is iopologically the torus.

Proof. Suppose dp, ¢ € D—{1{, is bounded on M. Let1l = ¥ € Dbe
an arbitrary isometry. Then, ¥ has an axis 7 : (—oc0, ) = M, i.e., Uy(t)
= y(t+a) for all 1 € (—oo0, ), where a = min dy > 0. If we put p =
7(0) and ¥, = @7, then

d(p, U "9¥"¢ (¢p)) = d(¥"p, ¢T"p) < C

for all integers n and some constant C > 0, since do is bounded on M. Thus,
the set| U~ "@¥ Ypp); n € Z!| is bounded. Since D acts freely and is
properly discontinuous, there exist m > n € Z such that

w—ﬂ¢w»nqo—l — w'—m¢w-m§0—l‘
Therefore,
w‘m—ﬂ= Saw-m—‘n¢—l.

It follows from(2.1) that 7, is also an axis of ™ ™. And, ¥ has an axis 7,
because of(2.2). Thus,

Top = nla) = Pyla) = ¢¥p.
This implies that ¢ = @¥, since D acts freely on M.
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Next we prove that dy is bounded on M. Let e : [0, L] = M be a mini-
mizing geodesic joining p and ¢p, where L = d(p, ¢p). Let A be the com-
pact domain bounded by y[0, a] U ¥e[0, L] U 7[0.a] U a0, L]. If D, C
D is the abelian subgroup generated by ¢ and ¥, then D,A = M. Therefore,

dy < max d;(A ),

since do(q) = dy(x) for any ¢ € M and a point x € A such that ¢¢ = x for
some ¢ € D,.

If we apply the first part of the argument above to any isometry of D,
then we conclude that D is abelian.

3. Surfaces having families of closed geodesics. In the present section
we shall prove the converse of (0.2). We first prove

Theorem 3.1. Suppose N= M/D is compact. If all the displacement
Jfunctions of D are constant on M, then N is a flat torus.

Proof. By Lemma 2.1, all ¢ € D preserve an orientation of M, so N
is orientable. It follows from Proposition 2.2 that N is topologically the
torus. Hence, to apply the theorem of E. Hopf, we must prove only that N
or Mhas no conjugate points. We first of all should remark that if x and y in
M are over the same point in N, then there is the unique geodesic joining x
and y which is a subarc of an axis of some isometry of D. This is shown from
Lemma 2.1, (2.3), and Lemma 1.1.

Assume that ¢ and ¥ generate D. Let z be an arbitrary point of M. We
define a coordinate on M as follows. Let o : (—o0, ) > Mand 8 : (—o0,
) = M be axes of ¢ and ¥ with a(0) = 2z = 8(0) and with speed ¢ = min
de, d = min dy, resp.. For any point x in M the axis of ¥(and ¢) through x
intersects a(—oo, o) (and B(—o0, )) at exactly one point, say a(u)(and
B(v), resp.). We give the x a coordinate (u, v). In the coordinate, all curves
u = const. and v = const. are minimizing geodesics. And, the u- and »-
coordinates of other geodesics are strictly monotone for their parameters.
Thus, we represent as a curve a geodesic by v = f(u) for any u € (—oo,
), where f is strictly monotone. Since all v = const. are parallel to each
other in the sense of Busemann ([5]p.65(2)), | flu) | > o as | u| =
([4]p. 216). Hence, as seen in [4]p. 216, we can define the “slope” for any

Su)

geodesic v = f(u) by limy..» 5. For the slope, we have from the same

argument as Busemann's (see[4]pp.216—219).
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Assertion. For any u € (—o0, ) there passes the unique minimizing
geodesic through each point p of M with slope

Although he proved the assertion under the hypothesis that M is straight,
i.e., in the Riemannian case it is equivalent to having no conjugate points,
his proof is valid in our situation by virtue of the above remark.

Let S.M be the set of all unit vectors at z and A the set of all vectors
w € S;M such that the geodesic ¥, : (—0, ) = M with 7,(0) = w is
minimizing. The set A is closed in S:M and contains the initial vectors of
geodesics from z = (0,0) to(m, n) for all (m,n) € ZX Z. We want to prove
that A = S.M. Suppose for an indirect proof that S:M— A #+ ¢. Let w, and
wy be the boundary vectors of a component of S,M— A. Then, we may assume
that the geodesics with initial vectors w, and w, have representations of the
forms

Ywe : v = flu), Yuw, : v= glu), with g(u) > f(u),
for u > 0. Then for any integer n > 0
0 < glu)—flu) <1,

since, otherwise the geodesic S, joining (n, f(n)) and (n, g(n)) contains a
point of the form(n, m) with integer m, and this contradicts the choice of w,
and w,. However, if so, then

Slu) glu)

limu—»iw = limu_.tm y
u u

contradicting Assertion. Thus, S:M = A. Therefore, by the theorem of
Hopf, N is flat. This completes the proof.

Busemann could prove that S;M = A in the course of showing Assertion,
but it was not stated because his interest was different from ours. We ex-
press Theorem 3.1 in terms of closed geodesics.

Corollary 3.2. Suppose N = M/D is compact. If each non-trivial homo-
topy class of closed curves in N contains a family of closed geodesics which
cover N simply, then N is a flat torus.

Proof. Let H be a non-trivial homotopy class of closed curves in N and
@ € D correspond to H. Let I" be a family of closed geodesics in H which
cover N simply. The lift I of I" to M covers M simply also. It follows from
Lemma 1.1 that the geodesic connecting p and ¢p uniquely exists and is a
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subarc of the geodesics in r through p for any point p € M. Thus, if a point
p in M is over po in N, then do(p) is the length of the closed geodesic in I”
through p,. Since, because of the first variation formula, all closed geodes-
ics in I' have the same length, d, is constant on M. Corollary 3.2 follows
from Theorem 3.1.

4. Example and discussion. In the present section we show that the
assumptions of Theorem 1.3 and Theorem 3.1 is best in some sense. The
examples and discussion here are due to Bliss([3]), Busemann-Pedersen([6]),
Busemann([5]) and Innami([10]). After studying examples we investigate
the condition (0.3).

Let f: R — R be a positive periodic function with period 1. Define a
Riemannian metric on R? by ds® = dx’+ f(x)*dy’. Then, the affine trans-
lations ¢ : R* > R? given by ¢(x,y) = (x+1,y) and ¥, : R* > R’ given
by ¥ix,y) = (a, y+1t) for each t € R are isometries. Hence, if D is the
group of isometries generated by ¢ and ¥, then(R? ds®)/D = T? is a torus.
And, if f(x,) = min f, then(x,,y) is a pole for any y € (—o0, 00), Let D,
be the isometry group generated by @t || ¥, : t € (—o0, )|, Then, dy,
assumes its minimum at all poles for any » € D,. Hence, for any unit vector

e, .
v except for Ta&at any pole we construct a section 7, from T2 to ST? such

that fy = mog'o 7y is a flow on T*. If we choose the function f such that the
length of the minimum set of f is sufficiently greater than the complement, we
have

(4.1) For any ¢ > 0 there is a non-flat Riemannian metric G on T?
such that A > ¢ = (1 —¢)A, where A is the volume of ST? and y is the vol-
ume of the set of all v € ST? such that f, is a flow on T

On the assumption of Theorem 3.1 and Corollary 3.2 we have

(4.2) For any n € D except for D, = { U7 ; n € Z| the displacement
function d, is constant on(R?, ds®).

Each non-trivial homotopy class of closed curves in T? except for ones
corresponding to D, contains a family of closed geodesics which cover T°*
simply.

Let f(xo) = min f and f(a1) > min f, 0o < 1y < xo+1. Leta: (—oo,
o) = (R?, ds®) be a geodesic with a(t) = (x(t), y(¢)) and a(0) = (x:, y1). It
follows from a theorem of Clairaut that f(x())cosf(t) = f(x(0))cos§(0)
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for all € (—oo, o), where 6(t) is the angle of a(t) andaiy at a(t). Hence,

if flx:)cos#(0) > min f, and if xo <x: < 1 < 13 < ;e +1 with flxrz) =
flxs) = f(x:)cosB(0), then a lies in the strip bounded by the lines (x:, R)

and (xs, R). In particular, we have

Proposition 4.1. Let T be a iorus with metric ds® = dx’+ f*(x)dy’.
If the set of all tangent vectors of geodesics which are dense in T is dense in
ST?, then f(x) = const., and, in particular, T? is flat.

The similar situation arises in the case of tori having poles. Let T® =
R?/D be a torus having poles. Suppose a point p € R? lies over a pole in
T2, Then, d, assumes its minimum at p for all ¢ € D(see[10]). Let ¢ be
an isometry of D and 7 : (—o0, ) = R? be the axis of ¢ with y(0) = p.
Then, there passes the unique asymptote to ¥ through each point g, since if
do(p) = ¢, 7(nc) is a pole for each n € Z(see[4], [5],[10]). Let p be
another pole in R? and let 7, : (—o0,0) = R? be the axis of ¢ through p:.
In general, the asymptotes to ¥ and 7, through a point ¢ in the strip bounded
by 7 and 7, are different. Suppose a, 8 : (—o0, ) = R? are the asymp-
totes to ¥ and 7, with a(0) = B(0) = q, @ #+ £, resp.. Let A be the domain
bounded by [0, c©) and 8[0, c©) which does not contain both ¥ and 7, and S
the set of all v € SR® inward A. We assert

Lemma 4.2. All geodesics emanating from q with initial tangent veciors
in S lie entirely in A.

Proof. Suppose there is a v € S such that the geodesic 7, : [0, ) =
R? with 7,(0) = v intersects a or B, say g1 = a(se) = ¥u(to) for the first
intersection point. Since e is an asymptote to 7, the geodesics a, : [0,
L) = R’ connecting ¢, to ¥(nc) converges to a[0, ) as n goes to infinity.
This implies that the domain B surrounded by 8[0, ) U [0, so] U a4[0,
L) N y[nc, ) is locally convex for sufficiently large n, where “locally
convex” means that the angle of the domain at each vertex is less than or
equal to 7. Hence, a shortest curve from g to ¥(nc) in A is a geodesic 7 :
[0, L] = R?, which intersects a[0, ) twice, at a(0) and another point g..
Since ¥(nc) is a pole, ¥, is minimizing in R?. However, since a is minimiz-
ing, the minimizing geodesic connecting a(0) to g, must exist uniquely, a
contradiction. This completes the proof.

We do not know whether d(7,[0, ), y(—o0, ©)) > 0 and d(7,[0, o),
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y1(—0o0, 00)) > 0 for any geodesic 7, : [0, %) = R? with 7(0) = v € S.
So we need an additional assumption for analogous rseult to Proposition 4.1.

Proposition 4.3. Let T® = M/D be a torus having two poles which do
not lie simultaneously in any closed geodesic. If the set of all tangent vectors
of geodesics which are dense in T? is dense in ST?, then T® is flat.

Proof. Let ¢ € D. We shall prove that the displacement function d, is
constant on M. We may assume that no € D exists such that ¢ = 3", n +
+ 1, since dy is so if d, is constant on M. Let ¥ be an isometry of D such
that @ and ¥ generate D. If y, @ : (—o0, ) = M are axes of ¢ and U,
resp., through a pole p = y(0) = (0) in M, then the compact domain sur-
rounded by y(—oo, ), a(—00, ), Fy(—o0,00) and @a(—o0, ) is the
closure F of a fundamental domain of T?. Another pole p, exists in the inte-
rior of F. If 7, : (—o0,00) = M is the axis of ¢ through p,, then ¥,(—oo,
o) decomposes the strip B bounded by y(— o0, 00) and ¥y(— o0, ) into two
components B, and B,. Suppose there is a point q, in B, say, such that the
asymptotes to two axes of ¢ which consist of the boundary of B, are different.
Since the angular domain in B, as in Lemma 4.2 can be constructed, the set
of all tangent vectors of geodesics which are dense in T is not dense in ST?,
a contradiction. Thus, B is covered simply by a family of asymptotes to both
7 and ¥'y. Suppose for an indirect proof that d, is not constant. Then, from
Lemma 5.1, there exists a geodesic 7 : (—00, ) — M contained in the in-
terior of B which is not an axis of ¢. Put x = 7(0). Since r does not have
any self-intersection point, it decomposes B into two components C, and C,
also. By Lemma 1.1, the asymptote to both ¥ and ¥y from x is entirely
contained in one of them, say C, and C; O y(—o0, ). A shortest curve
from x to ¥(nc) in C, must be the unique minimizing geodesic in M, since
¥(nc) is a pole for any n € Z, where ¢ = min do. This implies that the
asymptote to ¥ from x lies in C;, a contradiction. Thus, d, is constant on
M. Proposition 4.3 follows from Theorem 3.1.

5. Geodesic rays which avoid crossing closed curves. In the present
section we investigate the condition(0.4). We first prepare a lemma. The
idea of the proof was used by Bangert ([1], [2]).

Lemma 5.1. Let ¢ be an axial isomeiry of M having two axes and B

the strip bounded by the axes. If the displacement function do is not constant
in B, then there is a geodesic ¥y : (—00,00) = M contained in the interior of
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B which is a lift of a closed geodesic in B/ D, but not an axis of ¢, where
D=1{¢"; n€ Z\L.

Proof. Take a strip B, C B whose boundary consists axes 7 and 7, of
¢ such that do(q) > min d,(M) for any g in the interior of B,. We shall find
a closed geodesic in the interior of B,/D = B,. Let ho and b, : [0,1] = B,
be over 7 and 7, and hs : [0,1] = B,, s € [0, 1], a homotopy from ko to A,.
Let 2¢ be the minimum of the convexity radii of all points in B,. Take a
partition 0 = t, < # < **+ < b = 1 0f[0, 1] such that for each s € [0,1]
the lengths of hs[i;, #;4+.] are less than ¢ for i = 0,1,-:-, 2n—1. Define a
new homotopy Dhs from hs to h, as follows. Dhs is a closed and broken geo-
desic which consists of minimizing geodesics connecting hs(tz:) to hs(taa+1),
i=20,1,--, n—1. Again, define a homotopy D*hs from h, to h, as follows.
D?hs consists of minimizing geodesics from Dhs(2141) to Dhs(taiss), i = 0,
1,---, n—1. Repeating the process we have a sequence| D*hs ; n=0,1,---|
of homotopies. For each n, since D"hs is a homotopy from Ay and A, the set
J. =1s € [0,1] : the length of D"hs is greater then or equal to max do(B)|
is closed and not empty. Since J, D Jn.: for all n, a real so € (n-1 Jn
exists. Thus, the limit of a converging subsequence of | D"hs| is a closed
geodesic whose length is greater than or equal to max do(B:), since the
number of vertices of each D"hs, is n. This completes the proof.

We now prove the converse of (0.4).

Theorem 5.2. If a torus T? satisfies the condition(0.4), then T* is flat.

Proof. Let T> = M/D and ¢ € D. We may assume as in the proof of
Proposition 4.3 that ¢ and some ¥ can generate D. Let y : (—, ) > M
be an axis of ¢ and B the strip bounded by ¥ and ¥y. We can consider the y
and ¥y as two lifts of a non-contractible closed curve in. 2. By the condition
(0.4), the asymptotes from any point in B to ¥ and ¥y must be identified.
Suppose the displacement function do is not constant in B. From Lemma 5.1
there exists a geodesic a : (—©o0, ©) = M contained in B such that ¥a(t) =
a(t+a), a> min dp. The @ must be an asymptote to y because of (0.4).
Then it follows that e is an axis of ¢(see[5]p. 65, (2)). This contradicts
that @ > min de. This completes the proof.
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