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SOME METRIC INVARIANTS OF SPHERES AND
ALEXANDROV SPACES I

Nobuyuki SOCHI

Abstract. A metric invariant ak is defined, and we have that ak(X) ≤
ak(Sn) holds in an Alexandrov space X with curvature ≥ 1. And the
borderline case when a3(X) = a3(S

n) and ak(S1) are studied.

1. Introduction

The purpose of this paper is to study the behavior of some metric in-
variants on spheres and Alexandrov spaces. Let X be a compact metric
space, where the distance between x, y ∈ X will be denoted by dist(x, y).
Then the metric invariants, e.g., the diameter diamX = maxx,y∈X dist(x, y),
the radius radX = minx∈X maxy∈X dist(x, y) played an important role in
Riemannian Alexandrov geometry([G-P1],[B-G-P]). Now, S.Shteingold in-
troduced the notion of k-covering radius covkX = minx1,...,xk∈X maxx∈X

mini=1,...,kdist(xi, x) and studied its behavior in Alexandrov spaces with
curvature ≥ 1([S]). Here we introduce the following metric invariant ak(X)
related to the k-covering radius.

Definition 1.1. For a positive integer k, we define the metric invariant
ak(X) of X as follows:

(1.1) ak(X) = min
x1,...,xk∈X

max
x∈X

1
k

k∑

i=1

dist(xi, x).

Note that a1(X) = minx1∈X maxx∈X dist(x1, x) is nothing but the radius
of X, and we have a1(X) ≥ ak(X) ≥ covk(X).

We want to study ak(X) in an Alexandrov space X with curvature ≥ 1,
and begin with the case of the n-dimensional unit sphere Sn of constant
curvature 1 as the model space. We have as our first result for S1 the
following theorem.

Theorem 1.1. (1) For k = 2p − 1, we have

(1.2) ak(S1) =
2p2 − 2p + 1

(2p − 1)2
π.

ak(S1) is realized if and only if a configuration (x1, · · · , xk) of k points is
equally spaced in S1, and maxx∈S1(1/k)

∑k
i=1 dist(x, xi) is attained exactly

at the antipodal points of xi(1 ≤ i ≤ k).
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164 N. SOCHI

(2) For k = 2p, we have

(1.3) ak(S1) =
1
2
π.

ak(S1) is realized if and only if a configuration of k points consists of pairs
of antipodal points, and in the case we have (1/k)

∑k
i=1 dist(x, xi) ≡ π/2.

In case of Sn of general dimension, we give the following theorems in this
paper.

Theorem 1.2.

(1.4) a3(Sn) = a3(S1) =
5
9
π,

where a3(Sn) is realized if and only if 3 points are equally spaced on a great
circle, and maxx∈Sn(1/3)

∑3
i=1 dist(x, xi) is attained exactly at the antipodal

points of xi(1 ≤ i ≤ 3).

Theorem 1.3. For k = 2p, we have

(1.5) ak(Sn) =
1
2
π.

Moreover, ak(Sn) is realized if and only if a configuration of k points consists
of pairs of the antipodal points, and in the case we have (1/k)

∑k
i=1 dist(x, xi)

≡ π/2. We say that this configuration is symmetric.

For k = 2p − 1, we conjecture that

(1.6) ak(Sn) = ak(S1) =
2p2 − 2p + 1

(2p − 1)2
π

holds, where a2p−1(Sn) is realized if and only if a configuration (x1, · · ·, x2p−1)
of 2p−1 points is equally spaced in a great circle S1 of Sn, and maxx∈Sn(1/k)·∑k

i=1 dist(x, xi) is attained exactly at the antipodal points of xi(1 ≤ i ≤ k).

Next we will explain Alexandrov spaces([B-G-P]). Alexandrov spaces are
finite-dimensional, locally compact, and complete intrinsic metric spaces
with a lower curvature bound in the local triangle sense. Let (X, dist) be an
Alexandrov space. A geodesic or a segment is a curve whose length is equal
to the distance between its ends. In a locally compact complete space with
intrinsic metric any two points can be joined by a geodesic, which is not
necessarily a unique segment. A collection of three points p, q, r ∈ X and
three geodesics pq, qr, rp is called a geodesic triangle 4pqr. We associate a
geodesic triangle 4̃pqr = 4p̃q̃r̃ on the k-plane M2

k with vertices p̃, q̃, r̃ and
sides of lengths dist(p̃, q̃) = dist(p, q), dist(q̃, r̃) = dist(q, r), and dist(r̃, p̃) =
dist(r, p), where a k-plane is a 2-dimensional complete simply-connected
Riemannian manifold of constant sectional curvature k.

2
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The most basic tool in Alexandrov geometry is the following Toponogov
comparison theorem([B-G-P],[G-W]).

Let X be an n(≥ 2)-dimensional Alexandrov space with curvature ≥ k.
Then we have the following comparison theorems:
(1) For any triple (p1, p2, p3) in X, there is a unique (up to isometry) triple
(p̃1, p̃2, p̃3) in M2

k with dist(pi, pj) = dist(p̃i, p̃j)(i, j = 1, 2, 3). For a segment
p2p3:[0, dist(p2, p3)] −→ X and a segment p̃2p̃3 in M2

k , we have

(1.7) dist(p1, p2p3(t)) ≥ dist(p̃1, p̃2p̃3(t))(0 < t < dist(p2, p3)).

(2) If equality holds in (1.7) for some 0 < t0 < dist(p2, p3) and ct0 is a
segment from p1 to p2p3(t0), then ct0(s), 0 < s ≤ dist(p1, p2p3(t0)), is joined
to p2 and p3 by unique segments. Moreover, these segments, together with
their limit segments from p1 to p2 and p3, form a surface which has totally
geodesic interior and which is isometric to the triangular surface in M2

k with
vertices p̃1, p̃2, p̃3.
(3) For any hinge (p1p2, p1p3) in X with 0 < ^(p1p2, p1p3) < π, we have

(1.8) dist(p2, p3) ≤ dist(p̃2, p̃3),

where (p̃1p̃2, p̃1p̃3) is the corresponding hinge in M2
k satisfying dist(p1, pi) =

dist(p̃1, p̃i)(i = 2, 3), and ^(p1p2, p1p3) = ^(p̃1p̃2, p̃1p̃3).
(4) If equality holds in (1.8), then (p1p2, p1p3) spans a surface which has
totally geodesic interior and is isometric to the triangular surface in M2

k
spanned by (p̃1p̃2, p̃1p̃3). In fact, any such surface is determined uniquely by
a segment in X between interior points of the segments p1p2 and p1p3.

We also use the generalized Toponogov comparison theorem for quasi-
geodesics([Pe]). First we explain quasigeodesics. A curve γ̃ in M2

k is called
(locally) convex at the point γ̃(t) with respect to p̃ ∈ M2

k if there exists
ε > 0 such that the following triangle is convex. The sides of this triangle
are the curve γ̃(t) |t+ε

t−ε and the two segments γ̃(t − ε)p̃ and γ̃(t + ε)p̃. Let
γ : [a, b] −→ X be a curve in X. For p ∈ X, a curve γ̃ : [a, b] −→ M2

k
is called an unfolding of γ with respect to p if the following conditions are
satisfied:



1) γ̃(t) is parameterized by arc length,

2) there exists p̃ ∈ M2
k such that dist(γ̃(t), p̃) = dist(γ(t), p) for every t,

3) the direction from p̃ to γ̃(t) turns monotonically with increasing t.

A curve γ in X is called k-convex if for all p ∈ X there exists a curve γ̃ in
M2

k that satisfies the following conditions:
1) γ̃ is an unfolding of γ with respect to p,
2) γ̃ is a locally convex curve with respect to p̃ at all γ̃(t) such that

dist(p̃, γ̃(t)) < π(k).

3
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In the above we set π(k)=π/
√

k for k > 0 and π(k)=∞ for k ≤ 0.
Then a k-convex curve γ : [a, b] −→ X parameterized by arc length is

called a k-quasigeodesic, or simply quasigeodesic. We can take a quasi-
geodesic emanating from p in any direction v. Let γ : [a, b] −→ X be a quasi-
geodesic. Then for any p ∈ X and t0 ∈ [a, b] the angle ˜̂ (γ(t0)γ(t), γ(t0)p) is
nonincreasing in t(t ≥ t0), where ˜̂ (γ(t0)γ(t), γ(t0)p) = ^(γ̃(t0)γ̃(t), γ̃(t0)p̃)
is the corresponding angle of the model triangle 4̃∗pγ(t0)γ(t) in M2

k with
sides of lengths dist(p, γ(t0)),dist(p, γ(t)), and t − t0.

From this property of quasigeodesics we have the following Generalized
Toponogov comparison theorem ([Pe]):

Let X be an n(≥ 2)-dimensional Alexandrov space with curvature ≥ k,
and let γ : [0, t] −→ X be a quasigeodesic. For p ∈ X and t0 ∈ [0, t], take
a geodesic triangle 4∗γ̃(t0)γ̃(t)p̃ in M2

k that denotes a triangle with sides
γ|[t0,t], pγ(t0), pγ(t), corresponding to the triangle 4∗γ(t0)γ(t)p, satisfying

dist(p, γ(t0)) = dist(p̃, γ̃(t0)), L(γ|[t0,t]) = dist(γ̃(t0), γ̃(t)) = t − t0, and

dist(p, γ(t)) = dist(p̃, γ̃(t)). In the above we denote by L(γ|[t0,t]) the length
of a curve γ|[t0,t]. Then we have

(1.9) ^(γ|[t0,t], γ(t0)p) ≥ ^(γ̃(t0)γ̃(t), γ̃(t0)p̃),

where the angle ^(γ|[t0,t], γ(t0)p) = limt→0 ˜̂ (γ(t0)γ(t), γ(t0)p). Now for any

hinge (γ|[t0,t], γ(t0)p) in X, take the corresponding hinge (γ̃(t0)q̃, γ̃(t0)p̃) in

M2
k such that L(γ|[t0,t]) = dist(γ̃(t0), q̃) = t−t0, dist(γ(t0), p) = dist(γ̃(t0), p̃),

and ^(γ|[t0,t], γ(t0)p) = ^(γ̃(t0)q̃, γ̃(t0)p̃).
Then we have from (1.9)

(1.10) dist(γ(t), p) ≤ dist(q̃, p̃).

By using this property of quasigeodesics, i.e., the generalized Toponogov
comparison theorem, we get the following theorem.

Theorem 1.4. Let X be an n-dimensional Alexandrov space with curvature
≥ 1, then we have

(1.11) ak(X) ≤ ak(Sn).

Especially we have

(1.12) a2p(X) ≤ a2p(Sn) =
π

2
.

Next we explain the notion of the spherical suspension([B-G-P]).

4
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Definition 1.2. The spherical suspension of a metric space Y is the quotient
space

(1.13)
∑

1

Y = Y × [0, π]/ ∼,

where the equivalence relation ∼ is given by

(1.14) (x1, a1) ∼ (x2, a2) ⇔

{
x1 = x2, 0 < a1 = a2 < π or

a1 = a2 = 0 or a1 = a2 = π,

and is equipped with the canonical metric

(1.15) cos dist(x̂1, x̂2) = cos a1 cos a2 + sin a1 sin a2 cos dist(x1, x2),

where we set x̂1 = (x1, a1), x̂2 = (x2, a2).

Further we define
∑

k Y =
∑

k−1(
∑

1 Y ) to be a k-times repeated spheri-
cal suspension. Then for an Alexandrov space X we have X =

∑
k Y if and

only if Sk−1 is isometrically embedded in X.
Now we ask what happens when equality holds in (1.11). If k = 1 this

means that radX = π and X is isometric to Sn. We want to know whether
an Alexandrov space X admits a similar structure to Sn if equality holds
in (1.11) for general k. By using the generalized Toponogov comparison
theorem we get the following theorem for the case of k = 3. We also give a
partial result for k = 2(see proposition 4.1).

Theorem 1.5. Let X be an n-dimensional Alexandrov space with curvature
≥ 1. Suppose a3(X) = a3(Sn) = 5π/9. Then we have diamX = π. If
n=dim X ≥ 2 then X=

∑
2 Z, where Z is an (n−1)-dimensional Alexandrov

space with curvatureZ ≥ 1.

2. Proof of Theorem1.1

In this section we are concerned with ak(S1). A k-tuple (x1, · · · , xk) of
points xi(i = 1, · · · , k) of S1 located in counterclockwise order is called a
configuration, where each xi is called a vertex of the configuration. The
antipodal point of x ∈ S1 will be denoted by x̄.

Now for a configuration (x1, · · · , xk) we set

(2.1) fx1,··· ,xk
(x) :=

k∑

i=1

dist(x, xi).

Considering S1 as the unit circle in R2, we take the angle measure t = t(x)
of radius Ox as the coordinate of x ∈ S1. Then we may write

(2.2) dist(x, xi) =

{
| t − ti | if 0 ≤| t − ti |≤ π,

2π− | t − ti | if π ≤| t − ti |≤ 2π,

5
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Figure 1

where we set t = t(x), ti = t(xi). Hence fi(x) := dist(x, xi) is smooth
except for xi and x̄i, and the gradient vector ∇fi(x)(x 6= xi, x̄i) is a unit
tangent vector to the minimal circle arc of S1 from x to xi. fi assumes the
maximum π(resp., minimum 0) at x̄i(resp., xi) and its graph is a polyg-
onal line with gradient ±1. Now for a configuration (x1, · · · , xk), f(x) =∑k

i=1 dist(x, xi) is smooth except for xi, x̄i(i = 1, · · · , k) and its graph is
a polygonal line([figure1]). As x passes through a vertex xi(resp.,x̄i), the
gradient of the graph of f(x) increases (resp., decreases) by 2. Then we
easily see that f(x) is constant if and only if the configuration consists of
pairs of antipodal points.

Lemma 2.1. We have for any x ∈ S1

(2.3) f(x) + f(x̄) = kπ.

Proof. For any fixed vertex xi we have dist(x, xi)+ dist(x̄, xi)=π for any
x ∈ S1. Then (2.3) follows by taking sum with respect to i. ¤

First we will prove Theorem 1.1 for odd k = 2p−1 by induction. If p = 1,
we have maxx∈S1f(x) = π for any (x1). We assume that (1.2) holds for
k = 2p − 3. Suppose a configuration (x1, · · · , xk), k = 2p − 1 is given.

Lemma 2.2. f(x) assumes a maximal value at the antipodal x̄i of a vertex
xi. Then f(x) assumes a minimal value at the vertex xi.

Proof. First we show that f(x) cannot assume an extremal value at x( 6=
xi, x̄i)(i = 1, · · · , k). Indeed, otherwise we have ∇f(x) = 0, since f is
smooth at x. On the other hand we have ∇f(x) =

∑k
i=1 ∇fi(x), fi(x) =

6
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dist(x, xi), where ∇fi(x) are unit vectors of R ∼= Tx(S1). Then
∑k

i=1 ∇fi(x)
6= 0, because k is odd. This also implies that the gradient of the graph of
f(x) at x(6= xi,x̄i) is an odd integer, and that f(x) is not locally constant.
Now the graph of the gradient of f(x) is a polygonal line and the gradient
of the graph changes the sign from plus to minus at a maximal point. Hence
f may assume a maximal value only at the antipodal x̄i of some vertex xi.
From Lemma 2.1 f assumes a minimal value at the vertex xi. ¤

In case of k = 2p − 1, we say that the polygonal line ,which is the graph
of f , forms a peak(resp., trough) at x̄i(resp., xi) when f assumes a maximal
value(resp., minimal value) at x̄i(resp., xi).

Lemma 2.3. For a given configuration (x1, · · · , xk), k = 2p − 1, suppose
that vertices differ from one another and that the antipodal of any vertex
is not a vertex of the configuration. If f assumes the minimum value at a
vertex xi and therefore the maximum value at x̄i, then around the peak at x̄i

and the trough at xi the graph of f consists of two segments whose gradients
are 1 and −1.

Proof. The gradient of the polygonal lines, which is the graph of f , is an odd
integer, and changes the sign at xi(resp.,x̄i) and decrease (resp., increase)
by 2 because of the assumptions. ¤
Lemma 2.4. When there is a vertex xi whose antipodal point x̄i is a vertex
of the configuration, the maximum value of f(x) is larger than (2p2−2p+1)π

2p−1

which is the maximum of f(x) determined by the configuration whose vertices
are equally spaced.

Proof. Suppose xi = x̄j(1 ≤ i, j ≤ 2p − 1, i 6= j). Then for any x, we
have dist(x, xi) + dist(x, xj) = π and f(x) = π +

∑
k 6=i,j dist(x, xk). By the

induction assumption we have

maxx∈S1

∑

k 6=i,j

dist(x, xk) ≥
2(p − 1)2 − 2(p − 1) + 1

2p − 3
π.

It follows that

max
x∈S1

{π +
∑

k 6=i,j

dist(x, xk)} ≥ π +
2(p − 1)2 − 2(p − 1) + 1

2p − 3
π

=
2p2 − 4p + 2

2p − 3
π >

2p2 − 2p + 1
2p − 1

π.

(2.4)

¤
Recall that for a given configuration (x1, · · · , xk) vertices xi are counter-

clockwise arranged. If xi+l 6= xi(l > 0) we write xi < xi+l, and xi < x < xi+l

7
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Xi Xj Xi Xj

Figure 2

means that x is contained in the arc from xi to xi+l in S1. Here we show
that the maximum value of f can be made smaller by moving the overlapped
vertices.

Lemma 2.5. If dist(xi, xj)(i < j) increases, the maximum value of the sum
dist(x, xi) + dist(x, xj) decreases.

Proof. The sum of the gradients of the graphs of dist(x, xi) and dist(x, xj) is
0 for xi ≤ x ≤ xj or x̄i ≤ x ≤ x̄j . The sum dist(x, xi) + dist(x, xj) assumes
the maximum value which is equal to 2π − dist(xi, xj) for x̄i ≤ x ≤ x̄j and
assumes the minimum value which is equal to dist(xi, xj) for xi ≤ x ≤ xj .
Therefore if dist(xi, xj)(i < j) increases, the maximum value of the sum
dist(x, xi) + dist(x, xj) decreases([figure 2]). ¤
Lemma 2.6. When vertices xi, xj in S1 are moved equally in the opposite
directions, the sum dist(x, xi)+dist(x, xj) assumes the same value indepen-
dent of the position of xi, xj for x̄j ≤ x ≤ xi or x̄i ≥ x ≥ xj.

Proof. When vertices xi, xj are moved equally in the opposite directions
for x̄j ≤ x ≤ xi or x̄i ≥ x ≥ xj ,the increase(resp.,decrease) of dist(x, xi)
is equal to the decrease(resp.,increase) of dist(x, xj) for x̄j ≤ x ≤ xi or
x̄i ≥ x ≥ xj .Therefore the sum dist(x, xi) + dist(x, xj) assumes the same
value independent of the position of vertices xi, xj for x̄j ≤ x ≤ xi or
x̄i ≥ x ≥ xj . ¤
Lemma 2.7. When vertices overlap, the maximum value cannot be made
greater by moving the overlapped vertices.

8
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Proof. First suppose that the maximum value of f(x) is realized at the an-
tipodal point of overlapped vertices. From Lemma 2.5, 2.6 the maximum
value is made smaller by moving the overlapped points equally in the differ-
ent directions slightly. If the maximum value of f(x) is realized at a point
different from the antipodal point of the overlapped vertices, the maximum
value is kept constant by moving the overlapped points in the same manner
as Lemma 2.5, 2.6. ¤

In the following we consider the case where k(= 2p − 1) vertices are
different from one another, and there is no vertex whose antipodal point is
a vertex.

Lemma 2.8. Suppose a minimum of f(x) is assumed at xi, and conse-
quently a maximum of f(x) is assumed at x̄i.Then we have

(2.5) xp+i−1 < x̄i < xp+i,

where p + i, p + i − 1 are counted modulo k.

Proof. Suppose xp+i < x̄i or xp+i = x̄i. Then the gradient of the polygonal
line f(x) at the left side of x̄i is greater than or equal to (p+1)−(p−2) = 3.
From Lemma 2.3 it contradicts that the gradient of polygonal line f(x) at
the left side of x̄i is 1. Next suppose xp+i−1 > x̄i or xp+i−1 = x̄i. Then the
gradient of polygonal line f(x) at the right side of x̄i is greater than or equal
to (p + 1) − (p − 2) = 3. From Lemma 2.3 it contradicts that the gradient
of a polygonal line f(x) at the right side of x̄i is 1. ¤

In case of k = 2p − 1, the configuration (x1, · · · , xk) of k points on S1 is
called balanced, if we have xi < x̄i+p < xi+1 for any i, where i+p is counted
modulo k. For a balanced configuration (x1, · · · , xk), the gradient of the
graph of f(x) = fx1,··· ,xk

(x) is equal to ±1 and there are k peaks where f(x)
assumes maximal values at the antipodal point x̄i. The maximum value is
one of the peak values([figure 3]). Now we will show that the configuration
such that the maximum value is minimum is the configuration such that k
points are equally spaced. Indeed, the following lemma 2.9 shows that it
suffices to consider balanced configurations. Finally in Lemma 2.9 we show
the above assertion for the family of balanced configurations.

Lemma 2.9. In case of k = 2p−1, ak is realized for a balanced configuration.

Proof. We may assume k(= 2p − 1) vertices do not overlap and there are
no vertices whose antipodal points are vertices. When there is no antipodal
point between xi and xi+1 for some i in an imbalanced configuration, this
configuration is changed into the configuration a vertex of which is antipodal
of a vertex by moving points x̄i and x̄i+1 equally in opposite directions
till either reaches the most nearby vertex. Then the maximum of f(x) is

9
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kept constant or made smaller from Lemma 2.5, 2.6. From Lemma 2.4 the
maximum of the sum of distance from x is made greater than (2p2−2p+1)π

2p−1 .
Therefore ak is realized for a balanced configuration. ¤
Lemma 2.10. In the family of balanced configurations ak(S1) is realized if
and only if k(= 2p − 1) points are equally spaced.

Proof. Let (x1, · · · , xk), k = 2p − 1, be a balanced configuration and set
Mx1,··· ,xk

:= maxx∈S1 fx1,··· ,xk
(x). Then Mx1,··· ,xk

= max1≤i≤k fx1,··· ,xk
(x̄i)

by Lemma 2.2. Since (x1, · · · , xk), k = 2p − 1, is balanced, we have

xi < x̄i+p < xi+1 < x̄i+p+1 < · · ·xi+p−1 < x̄i,(2.6)

x̄i < xi+p < x̄i+1 < xi+p+1 < · · · x̄i+p−1 < xi.(2.7)

It follows that

(2.8) f(x̄i) =
p−1∑

j=1

dist(xi+j , xi+j+p−1) + π.

Then we have

(2p − 1)Mx1,··· ,xk
≥

k∑

i=1

f(x̄i) = 2(p − 1)2π + (2p − 1)π

= (2p2 − 2p + 1)π,

(2.9)

namely,

(2.10) Mx1,··· ,xk
≥ 2p2 − 2p + 1

2p − 1
π.

If equality holds in (2.10) we have f(x̄1) = f(x̄2) = · · · = f(x̄2p−1) =
(2p2−2p+1)π

2p−1 , which is equivalent to dist(x1, x2) = dist(x2, x3) = · · · =
dist(xi, xi+1) = · · · = dist(x2p−1, x1). ¤

10
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Next we show Theorem 1.1 for the case of k = 2p. Indeed, Theorem 1.1 for
k = 2p may be generalized to n-dimensional case(Theorem 1.3). However
here we give a detailed proof for S1 to show the idea. Let (x1, · · · , x2p)
be a configuration of k(= 2p) points in S1, and set f(x) = fx1,··· ,xk

(x) =∑k
i=1 dist(x, xi) as before. First note that the gradients of a polygonal line

which is the graph of f are even integers([figure 4]). Indeed, the gradient
vector ∇f(x) at x(6= xi, x̄i) is the sum of unit tangent vectors in Tx(S1) of
even numbers. From this fact we also see that x(6= xi, x̄i) is a critical point
of f if and only if there are the same number of vertices on arcs x < x̄ and
x̄ < x. Now for any configuration (x1, · · · , x2p) we have

(2.11)
∫ 2π

0
dist(x, xi)dx = π2,

and therefore

(2.12)
∫ 2π

0
f(x)dx = 2pπ2.

And for a configuration (x1, · · · , x2p) such that the antipodal point of any
vertex is a vertex of the configuration(i.e., xp+i = x̄i), f(x) = fx1,··· ,x2p(x)
is equal to a constant pπ, we call such a configuration symmetric. For any
configuration (x1, · · · , x2p), we have the following lemma.

Lemma 2.11.

Mx1,··· ,x2p := max
x∈S1

fx1,··· ,x2p(x) ≥ pπ.(2.13)

mx1,··· ,x2p := min
x∈S1

fx1,··· ,x2p(x) ≤ pπ.(2.14)

Proof. Suppose Mx1,··· ,x2p < pπ, then we have
∫ 2π
0 fx1,··· ,x2p(x) < 2pπ2. It

contradicts the assumption. Similarly suppose mx1,··· ,x2p > pπ, then we have∫ 2π
0 fx1,··· ,x2p(x) > 2pπ2. It contradicts the assumption. ¤

Lemma 2.12. Suppose k = 2p. Then ak(S1) = π/2 and ak(S1) is realized
if and only if a configuration consists of pairs of antipodal points (xi, x̄i).

Proof. From Lemma 2.11 we have

(2.15) a2p(S1) =
1
2p

minMx1,··· ,x2p ≥ π

2
,

and for a symmetric configuration we have Mx1,··· ,x2p = mx1,··· ,x2p = pπ.
Therefore a2p(S1) = π/2. To complete the proof of Theorem 1.1 it suffices
to show that a configuration (x1, · · · , x2p) with Mx1,··· ,x2p = pπ must be sym-
metric. Indeed, in this case we have Mx1,··· ,x2p = pπ and

∫ 2π
0 fx1,··· ,x2p(x) =

2pπ2. Therefore fx1,··· ,x2p(x) ≡ pπ is a constant function and every x ∈ S1

11
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X1

X2

X3

X4

X1 X2 X3 X4 X1

Figure 4

is a critical point of fx1,··· ,x2p(x). It follows that for any x( 6= xi, x̄i), there
are p vertecies on arcs x < x̄ and x̄ < x. This happens only for a symmetric
configuration. ¤

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

Here we will give a proof of a3(Sn) = 5π/9. We begin with the case of
n = 2 considering S2 as the unit sphere in R3. Let x1, x2, x3 be points of
S2 which are contained in a small or great circle. For given x1, x2, x3 ∈ S2

take a plane Π in R3 containing these there points. Suppose that Π ∩ S2 is
a small circle C, and let N be the pole of Sn such that dist(xi, N) is equal
to t(0 ≤ t ≤ π/2). Set f(x) = fx1,x2,x3(x) =

∑3
i=1 dist(xi, x). We show that

(3.1) max
x∈S2

f(x) >
5
3
π

holds. Indeed, assuming that x1, x2, x3 ∈ C are located in counterclockwise
order and

(3.2) dist(x2, x3) ≥ max{dist(x1, x2), dist(x1, x3)},

take x′
i(i = 1, 2, 3) on a great circle S parallel to C which are projections of

xi(i = 1, 2, 3) by great half circles through N . Then we have

(3.3)

{
dist(x1, x2) + dist(x1, x3) < dist(x′

1, x
′
2) + dist(x′

1, x
′
3)

≤ 2π − dist(x′
2, x

′
3) ≤ 4

3π.

12
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Now for x = x̄1, the antipodal point of x1, note that dist(x1, x) = π,
dist(x2, x) = π − dist(x1, x2), and dist(x3, x) = π − dist(x1, x3). It follows
that

(3.4)





dist(x1, x) + dist(x2, x) + dist(x3, x)
= 3π − dist(x1, x2) − dist(x1, x3)
> 3π − 4

3π = 5
3π.

Therefore the maximum value of the sum of distances from arbitrary three
points x1, x2, x3 on any small circle exceeds 5π/3, that is equal to a3(S1).

Next suppose that x1, x2, x3 are on a great circle S arranged in counter-
clockwise order and y is on the same great circle. If x1, x2, x3 are not equally
spaced then from Theorem 1.1 we have

max
x∈S2

fx1,x2,x3(x) ≥ max
x∈S

fx1,x2,x3(x) > 5π/3.

So we assume that x1, x2, x3 are equally spaced on S. First we show that the
maximum value of f is assumed at a point of S. Note that any point x ∈ S2

lies on a half great circle γ joining a point y ∈ S and the antipodal point ȳ
of y and perpendicular to S. We may assume that x1 ≤ y ≤ x2 on S. Set
li = dist(x, xi)(i = 1, 2, 3), t = dist(x, y)(0 ≤ t ≤ π), and s = dist(x1, y),
where we may assume that 0 ≤ s ≤ π/3. Then by the cosine formula we
have

cos l1 = cos t cos s,(3.5)

cos l2 = cos t cos(
2
3
π − s) = − cos t cos(

1
3
π + s),(3.6)

cos l3 = cos t cos(
2
3
π + s) = − cos t cos(

1
3
π − s).(3.7)

For a fixed s, li(i = 1, 2, 3) are functions of t and we get

l′1(t) + l′2(t) + l′3(t)

= sin t

{
cos s√

1 − cos2 t cos2 s
−

cos(π
3 + s)√

1 − cos2 t cos2(π
3 + s)

−
cos(π

3 − s)√
1 − cos2 t cos2(π

3 − s)

}
.

Now set a = | cos t| and

(3.8) g(u) =
u√

1 − a2u2
.

13
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Set u1 = cos(π/3 + s), u2 = cos(π/3 − s), and note that u1 + u2 = cos s
holds. Then for 0 ≤ s ≤ π/6 noting that

(3.9) 0 ≤ u1 ≤ 1
2
,

1
2
≤ u2 ≤

√
3

2
,

√
3

2
≤ u1 + u2 ≤ 1,

we easily have g(u1 + u2) ≥ g(u1) + g(u2). It follows that

l′1(t) + l′2(t) + l′3(t) ≥ 0

for 0 ≤ s ≤ π/6. Next for π/6 ≤ s ≤ π/3, noting that

(3.10) −1
2
≤ u1 ≤ 0,

√
3

2
≤ u2 ≤ 1,

1
2
≤ u1 + u2 ≤

√
3

2
,

we have g(u1 + u2) ≤ g(u1) + g(u2). Therefore we have

l′1(t) + l′2(t) + l′3(t) ≤ 0

for π/6 ≤ s ≤ π/3. Hence l1(t) + l2(t) + l3(t) assumes the maximum value
at t = π for 0 ≤ s ≤ π/6 and at t = 0 for π/6 ≤ s ≤ π/3. Especially for
s = π/6, we have l1(t)+l2(t)+l3(t) ≡ 3π/2 < 5π/3 and this value is less than
maxx∈S2 fx1,x2,x3(x). It follows that f : S2 → R2 assumes the maximum at
a point of the great circle S. Then we have our assertion by Theorem 1.1.
Finally we consider the case of general n ≥ 2. Let x1, x2, x3 ∈ Sn be given.
If x1 = x2 = x then for the antipodal x̄ of x we have

(3.11) max
x∈Sn

fx1,x2,x3(x) ≥ fx1,x2,x3(x̄) ≥ 2π >
5
3
π.

Therefore we may assume that x1, x2, x3 are different. Then x1, x2, x3 are on
either a small or a great circle of some 2-dimensional sphere S2. If they are
on a small sphere then the above argument implies that maxx∈Sn f > 5π/3.
If they are on a great circle, then for any x ∈ Sn we may assume that
x, x1, x2, x3 are contained in some great 2-dimensional sphere S2 and the
above argument works. This completes the proof of Theorem 1.2.

4. Proof of Theorem 1.3 and Theorem 1.4

First we show that ak(Sn) is equal to π/2 for k = 2p. Suppose

(4.1) fx1,x2,··· ,xk
(x) =

k∑

i=1

dist(x, xi),

as before. Then we have

(4.2) ak(Sn) = min
x1,x2,··· ,xk

max
x∈Sn

fx1,x2,··· ,xk
(x) = min

x1,x2,··· ,xk

‖ fx1,x2,··· ,xk
‖∞ .

14
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Set

Mx1,··· ,x2p := max
x∈Sn

fx1,··· ,x2p(x),(4.3)

mx1,··· ,x2p := min
x∈Sn

fx1,··· ,x2p(x),(4.4)

as before. Here we have

(4.5) ‖ fx1,x2,··· ,x2p ‖1=
∫

Sn

fx1,··· ,x2p(x)dx = pπvol(Sn).

Suppose Mx1,··· ,x2p < pπ, then we have
∫
Sn fx1,··· ,x2p(x) < pπvol(Sn). It

contradicts the assumption. Therefore we obtain Mx1,··· ,x2p ≥ pπ. Next
suppose mx1,··· ,x2p > pπ, then we have

∫
Sn fx1,··· ,x2p(x) > pπvol(Sn). It

contradicts the assumption. Therefore we obtain mx1,··· ,x2p ≤ pπ. Hence

(4.6) a2p(Sn) =
1
2p

minMx1,··· ,x2p ≥ π

2
,

and for a symmetric configuration(see the statement of Theorem 1.3) we
have Mx1,··· ,x2p = mx1,··· ,x2p = pπ. Therefore a2p(Sn) = π/2. To complete
the proof of this theorem it suffices to show that a configuration (x1, · · · , x2p)
with Mx1,··· ,x2p = pπ must be symmetric. In this case we have Mx1,··· ,x2p =
pπ and

∫
Sn fx1,··· ,x2p(x) = pπvol(Sn). Therefore fx1,··· ,x2p(x) ≡ pπ is a con-

stant function and every x ∈ Sn is a critical point of fx1,··· ,x2p(x). Since
fx1,x2,··· ,x2p(x) = pπ, fx1,x2,··· ,x2p(x) is smooth. dist(x, xi) is differentiable
at any point except for xi and x̄i. If none of points x1, x2, · · · , x2p coin-
cides with x̄i, fx1,x2,··· ,x2p(x) is not differentiable at x̄i. It contradicts that
fx1,x2,··· ,x2p(x) is smooth. It happens only for a symmetric configuration.
This completes the proof of Theorem 1.3.

Now we turn to the proof of Theorem 1.4. Let X be an n-dimensional
Alexandrov space with curvature ≥ 1. First we recall the notion of the expo-
nential map ([G-W],[Pe]). For p ∈ X we denote by Sp the space of directions
at p, that is an (n − 1)-dimensional Alexandrov space with curvature ≥ 1.
Note that each v ∈ Sp determines a quasigeodesic cv : [0, π] −→ X emanat-
ing from p with the initial direction v. Then for the spherical suspension∑

1 Sp = Sp×[0, π]/ ∼, the exponential map expp :
∑

1 Sp−(Sp×{π})/ ∼−→
X is defined as follows. For v ∈ Sp we denote by c̄v(t) = (t, v)(0 ≤ t ≤ π),
the corresponding segment in

∑
1 Sp emanating from the vertex p̄. Then we

set expp c̄v(t) = cv(t).
Now we show that ak(X) does not exceed ak(Sn) by the generalized To-

ponogov comparison theorem. Let x̃1, x̃2, · · · , x̃k be points in Sn that real-
izes ak(Sn). And take a point p̃ ∈ Sn different from the antipodal points of
x̃i(i = 1, · · · , k). Take a regular point p ∈ X. Then

∑
1 Sp is isometric to

Sn, and we identify
∑

1 Sp (resp.,Sp) with Sn =
∑

1 Sp̃ (resp.,Sp̃ = Sn−1).

15
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Let xi be a point such that expp c̄vi(t) = cvi(t), where c̄vi is a geodesic ema-
nating from p̃ with initial direction vi to x̃i ∈

∑
1 Sp̃ = Sn(i = 1, · · · , k) and

cvi is a quasigeodesic emanating from p with initial direction vi to xi. Take
a point x0 ∈ X such that

(4.7) ak(x1, · · · , xk) := max
x∈X

1
k

k∑

i=1

dist(x, xi) =
1
k

k∑

i=1

dist(x0, xi).

Let γ0 : [0, dist(p, x0)] −→ X be a minimal geodesic from p to x0, and set
x̃0 = expSn

p̃ (dist(p, x0)γ̇0(0)). By the generalized Toponogov comparison
theorem for 4pxix0 and 4p̃x̃ix̃0(see (1.10)) we have

(4.8) dist(x0, xi) ≤ dist(x̃0, x̃i).

It follows that

ak(X) ≤ ak(x1, x2, · · · , xk) =
1
k

k∑

i=1

dist(x0, xi)

≤ 1
k

k∑

i=1

dist(x̃0, x̃i) ≤ ak(x̃1, x̃2, · · · , x̃k) = ak(Sn).

(4.9)

Therefore we have

(4.10) ak(X) ≤ ak(Sn),

and the proof of Theorem 1.4 is complete. By Theorem 1.3 and Theorem
1.4 we obtain a2p(X) ≤ a2p(Sn) = π/2.

We show that when M is an n-dimensional Riemannian manifold with
some conditions on a2(M) and the injective radius, M is isometric to the
unit n-dimensional sphere.

Proposition 4.1. Suppose that M is an n-dimensional Riemannian man-
ifold with curvature ≥ 1. Suppose that a2(M) = π/2 holds and in addition
that the injective radius i(M) of M is greater than π/2. Then M is isometric
to the n-dimensional unit sphere Sn.

Proof. Let x1, x2 be a pair of points in M such that diamM = dist(x1, x2).
First we show that

(4.11) dist(x1, x) + dist(x2, x) ≤ π

holds for any point x. Let γi be a minimal geodesic from xi to x(i = 1, 2).
Since x1 is critical for the distance function y −→ dist(x2, y) and x2 is also
critical for the distance function y −→ dist(x1, y), we may take a minimal
geodesics from x1 to x2 and from x2 to x1, so that we have ^(x2x1, x2x) ≤

16
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π/2 and ^(x1x2, x1x) ≤ π/2 for the angle of hinges. Then by the Toponogov
comparison theorem and the cosine formula we obtain

cos dist(x1, x) ≥ cos dist(x1, x2) cos dist(x2, x)

+ sin dist(x1, x2) sin dist(x2, x) cos ^(x2x1, x2x)

≥ cos dist(x1, x2) cos dist(x2, x),
(4.12)

and
cos dist(x2, x) ≥ cos dist(x1, x2) cos dist(x1, x)

+ sin dist(x1, x2) sin dist(x1, x) cos ^(x1x2, x1x)

≥ cos dist(x1, x2) cos dist(x1, x).
(4.13)

Adding these inequalities it follows that

(4.14) cos
dist(x1, x) + dist(x2, x)

2
cos

dist(x1, x) − dist(x2, x)
2

≥ 0.

Then we get dist(x1, x) + dist(x2, x) ≤ π, and therefore

(4.15)
π

2
= a2(M) ≤ 1

2
max
x∈M

{dist(x1, x) + dist(x2, x)} ≤ π

2
.

Hence we can take a point x0 ∈ M such that dist(x1, x0) + dist(x2, x0) =
π. Further for this x = x0 equality holds in (4.12), (4.13). Now sup-
pose d(x1, x2) < π. Then we have dist(x1, x0) = dist(x2, x0) = π/2,
and ^(x2x1, x2x0) = ^(x1x2, x1x0) = π/2. Since the injective radius
i(M) > π/2 minimal geodesics γi from xi to x0 are unique, and we show
^(γ̇1(π/2), γ̇2(π/2)) = π. Otherwise we take a point x′ = γ1(π/2 + ε)(0 <
ε < i(M) − π/2). Then we have by the triangle inequality

dist(x1, x
′) + dist(x2, x

′)

=
π

2
+ ε + dist(x2, x

′)

= dist(x1, x0) + dist(x0, x
′) + dist(x′, x2)

> dist(x1, x0) + dist(x0, x2) = π.

(4.16)

4x0x1x2 spans a totally geodesic surface of constant curvature 1. Since
equality holds in the Toponogov comparison theorem, it follows that
dist(x1, x2) = π. Therefore we have diamM = π, and M = Sn by the
maximal diameter theorem. ¤
Remark 4.1. (1) By adding the condition i(M) > π/2 M is not isometric to
the real projective space RPn or the hemisphere S+. Since a2(RPn) = π/2
holds for the real projective space RPn of constant curvature 1 and n ≥ 2
we need an assumption such that i(M) > π/2 in Proposition 4.1.
(2) On the other hand, when X is an Alexandrov space such that curvature ≥
1 and a2(X) = π/2, we do not know yet such a structure theorem for X.
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5. Proof of Theorem 1.5

Let X be an n-dimensional Alexandrov space with curvature ≥ 1 and
n ≥ 2. Recall that we have an inequality

(5.1) a3(X) ≤ a3(Sn) =
5
9
π

by Theorem 1.2 and Theorem 1.4. Now in this section we show that X
is isometric to a spherical double suspension

∑
2 Z when equality holds in

(5.1). First we show that X is isometric to a spherical suspension
∑

1 Y .

Lemma 5.1. Let X be an n-dimensional Alexandrov space with curvature
≥ 1. Suppose a3(X) = a3(Sn) = 5π/9. Then X is isometric to

∑
1 Y , where

Y is an (n − 1)-dimensional Alexandrov space with curvature ≥ 1.

Proof. We show that diamX is equal to π.@ Let x̃1, x̃2, x̃3 be points in Sn

that realize a3(Sn). Then the configuration (x̃1, x̃2, x̃3) is equally spaced on
a great circle S1, and take a point p̃ ∈ Sn different from the antipodal of
x̃i(i = 1, 2, 3). Take a regular point p ∈ X. Then

∑
1 Sp is isometric to Sn,

and we identify
∑

1 Sp (resp.,Sp) with Sn =
∑

1 Sp̃ (resp.,Sp̃ = Sn−1). Let
xi be a point expp c̄vi(dist(p̃, x̃i)) = cvi(dist(p̃, x̃i)), where c̄vi is a geodesic
emanating from p̃ with initial direction vi to x̃i ∈

∑
1 Sp̃ = Sn(i = 1, 2, 3)

and cvi is a quasigeodesic emanating from p with initial direction vi to xi as
in the proof of Theorem 1.4. Take a point x0 ∈ X such that

(5.2) a3(x1, x2, x3) := max
x∈X

1
3

3∑

i=1

dist(x, xi) =
1
3

3∑

i=1

dist(x0, xi).

Let γ0 : [0, dist(p, x0)] −→ X be a minimal geodesic from p to x0. And
set x̃0 = expSn

p̃ (dist(p, x0)γ̇0(0)). By the generalized Toponogov comparison
theorem for 4pxix0 and 4p̃x̃ix̃0, we have for i = 1, 2, 3

(5.3) dist(x0, xi) ≤ dist(x̃0, x̃i),

and hence

(5.4)





a3(X) ≤ a3(x1, x2, x3) = 1
3

∑3
i=1 dist(x0, xi)

≤ 1
3{dist(x̃0, x̃1) + dist(x̃0, x̃2) + dist(x̃0, x̃3)}

≤ a3(x̃1, x̃2, x̃3) = a3(Sn) = a3(X).

Therefore for any i we obtain

(5.5) dist(x0, xi) = dist(x̃0, x̃i),

and a3(Sn) = a3(x̃1, x̃2, x̃3) = 1/3
∑3

i=1 dist(x̃0, x̃i). It follows that x̃0 must
be an antipodal point of some x̃i, namely,

(5.6) dist(x̃0, x̃i) = π,

18
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and hence

(5.7) dist(x0, xi) = π.

Then diamX = π and X is isometric to
∑

1 Y by the Toponogov maximal
diameter theorem([G-P2]). ¤

Next we show that X is isometoric to
∑

2 Z if dimX ≥ 2.

Lemma 5.2. Suppose X =
∑

1 Y , where Y is an (n − 1)-dimensional
Alexandrov space with curvature ≥ 1 and diamY < π and n ≥ 2. Let
x1,x2 ∈ X be the pole points of the suspension X =

∑
1 Y . Then there is no

pair of points whose distance is π except for x1,x2.

Proof. Let y1, y2 be points in Y . Set z1 = (y1, t1)(0 ≤ t1 ≤ π), z2 =
(y2, t2)(0 ≤ t2 ≤ π), where t1, t2 is the distance from x1 in

∑
1 Y . Sup-

pose dist(z1, z2) = π. By the definition of the spherical suspension we have

−1 = cos dist(z1, z2)

= cos t1 cos t2 + sin t1 sin t2 cos dist(y1, y2)

≥ cos(t1 + t2) + sin t1 sin t2{cos dist(y1, y2) + 1}
≥ −1.

(5.8)

It follows that we have either t1 = π, t2 = 0 or t1 = 0, t2 = π. Hence there
is no pair of points whose distance is π except for x1, x2. ¤

Lemma 5.3. Let X be an n-dimensional Alexandrov space with curvature
≥ 1 and n ≥ 2. Suppose a3(X) = a3(Sn) = 5π/9. Then X =

∑
2 Z.

Proof. By Lemma 5.1 we may write X =
∑

1 Y . Suppose diamY < π.
In the proof of Lemma 5.1 a point p is an arbitrary regular point. Recall
that regular points are dense in X. If the base point p ∈ X is shifted, the
points x1, x2, x3 that realize a3(X) can be moved. Then a3(X) is realized by
another pair of points x0, xi(i = 1, 2, 3) whose distance is equal to π. This
contradicts Lemma 5.2. Therefore we have diamY = π and X =

∑
2 Z. ¤

By Lemma 5.1, 5.3 the proof of Theorem 1.5 is complete.

Remark 5.1. By applying the same argument for k = 2p − 1 we may
show that X is isometric to a spherical suspension if ak(X) = 2p2−2p+1

(2p−1)2
π

holds. We also conjecture that X is isometric to
∑

1 Y if a2(X) = π/2 and
radX > π/2 hold.

After the completion of the present paper we settled the conjecture about
ak(Sn) in the introduction. We give a proof and also discuss some results
about Remark 5.1 in a forthcoming paper.
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