Mathematical Journal of Okayama University

Volume 46, Issue 1

Some Metric Invariants of Spheres and Alexandrov Spaces I

Nobuyuki Sochi*
*Okayama University

Copyright © 2004 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Some Metric Invariants of Spheres and Alexandrov Spaces I

Nobuyuki Sochi

Abstract

A metric invariant a_{k} is defined, and we have that $\mathrm{a}_{k}(\mathrm{X}) \leq \mathrm{a}_{k}\left(\mathrm{~S}^{n}\right)$ holds in an Alexandrov space X with curvature ≥ 1. And the borderline case when $a 3(X)=a 3\left(S^{n}\right)$ and $a k\left(S^{1}\right)$ are studied.

KEYWORDS: Metric Invariants;Alexandrov Spaces;Borderline Cases

Math. J. Okayama Univ. 46 (2004), 163-182

SOME METRIC INVARIANTS OF SPHERES AND ALEXANDROV SPACES I

Nobuyuki SOCHI

Abstract

A metric invariant a_{k} is defined, and we have that $a_{k}(X) \leq$ $a_{k}\left(S^{n}\right)$ holds in an Alexandrov space X with curvature ≥ 1. And the borderline case when $a_{3}(X)=a_{3}\left(S^{n}\right)$ and $a_{k}\left(S^{1}\right)$ are studied.

1. Introduction

The purpose of this paper is to study the behavior of some metric invariants on spheres and Alexandrov spaces. Let X be a compact metric space, where the distance between $x, y \in X$ will be denoted by $\operatorname{dist}(x, y)$. Then the metric invariants, e.g., the diameter $\operatorname{diam} X=\max _{x, y \in X} \operatorname{dist}(x, y)$, the radius $\operatorname{rad} X=\min _{x \in X} \max _{y \in X} \operatorname{dist}(x, y)$ played an important role in Riemannian Alexandrov geometry([G-P1],[B-G-P]). Now, S.Shteingold introduced the notion of k-covering radius $\operatorname{cov}_{k} X=\min _{x_{1}, \ldots, x_{k} \in X} \max _{x \in X}$ $\min _{i=1, \ldots, k} \operatorname{dist}\left(x_{i}, x\right)$ and studied its behavior in Alexandrov spaces with curvature $\geq 1([\mathrm{~S}])$. Here we introduce the following metric invariant $a_{k}(X)$ related to the k-covering radius.

Definition 1.1. For a positive integer k, we define the metric invariant $a_{k}(X)$ of X as follows:

$$
\begin{equation*}
a_{k}(X)=\min _{x_{1}, \ldots, x_{k} \in X} \max _{x \in X} \frac{1}{k} \sum_{i=1}^{k} \operatorname{dist}\left(x_{i}, x\right) \tag{1.1}
\end{equation*}
$$

Note that $a_{1}(X)=\min _{x_{1} \in X} \max _{x \in X} \operatorname{dist}\left(x_{1}, x\right)$ is nothing but the radius of X, and we have $a_{1}(X) \geq a_{k}(X) \geq \operatorname{cov}_{k}(X)$.

We want to study $a_{k}(X)$ in an Alexandrov space X with curvature ≥ 1, and begin with the case of the n-dimensional unit sphere S^{n} of constant curvature 1 as the model space. We have as our first result for S^{1} the following theorem.

Theorem 1.1. (1) For $k=2 p-1$, we have

$$
\begin{equation*}
a_{k}\left(S^{1}\right)=\frac{2 p^{2}-2 p+1}{(2 p-1)^{2}} \pi . \tag{1.2}
\end{equation*}
$$

$a_{k}\left(S^{1}\right)$ is realized if and only if a configuration $\left(x_{1}, \cdots, x_{k}\right)$ of k points is equally spaced in S^{1}, and $\max _{x \in S^{1}}(1 / k) \sum_{i=1}^{k} \operatorname{dist}\left(x, x_{i}\right)$ is attained exactly at the antipodal points of $x_{i}(1 \leq i \leq k)$.
(2) For $k=2 p$, we have

$$
\begin{equation*}
a_{k}\left(S^{1}\right)=\frac{1}{2} \pi . \tag{1.3}
\end{equation*}
$$

$a_{k}\left(S^{1}\right)$ is realized if and only if a configuration of k points consists of pairs of antipodal points, and in the case we have $(1 / k) \sum_{i=1}^{k} \operatorname{dist}\left(x, x_{i}\right) \equiv \pi / 2$.

In case of S^{n} of general dimension, we give the following theorems in this paper.

Theorem 1.2.

$$
\begin{equation*}
a_{3}\left(S^{n}\right)=a_{3}\left(S^{1}\right)=\frac{5}{9} \pi \tag{1.4}
\end{equation*}
$$

where $a_{3}\left(S^{n}\right)$ is realized if and only if 3 points are equally spaced on a great circle, and $\max _{x \in S^{n}}(1 / 3) \sum_{i=1}^{3} \operatorname{dist}\left(x, x_{i}\right)$ is attained exactly at the antipodal points of $x_{i}(1 \leq i \leq 3)$.

Theorem 1.3. For $k=2 p$, we have

$$
\begin{equation*}
a_{k}\left(S^{n}\right)=\frac{1}{2} \pi . \tag{1.5}
\end{equation*}
$$

Moreover, $a_{k}\left(S^{n}\right)$ is realized if and only if a configuration of k points consists of pairs of the antipodal points, and in the case we have $(1 / k) \sum_{i=1}^{k} \operatorname{dist}\left(x, x_{i}\right)$ $\equiv \pi / 2$. We say that this configuration is symmetric.

For $k=2 p-1$, we conjecture that

$$
\begin{equation*}
a_{k}\left(S^{n}\right)=a_{k}\left(S^{1}\right)=\frac{2 p^{2}-2 p+1}{(2 p-1)^{2}} \pi \tag{1.6}
\end{equation*}
$$

holds, where $a_{2 p-1}\left(S^{n}\right)$ is realized if and only if a configuration $\left(x_{1}, \cdots, x_{2 p-1}\right)$ of $2 p-1$ points is equally spaced in a great circle S^{1} of S^{n}, and $\max _{x \in S^{n}}(1 / k)$ $\sum_{i=1}^{k} \operatorname{dist}\left(x, x_{i}\right)$ is attained exactly at the antipodal points of $x_{i}(1 \leq i \leq k)$.

Next we will explain Alexandrov spaces([B-G-P]). Alexandrov spaces are finite-dimensional, locally compact, and complete intrinsic metric spaces with a lower curvature bound in the local triangle sense. Let (X, dist) be an Alexandrov space. A geodesic or a segment is a curve whose length is equal to the distance between its ends. In a locally compact complete space with intrinsic metric any two points can be joined by a geodesic, which is not necessarily a unique segment. A collection of three points $p, q, r \in X$ and three geodesics $p q, q r, r p$ is called a geodesic triangle $\triangle p q r$. We associate a geodesic triangle $\tilde{\triangle} p q r=\triangle \tilde{p} \tilde{q} \tilde{r}$ on the k-plane M_{k}^{2} with vertices $\tilde{p}, \tilde{q}, \tilde{r}$ and sides of lengths $\operatorname{dist}(\tilde{p}, \tilde{q})=\operatorname{dist}(p, q), \operatorname{dist}(\tilde{q}, \tilde{r})=\operatorname{dist}(q, r)$, and $\operatorname{dist}(\tilde{r}, \tilde{p})=$ $\operatorname{dist}(r, p)$, where a k-plane is a 2 -dimensional complete simply-connected Riemannian manifold of constant sectional curvature k.

The most basic tool in Alexandrov geometry is the following Toponogov comparison theorem([B-G-P],[G-W]).

Let X be an $n(\geq 2)$-dimensional Alexandrov space with curvature $\geq k$. Then we have the following comparison theorems:
(1) For any triple $\left(p_{1}, p_{2}, p_{3}\right)$ in X, there is a unique (up to isometry) triple $\left(\tilde{p}_{1}, \tilde{p}_{2}, \tilde{p}_{3}\right)$ in M_{k}^{2} with $\operatorname{dist}\left(p_{i}, p_{j}\right)=\operatorname{dist}\left(\tilde{p}_{i}, \tilde{p}_{j}\right)(i, j=1,2,3)$. For a segment $p_{2} p_{3}:\left[0, \operatorname{dist}\left(p_{2}, p_{3}\right)\right] \longrightarrow X$ and a segment $\tilde{p}_{2} \tilde{p}_{3}$ in M_{k}^{2}, we have

$$
\begin{equation*}
\operatorname{dist}\left(p_{1}, p_{2} p_{3}(t)\right) \geq \operatorname{dist}\left(\tilde{p}_{1}, \tilde{p}_{2} \tilde{p}_{3}(t)\right)\left(0<t<\operatorname{dist}\left(p_{2}, p_{3}\right)\right) . \tag{1.7}
\end{equation*}
$$

(2) If equality holds in (1.7) for some $0<t_{0}<\operatorname{dist}\left(p_{2}, p_{3}\right)$ and $c_{t_{0}}$ is a segment from p_{1} to $p_{2} p_{3}\left(t_{0}\right)$, then $c_{t_{0}}(s), 0<s \leq \operatorname{dist}\left(p_{1}, p_{2} p_{3}\left(t_{0}\right)\right)$, is joined to p_{2} and p_{3} by unique segments. Moreover, these segments, together with their limit segments from p_{1} to p_{2} and p_{3}, form a surface which has totally geodesic interior and which is isometric to the triangular surface in M_{k}^{2} with vertices $\tilde{p}_{1}, \tilde{p}_{2}, \tilde{p}_{3}$.
(3) For any hinge $\left(p_{1} p_{2}, p_{1} p_{3}\right)$ in X with $0<\varangle\left(p_{1} p_{2}, p_{1} p_{3}\right)<\pi$, we have

$$
\begin{equation*}
\operatorname{dist}\left(p_{2}, p_{3}\right) \leq \operatorname{dist}\left(\tilde{p}_{2}, \tilde{p}_{3}\right), \tag{1.8}
\end{equation*}
$$

where $\left(\tilde{p}_{1} \tilde{p}_{2}, \tilde{p}_{1} \tilde{p}_{3}\right)$ is the corresponding hinge in M_{k}^{2} satisfying $\operatorname{dist}\left(p_{1}, p_{i}\right)=$ $\operatorname{dist}\left(\tilde{p}_{1}, \tilde{p}_{i}\right)(i=2,3)$, and $\varangle\left(p_{1} p_{2}, p_{1} p_{3}\right)=\varangle\left(\tilde{p}_{1} \tilde{p}_{2}, \tilde{p}_{1} \tilde{p}_{3}\right)$.
(4) If equality holds in (1.8), then $\left(p_{1} p_{2}, p_{1} p_{3}\right)$ spans a surface which has totally geodesic interior and is isometric to the triangular surface in M_{k}^{2} spanned by ($\tilde{p}_{1} \tilde{p}_{2}, \tilde{p}_{1} \tilde{p}_{3}$). In fact, any such surface is determined uniquely by a segment in X between interior points of the segments $p_{1} p_{2}$ and $p_{1} p_{3}$.

We also use the generalized Toponogov comparison theorem for quasigeodesics $([\mathrm{Pe}])$. First we explain quasigeodesics. A curve $\tilde{\gamma}$ in M_{k}^{2} is called (locally) convex at the point $\tilde{\gamma}(t)$ with respect to $\tilde{p} \in M_{k}^{2}$ if there exists $\varepsilon>0$ such that the following triangle is convex. The sides of this triangle are the curve $\left.\tilde{\gamma}(t)\right|_{t-\varepsilon} ^{t+\varepsilon}$ and the two segments $\tilde{\gamma}(t-\varepsilon) \tilde{p}$ and $\tilde{\gamma}(t+\varepsilon) \tilde{p}$. Let $\gamma:[a, b] \longrightarrow X$ be a curve in X. For $p \in X$, a curve $\tilde{\gamma}:[a, b] \longrightarrow M_{k}^{2}$ is called an unfolding of γ with respect to p if the following conditions are satisfied:

1) $\tilde{\gamma}(t)$ is parameterized by arc length,
2) there exists $\tilde{p} \in M_{k}^{2}$ such that $\operatorname{dist}(\tilde{\gamma}(t), \tilde{p})=\operatorname{dist}(\gamma(t), p)$ for every t,
3) the direction from \tilde{p} to $\tilde{\gamma}(t)$ turns monotonically with increasing t.

A curve γ in X is called k-convex if for all $p \in X$ there exists a curve $\tilde{\gamma}$ in M_{k}^{2} that satisfies the following conditions:

1) $\tilde{\gamma}$ is an unfolding of γ with respect to p,
2) $\tilde{\gamma}$ is a locally convex curve with respect to \tilde{p} at all $\tilde{\gamma}(t)$ such that $\operatorname{dist}(\tilde{p}, \tilde{\gamma}(t))<\pi(k)$.

In the above we set $\pi(k)=\pi / \sqrt{k}$ for $k>0$ and $\pi(k)=\infty$ for $k \leq 0$.
Then a k-convex curve $\gamma:[a, b] \longrightarrow X$ parameterized by arc length is called a k-quasigeodesic, or simply quasigeodesic. We can take a quasigeodesic emanating from p in any direction v. Let $\gamma:[a, b] \longrightarrow X$ be a quasigeodesic. Then for any $p \in X$ and $t_{0} \in[a, b]$ the angle $\tilde{\varangle}\left(\gamma\left(t_{0}\right) \gamma(t), \gamma\left(t_{0}\right) p\right)$ is nonincreasing in $t\left(t \geq t_{0}\right)$, where $\left.\tilde{\varangle}\left(\gamma\left(t_{0}\right) \gamma(t), \gamma\left(t_{0}\right) p\right)=\varangle \widetilde{\left(\gamma\left(t_{0}\right) \gamma(t)\right.} \widetilde{\gamma\left(t_{0}\right)} \tilde{p}\right)$ is the corresponding angle of the model triangle $\widetilde{\triangle^{*} p \gamma}\left(t_{0}\right) \gamma(t)$ in M_{k}^{2} with sides of lengths $\operatorname{dist}\left(p, \gamma\left(t_{0}\right)\right), \operatorname{dist}(p, \gamma(t))$, and $t-t_{0}$.

From this property of quasigeodesics we have the following Generalized Toponogov comparison theorem ([Pe]):

Let X be an $n(\geq 2)$-dimensional Alexandrov space with curvature $\geq k$, and let $\gamma:[0, t] \longrightarrow X$ be a quasigeodesic. For $p \in X$ and $t_{0} \in[0, t]$, take a geodesic triangle $\Delta^{*} \widetilde{\gamma\left(t_{0}\right)} \widetilde{\gamma(t)} \tilde{p}$ in M_{k}^{2} that denotes a triangle with sides $\gamma{ }_{\left[t_{0}, t\right]}, p \gamma\left(t_{0}\right), p \gamma(t)$, corresponding to the triangle $\triangle^{*} \gamma\left(t_{0}\right) \gamma(t) p$, satisfying $\operatorname{dist}\left(p, \gamma\left(t_{0}\right)\right)=\operatorname{dist}\left(\widetilde{p}, \widetilde{\gamma\left(t_{0}\right)}\right), L\left(\left.\gamma\right|_{\left[t_{0}, t\right]}\right)=\operatorname{dist}\left(\widetilde{\left(t_{0}\right)}, \widetilde{\gamma(t)}\right)=t-t_{0}$, and $\operatorname{dist}(p, \gamma(t))=\operatorname{dist}(\tilde{p}, \widetilde{\gamma}(t))$. In the above we denote by $L\left(\left.\gamma\right|_{\left[t_{0}, t\right]}\right)$ the length of a curve $\left.\gamma\right|_{\left[t_{0}, t\right]}$. Then we have

$$
\begin{equation*}
\varangle\left(\left.\gamma\right|_{\left[t_{0}, t\right]}, \gamma\left(t_{0}\right) p\right) \geq \varangle\left(\widetilde{\gamma\left(t_{0}\right)} \widetilde{\gamma(t)}, \widetilde{\gamma\left(t_{0}\right)} \tilde{p}\right), \tag{1.9}
\end{equation*}
$$

where the angle $\varangle\left(\left.\gamma\right|_{\left[t_{0}, t\right]}, \gamma\left(t_{0}\right) p\right)=\lim _{t \rightarrow 0} \tilde{\varangle}\left(\gamma\left(t_{0}\right) \gamma(t), \gamma\left(t_{0}\right) p\right)$. Now for any hinge $\left(\left.\gamma\right|_{\left[t_{0}, t\right]}, \gamma\left(t_{0}\right) p\right)$ in X, take the corresponding hinge $\left(\widetilde{\gamma\left(t_{0}\right)} \tilde{q}, \widetilde{\gamma\left(t_{0}\right)} \tilde{p}\right)$ in M_{k}^{2} such that $L\left(\left.\gamma\right|_{\left[t_{0}, t\right]}\right)=\operatorname{dist}\left(\widetilde{\gamma\left(t_{0}\right)}, \tilde{q}\right)=t-t_{0}, \operatorname{dist}\left(\gamma\left(t_{0}\right), p\right)=\operatorname{dist}\left(\widetilde{\gamma\left(t_{0}\right)}, \tilde{p}\right)$, and $\varangle\left(\left.\gamma\right|_{\left[t_{0}, t\right]}, \gamma\left(t_{0}\right) p\right)=\varangle\left(\widetilde{\gamma\left(t_{0}\right)} \tilde{q}, \widetilde{\gamma\left(t_{0}\right)} \tilde{p}\right)$.

Then we have from (1.9)

$$
\begin{equation*}
\operatorname{dist}(\gamma(t), p) \leq \operatorname{dist}(\tilde{q}, \tilde{p}) \tag{1.10}
\end{equation*}
$$

By using this property of quasigeodesics, i.e., the generalized Toponogov comparison theorem, we get the following theorem.

Theorem 1.4. Let X be an n-dimensional Alexandrov space with curvature ≥ 1, then we have

$$
\begin{equation*}
a_{k}(X) \leq a_{k}\left(S^{n}\right) \tag{1.11}
\end{equation*}
$$

Especially we have

$$
\begin{equation*}
a_{2 p}(X) \leq a_{2 p}\left(S^{n}\right)=\frac{\pi}{2} \tag{1.12}
\end{equation*}
$$

Next we explain the notion of the spherical suspension([B-G-P]).

Definition 1.2. The spherical suspension of a metric space Y is the quotient space

$$
\begin{equation*}
\sum_{1} Y=Y \times[0, \pi] / \sim \tag{1.13}
\end{equation*}
$$

where the equivalence relation \sim is given by

$$
\left(x_{1}, a_{1}\right) \sim\left(x_{2}, a_{2}\right) \Leftrightarrow\left\{\begin{array}{l}
x_{1}=x_{2}, 0<a_{1}=a_{2}<\pi \text { or } \tag{1.14}\\
a_{1}=a_{2}=0 \text { or } a_{1}=a_{2}=\pi
\end{array}\right.
$$

and is equipped with the canonical metric

$$
\begin{equation*}
\cos \operatorname{dist}\left(\hat{x}_{1}, \hat{x}_{2}\right)=\cos a_{1} \cos a_{2}+\sin a_{1} \sin a_{2} \cos \operatorname{dist}\left(x_{1}, x_{2}\right) \tag{1.15}
\end{equation*}
$$

where we set $\hat{x}_{1}=\left(x_{1}, a_{1}\right), \hat{x}_{2}=\left(x_{2}, a_{2}\right)$.
Further we define $\sum_{k} Y=\sum_{k-1}\left(\sum_{1} Y\right)$ to be a k-times repeated spherical suspension. Then for an Alexandrov space X we have $X=\sum_{k} Y$ if and only if S^{k-1} is isometrically embedded in X.

Now we ask what happens when equality holds in (1.11). If $k=1$ this means that $\operatorname{rad} X=\pi$ and X is isometric to S^{n}. We want to know whether an Alexandrov space X admits a similar structure to S^{n} if equality holds in (1.11) for general k. By using the generalized Toponogov comparison theorem we get the following theorem for the case of $k=3$. We also give a partial result for $k=2$ (see proposition 4.1).
Theorem 1.5. Let X be an n-dimensional Alexandrov space with curvature ≥ 1. Suppose $a_{3}(X)=a_{3}\left(S^{n}\right)=5 \pi / 9$. Then we have diam $X=\pi$. If $n=\operatorname{dim} X \geq 2$ then $X=\sum_{2} Z$, where Z is an ($n-1$)-dimensional Alexandrov space with curvature $Z \geq 1$.

2. Proof of Theorem1.1

In this section we are concerned with $a_{k}\left(S^{1}\right)$. A k-tuple $\left(x_{1}, \cdots, x_{k}\right)$ of points $x_{i}(i=1, \cdots, k)$ of S^{1} located in counterclockwise order is called a configuration, where each x_{i} is called a vertex of the configuration. The antipodal point of $x \in S^{1}$ will be denoted by \bar{x}.

Now for a configuration $\left(x_{1}, \cdots, x_{k}\right)$ we set

$$
\begin{equation*}
f_{x_{1}, \cdots, x_{k}}(x):=\sum_{i=1}^{k} \operatorname{dist}\left(x, x_{i}\right) . \tag{2.1}
\end{equation*}
$$

Considering S^{1} as the unit circle in \boldsymbol{R}^{2}, we take the angle measure $t=t(x)$ of radius $O x$ as the coordinate of $x \in S^{1}$. Then we may write

$$
\operatorname{dist}\left(x, x_{i}\right)=\left\{\begin{array}{l}
\left|t-t_{i}\right| \quad \text { if } 0 \leq\left|t-t_{i}\right| \leq \pi \tag{2.2}\\
2 \pi-\left|t-t_{i}\right| \quad \text { if } \pi \leq\left|t-t_{i}\right| \leq 2 \pi
\end{array}\right.
$$

Figure 1
where we set $t=t(x), t_{i}=t\left(x_{i}\right)$. Hence $f_{i}(x):=\operatorname{dist}\left(x, x_{i}\right)$ is smooth except for x_{i} and \bar{x}_{i}, and the gradient vector $\nabla f_{i}(x)\left(x \neq x_{i}, \bar{x}_{i}\right)$ is a unit tangent vector to the minimal circle arc of S^{1} from x to x_{i}. f_{i} assumes the maximum π (resp., minimum 0) at \bar{x}_{i} (resp., x_{i}) and its graph is a polygonal line with gradient ± 1. Now for a configuration $\left(x_{1}, \cdots, x_{k}\right), f(x)=$ $\sum_{i=1}^{k} \operatorname{dist}\left(x, x_{i}\right)$ is smooth except for $x_{i}, \bar{x}_{i}(i=1, \cdots, k)$ and its graph is a polygonal line([figure1]). As x passes through a vertex x_{i} (resp., \bar{x}_{i}), the gradient of the graph of $f(x)$ increases (resp., decreases) by 2 . Then we easily see that $f(x)$ is constant if and only if the configuration consists of pairs of antipodal points.
Lemma 2.1. We have for any $x \in S^{1}$

$$
\begin{equation*}
f(x)+f(\bar{x})=k \pi . \tag{2.3}
\end{equation*}
$$

Proof. For any fixed vertex x_{i} we have $\operatorname{dist}\left(x, x_{i}\right)+\operatorname{dist}\left(\bar{x}, x_{i}\right)=\pi$ for any $x \in S^{1}$. Then (2.3) follows by taking sum with respect to i.

First we will prove Theorem 1.1 for odd $k=2 p-1$ by induction. If $p=1$, we have $\max _{x \in S^{1}} f(x)=\pi$ for any $\left(x_{1}\right)$. We assume that (1.2) holds for $k=2 p-3$. Suppose a configuration $\left(x_{1}, \cdots, x_{k}\right), k=2 p-1$ is given.

Lemma 2.2. $f(x)$ assumes a maximal value at the antipodal \bar{x}_{i} of a vertex x_{i}. Then $f(x)$ assumes a minimal value at the vertex x_{i}.

Proof. First we show that $f(x)$ cannot assume an extremal value at $x(\neq$ $\left.x_{i}, \bar{x}_{i}\right)(i=1, \cdots, k)$. Indeed, otherwise we have $\nabla f(x)=0$, since f is smooth at x. On the other hand we have $\nabla f(x)=\sum_{i=1}^{k} \nabla f_{i}(x), f_{i}(x)=$
$\operatorname{dist}\left(x, x_{i}\right)$, where $\nabla f_{i}(x)$ are unit vectors of $R \cong T_{x}\left(S^{1}\right)$. Then $\sum_{i=1}^{k} \nabla f_{i}(x)$ $\neq 0$, because k is odd. This also implies that the gradient of the graph of $f(x)$ at $x\left(\neq x_{i}, \bar{x}_{i}\right)$ is an odd integer, and that $f(x)$ is not locally constant. Now the graph of the gradient of $f(x)$ is a polygonal line and the gradient of the graph changes the sign from plus to minus at a maximal point. Hence f may assume a maximal value only at the antipodal \bar{x}_{i} of some vertex x_{i}. From Lemma $2.1 f$ assumes a minimal value at the vertex x_{i}.

In case of $k=2 p-1$, we say that the polygonal line, which is the graph of f, forms a peak(resp., trough) at \bar{x}_{i} (resp., x_{i}) when f assumes a maximal value(resp., minimal value) at \bar{x}_{i} (resp., x_{i}).

Lemma 2.3. For a given configuration $\left(x_{1}, \cdots, x_{k}\right), k=2 p-1$, suppose that vertices differ from one another and that the antipodal of any vertex is not a vertex of the configuration. If f assumes the minimum value at a vertex x_{i} and therefore the maximum value at \bar{x}_{i}, then around the peak at \bar{x}_{i} and the trough at x_{i} the graph of f consists of two segments whose gradients are 1 and -1 .

Proof. The gradient of the polygonal lines, which is the graph of f, is an odd integer, and changes the sign at x_{i} (resp., \bar{x}_{i}) and decrease (resp., increase) by 2 because of the assumptions.

Lemma 2.4. When there is a vertex x_{i} whose antipodal point \bar{x}_{i} is a vertex of the configuration, the maximum value of $f(x)$ is larger than $\frac{\left(2 p^{2}-2 p+1\right) \pi}{2 p-1}$ which is the maximum of $f(x)$ determined by the configuration whose vertices are equally spaced.

Proof. Suppose $x_{i}=\bar{x}_{j}(1 \leq i, j \leq 2 p-1, i \neq j)$. Then for any x, we have $\operatorname{dist}\left(x, x_{i}\right)+\operatorname{dist}\left(x, x_{j}\right)=\pi$ and $f(x)=\pi+\sum_{k \neq i, j} \operatorname{dist}\left(x, x_{k}\right)$. By the induction assumption we have

$$
\max _{x \in S^{1}} \sum_{k \neq i, j} \operatorname{dist}\left(x, x_{k}\right) \geq \frac{2(p-1)^{2}-2(p-1)+1}{2 p-3} \pi
$$

It follows that

$$
\begin{align*}
\max _{x \in S^{1}}\left\{\pi+\sum_{k \neq i, j} \operatorname{dist}\left(x, x_{k}\right)\right\} & \geq \pi+\frac{2(p-1)^{2}-2(p-1)+1}{2 p-3} \pi \tag{2.4}\\
& =\frac{2 p^{2}-4 p+2}{2 p-3} \pi>\frac{2 p^{2}-2 p+1}{2 p-1} \pi .
\end{align*}
$$

Recall that for a given configuration $\left(x_{1}, \cdots, x_{k}\right)$ vertices x_{i} are counterclockwise arranged. If $x_{i+l} \neq x_{i}(l>0)$ we write $x_{i}<x_{i+l}$, and $x_{i}<x<x_{i+l}$

Figure 2
means that x is contained in the arc from x_{i} to x_{i+l} in S^{1}. Here we show that the maximum value of f can be made smaller by moving the overlapped vertices.

Lemma 2.5. If $\operatorname{dist}\left(x_{i}, x_{j}\right)(i<j)$ increases, the maximum value of the sum $\operatorname{dist}\left(x, x_{i}\right)+\operatorname{dist}\left(x, x_{j}\right)$ decreases.

Proof. The sum of the gradients of the graphs of $\operatorname{dist}\left(x, x_{i}\right)$ and $\operatorname{dist}\left(x, x_{j}\right)$ is 0 for $x_{i} \leq x \leq x_{j}$ or $\bar{x}_{i} \leq x \leq \bar{x}_{j}$. The sum $\operatorname{dist}\left(x, x_{i}\right)+\operatorname{dist}\left(x, x_{j}\right)$ assumes the maximum value which is equal to $2 \pi-\operatorname{dist}\left(x_{i}, x_{j}\right)$ for $\bar{x}_{i} \leq x \leq \bar{x}_{j}$ and assumes the minimum value which is equal to $\operatorname{dist}\left(x_{i}, x_{j}\right)$ for $x_{i} \leq x \leq x_{j}$. Therefore if $\operatorname{dist}\left(x_{i}, x_{j}\right)(i<j)$ increases, the maximum value of the sum $\operatorname{dist}\left(x, x_{i}\right)+\operatorname{dist}\left(x, x_{j}\right)$ decreases([figure 2]).

Lemma 2.6. When vertices x_{i}, x_{j} in S^{1} are moved equally in the opposite directions, the sum $\operatorname{dist}\left(x, x_{i}\right)+\operatorname{dist}\left(x, x_{j}\right)$ assumes the same value independent of the position of x_{i}, x_{j} for $\bar{x}_{j} \leq x \leq x_{i}$ or $\bar{x}_{i} \geq x \geq x_{j}$.

Proof. When vertices x_{i}, x_{j} are moved equally in the opposite directions for $\bar{x}_{j} \leq x \leq x_{i}$ or $\bar{x}_{i} \geq x \geq x_{j}$, the increase(resp.,decrease) of $\operatorname{dist}\left(x, x_{i}\right)$ is equal to the decrease(resp.,increase) of $\operatorname{dist}\left(x, x_{j}\right)$ for $\bar{x}_{j} \leq x \leq x_{i}$ or $\bar{x}_{i} \geq x \geq x_{j}$. Therefore the sum $\operatorname{dist}\left(x, x_{i}\right)+\operatorname{dist}\left(x, x_{j}\right)$ assumes the same value independent of the position of vertices x_{i}, x_{j} for $\bar{x}_{j} \leq x \leq x_{i}$ or $\bar{x}_{i} \geq x \geq x_{j}$.

Lemma 2.7. When vertices overlap, the maximum value cannot be made greater by moving the overlapped vertices.

Proof. First suppose that the maximum value of $f(x)$ is realized at the antipodal point of overlapped vertices. From Lemma 2.5, 2.6 the maximum value is made smaller by moving the overlapped points equally in the different directions slightly. If the maximum value of $f(x)$ is realized at a point different from the antipodal point of the overlapped vertices, the maximum value is kept constant by moving the overlapped points in the same manner as Lemma 2.5, 2.6.

In the following we consider the case where $k(=2 p-1)$ vertices are different from one another, and there is no vertex whose antipodal point is a vertex.

Lemma 2.8. Suppose a minimum of $f(x)$ is assumed at x_{i}, and consequently a maximum of $f(x)$ is assumed at \bar{x}_{i}. Then we have

$$
\begin{equation*}
x_{p+i-1}<\bar{x}_{i}<x_{p+i}, \tag{2.5}
\end{equation*}
$$

where $p+i, p+i-1$ are counted modulo k.
Proof. Suppose $x_{p+i}<\bar{x}_{i}$ or $x_{p+i}=\bar{x}_{i}$. Then the gradient of the polygonal line $f(x)$ at the left side of \bar{x}_{i} is greater than or equal to $(p+1)-(p-2)=3$. From Lemma 2.3 it contradicts that the gradient of polygonal line $f(x)$ at the left side of \bar{x}_{i} is 1 . Next suppose $x_{p+i-1}>\bar{x}_{i}$ or $x_{p+i-1}=\bar{x}_{i}$. Then the gradient of polygonal line $f(x)$ at the right side of \bar{x}_{i} is greater than or equal to $(p+1)-(p-2)=3$. From Lemma 2.3 it contradicts that the gradient of a polygonal line $f(x)$ at the right side of \bar{x}_{i} is 1 .

In case of $k=2 p-1$, the configuration $\left(x_{1}, \cdots, x_{k}\right)$ of k points on S^{1} is called balanced, if we have $x_{i}<\bar{x}_{i+p}<x_{i+1}$ for any i, where $i+p$ is counted modulo k. For a balanced configuration $\left(x_{1}, \cdots, x_{k}\right)$, the gradient of the graph of $f(x)=f_{x_{1}, \cdots, x_{k}}(x)$ is equal to ± 1 and there are k peaks where $f(x)$ assumes maximal values at the antipodal point \bar{x}_{i}. The maximum value is one of the peak values([figure 3]). Now we will show that the configuration such that the maximum value is minimum is the configuration such that k points are equally spaced. Indeed, the following lemma 2.9 shows that it suffices to consider balanced configurations. Finally in Lemma 2.9 we show the above assertion for the family of balanced configurations.

Lemma 2.9. In case of $k=2 p-1, a_{k}$ is realized for a balanced configuration.
Proof. We may assume $k(=2 p-1)$ vertices do not overlap and there are no vertices whose antipodal points are vertices. When there is no antipodal point between x_{i} and x_{i+1} for some i in an imbalanced configuration, this configuration is changed into the configuration a vertex of which is antipodal of a vertex by moving points \bar{x}_{i} and \bar{x}_{i+1} equally in opposite directions till either reaches the most nearby vertex. Then the maximum of $f(x)$ is

Figure 3
kept constant or made smaller from Lemma 2.5, 2.6. From Lemma 2.4 the maximum of the sum of distance from x is made greater than $\frac{\left(2 p^{2}-2 p+1\right) \pi}{2 p-1}$. Therefore a_{k} is realized for a balanced configuration.

Lemma 2.10. In the family of balanced configurations $a_{k}\left(S^{1}\right)$ is realized if and only if $k(=2 p-1)$ points are equally spaced.
Proof. Let $\left(x_{1}, \cdots, x_{k}\right), k=2 p-1$, be a balanced configuration and set $M_{x_{1}, \cdots, x_{k}}:=\max _{x \in S^{1}} f_{x_{1}, \cdots, x_{k}}(x)$. Then $M_{x_{1}, \cdots, x_{k}}=\max _{1 \leq i \leq k} f_{x_{1}, \cdots, x_{k}}\left(\bar{x}_{i}\right)$ by Lemma 2.2. Since $\left(x_{1}, \cdots, x_{k}\right), k=2 p-1$, is balanced, we have

$$
\begin{align*}
& x_{i}<\bar{x}_{i+p}<x_{i+1}<\bar{x}_{i+p+1}<\cdots x_{i+p-1}<\bar{x}_{i} \tag{2.6}\\
& \bar{x}_{i}<x_{i+p}<\bar{x}_{i+1}<x_{i+p+1}<\cdots \bar{x}_{i+p-1}<x_{i} . \tag{2.7}
\end{align*}
$$

It follows that

$$
\begin{equation*}
f\left(\bar{x}_{i}\right)=\sum_{j=1}^{p-1} \operatorname{dist}\left(x_{i+j}, x_{i+j+p-1}\right)+\pi . \tag{2.8}
\end{equation*}
$$

Then we have

$$
\begin{align*}
(2 p-1) M_{x_{1}, \cdots, x_{k}} & \geq \sum_{i=1}^{k} f\left(\bar{x}_{i}\right)=2(p-1)^{2} \pi+(2 p-1) \pi \tag{2.9}\\
& =\left(2 p^{2}-2 p+1\right) \pi
\end{align*}
$$

namely,

$$
\begin{equation*}
M_{x_{1}, \cdots, x_{k}} \geq \frac{2 p^{2}-2 p+1}{2 p-1} \pi . \tag{2.10}
\end{equation*}
$$

If equality holds in (2.10) we have $f\left(\bar{x}_{1}\right)=f\left(\bar{x}_{2}\right)=\cdots=f\left(\bar{x}_{2 p-1}\right)=$ $\frac{\left(2 p^{2}-2 p+1\right) \pi}{2 p-1}$, which is equivalent to $\operatorname{dist}\left(x_{1}, x_{2}\right)=\operatorname{dist}\left(x_{2}, x_{3}\right)=\cdots=$ $\operatorname{dist}\left(x_{i}, x_{i+1}\right)=\cdots=\operatorname{dist}\left(x_{2 p-1}, x_{1}\right)$.

Next we show Theorem 1.1 for the case of $k=2 p$. Indeed, Theorem 1.1 for $k=2 p$ may be generalized to n-dimensional case(Theorem 1.3). However here we give a detailed proof for S^{1} to show the idea. Let $\left(x_{1}, \cdots, x_{2 p}\right)$ be a configuration of $k(=2 p)$ points in S^{1}, and set $f(x)=f_{x_{1}, \cdots, x_{k}}(x)=$ $\sum_{i=1}^{k} \operatorname{dist}\left(x, x_{i}\right)$ as before. First note that the gradients of a polygonal line which is the graph of f are even integers([figure 4]). Indeed, the gradient vector $\nabla f(x)$ at $x\left(\neq x_{i}, \bar{x}_{i}\right)$ is the sum of unit tangent vectors in $T_{x}\left(S^{1}\right)$ of even numbers. From this fact we also see that $x\left(\neq x_{i}, \bar{x}_{i}\right)$ is a critical point of f if and only if there are the same number of vertices on $\operatorname{arcs} x<\bar{x}$ and $\bar{x}<x$. Now for any configuration $\left(x_{1}, \cdots, x_{2 p}\right)$ we have

$$
\begin{equation*}
\int_{0}^{2 \pi} \operatorname{dist}\left(x, x_{i}\right) d x=\pi^{2} \tag{2.11}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\int_{0}^{2 \pi} f(x) d x=2 p \pi^{2} \tag{2.12}
\end{equation*}
$$

And for a configuration $\left(x_{1}, \cdots, x_{2 p}\right)$ such that the antipodal point of any vertex is a vertex of the configuration(i.e., $\left.x_{p+i}=\bar{x}_{i}\right), f(x)=f_{x_{1}, \cdots, x_{2 p}}(x)$ is equal to a constant $p \pi$, we call such a configuration symmetric. For any configuration $\left(x_{1}, \cdots, x_{2 p}\right)$, we have the following lemma.

Lemma 2.11.

$$
\begin{align*}
M_{x_{1}, \cdots, x_{2 p}} & :=\max _{x \in S^{1}} f_{x_{1}, \cdots, x_{2 p}}(x) \geq p \pi . \tag{2.13}\\
m_{x_{1}, \cdots, x_{2 p}} & :=\min _{x \in S^{1}} f_{x_{1}, \cdots, x_{2 p}}(x) \leq p \pi . \tag{2.14}
\end{align*}
$$

Proof. Suppose $M_{x_{1}, \cdots, x_{2 p}}<p \pi$, then we have $\int_{0}^{2 \pi} f_{x_{1}, \cdots, x_{2 p}}(x)<2 p \pi^{2}$. It contradicts the assumption. Similarly suppose $m_{x_{1}, \cdots, x_{2 p}}>p \pi$, then we have $\int_{0}^{2 \pi} f_{x_{1}, \cdots, x_{2 p}}(x)>2 p \pi^{2}$. It contradicts the assumption.

Lemma 2.12. Suppose $k=2 p$. Then $a_{k}\left(S^{1}\right)=\pi / 2$ and $a_{k}\left(S^{1}\right)$ is realized if and only if a configuration consists of pairs of antipodal points $\left(x_{i}, \bar{x}_{i}\right)$.

Proof. From Lemma 2.11 we have

$$
\begin{equation*}
a_{2 p}\left(S^{1}\right)=\frac{1}{2 p} \min M_{x_{1}, \cdots, x_{2 p}} \geq \frac{\pi}{2} \tag{2.15}
\end{equation*}
$$

and for a symmetric configuration we have $M_{x_{1}, \cdots, x_{2 p}}=m_{x_{1}, \cdots, x_{2 p}}=p \pi$. Therefore $a_{2 p}\left(S^{1}\right)=\pi / 2$. To complete the proof of Theorem 1.1 it suffices to show that a configuration $\left(x_{1}, \cdots, x_{2 p}\right)$ with $M_{x_{1}, \cdots, x_{2 p}}=p \pi$ must be symmetric. Indeed, in this case we have $M_{x_{1}, \cdots, x_{2 p}}=p \pi$ and $\int_{0}^{2 \pi} f_{x_{1}, \cdots, x_{2 p}}(x)=$ $2 p \pi^{2}$. Therefore $f_{x_{1}, \cdots, x_{2 p}}(x) \equiv p \pi$ is a constant function and every $x \in S^{1}$

Figure 4
is a critical point of $f_{x_{1}, \cdots, x_{2 p}}(x)$. It follows that for any $x\left(\neq x_{i}, \bar{x}_{i}\right)$, there are p vertecies on $\operatorname{arcs} x<\bar{x}$ and $\bar{x}<x$. This happens only for a symmetric configuration.

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

Here we will give a proof of $a_{3}\left(S^{n}\right)=5 \pi / 9$. We begin with the case of $n=2$ considering S^{2} as the unit sphere in \mathbf{R}^{3}. Let x_{1}, x_{2}, x_{3} be points of S^{2} which are contained in a small or great circle. For given $x_{1}, x_{2}, x_{3} \in S^{2}$ take a plane Π in R^{3} containing these there points. Suppose that $\Pi \cap S^{2}$ is a small circle C, and let N be the pole of S^{n} such that $\operatorname{dist}\left(x_{i}, N\right)$ is equal to $t(0 \leq t \leq \pi / 2)$. Set $f(x)=f_{x_{1}, x_{2}, x_{3}}(x)=\sum_{i=1}^{3} \operatorname{dist}\left(x_{i}, x\right)$. We show that

$$
\begin{equation*}
\max _{x \in S^{2}} f(x)>\frac{5}{3} \pi \tag{3.1}
\end{equation*}
$$

holds. Indeed, assuming that $x_{1}, x_{2}, x_{3} \in C$ are located in counterclockwise order and

$$
\begin{equation*}
\operatorname{dist}\left(x_{2}, x_{3}\right) \geq \max \left\{\operatorname{dist}\left(x_{1}, x_{2}\right), \operatorname{dist}\left(x_{1}, x_{3}\right)\right\}, \tag{3.2}
\end{equation*}
$$

take $x_{i}^{\prime}(i=1,2,3)$ on a great circle S parallel to C which are projections of $x_{i}(i=1,2,3)$ by great half circles through N. Then we have

$$
\left\{\begin{array}{l}
\operatorname{dist}\left(x_{1}, x_{2}\right)+\operatorname{dist}\left(x_{1}, x_{3}\right)<\operatorname{dist}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)+\operatorname{dist}\left(x_{1}^{\prime}, x_{3}^{\prime}\right) \tag{3.3}\\
\leq 2 \pi-\operatorname{dist}\left(x_{2}^{\prime}, x_{3}^{\prime}\right) \leq \frac{4}{3} \pi
\end{array}\right.
$$

Now for $x=\bar{x}_{1}$, the antipodal point of x_{1}, note that $\operatorname{dist}\left(x_{1}, x\right)=\pi$, $\operatorname{dist}\left(x_{2}, x\right)=\pi-\operatorname{dist}\left(x_{1}, x_{2}\right)$, and $\operatorname{dist}\left(x_{3}, x\right)=\pi-\operatorname{dist}\left(x_{1}, x_{3}\right)$. It follows that

$$
\left\{\begin{array}{l}
\operatorname{dist}\left(x_{1}, x\right)+\operatorname{dist}\left(x_{2}, x\right)+\operatorname{dist}\left(x_{3}, x\right) \tag{3.4}\\
=3 \pi-\operatorname{dist}\left(x_{1}, x_{2}\right)-\operatorname{dist}\left(x_{1}, x_{3}\right) \\
>3 \pi-\frac{4}{3} \pi=\frac{5}{3} \pi
\end{array}\right.
$$

Therefore the maximum value of the sum of distances from arbitrary three points x_{1}, x_{2}, x_{3} on any small circle exceeds $5 \pi / 3$, that is equal to $a_{3}\left(S^{1}\right)$.

Next suppose that x_{1}, x_{2}, x_{3} are on a great circle S arranged in counterclockwise order and y is on the same great circle. If x_{1}, x_{2}, x_{3} are not equally spaced then from Theorem 1.1 we have

$$
\max _{x \in S^{2}} f_{x_{1}, x_{2}, x_{3}}(x) \geq \max _{x \in S} f_{x_{1}, x_{2}, x_{3}}(x)>5 \pi / 3
$$

So we assume that x_{1}, x_{2}, x_{3} are equally spaced on S. First we show that the maximum value of f is assumed at a point of S. Note that any point $x \in S^{2}$ lies on a half great circle γ joining a point $y \in S$ and the antipodal point \bar{y} of y and perpendicular to S. We may assume that $x_{1} \leq y \leq x_{2}$ on S. Set $l_{i}=\operatorname{dist}\left(x, x_{i}\right)(i=1,2,3), t=\operatorname{dist}(x, y)(0 \leq t \leq \pi)$, and $s=\operatorname{dist}\left(x_{1}, y\right)$, where we may assume that $0 \leq s \leq \pi / 3$. Then by the cosine formula we have

$$
\begin{gather*}
\cos l_{1}=\cos t \cos s \tag{3.5}\\
\cos l_{2}=\cos t \cos \left(\frac{2}{3} \pi-s\right)=-\cos t \cos \left(\frac{1}{3} \pi+s\right) \tag{3.6}\\
\cos l_{3}=\cos t \cos \left(\frac{2}{3} \pi+s\right)=-\cos t \cos \left(\frac{1}{3} \pi-s\right) \tag{3.7}
\end{gather*}
$$

For a fixed $s, l_{i}(i=1,2,3)$ are functions of t and we get

$$
\begin{aligned}
& l_{1}^{\prime}(t)+l_{2}^{\prime}(t)+l_{3}^{\prime}(t) \\
& \quad=\sin t\left\{\frac{\cos s}{\sqrt{1-\cos ^{2} t \cos ^{2} s}}-\frac{\cos \left(\frac{\pi}{3}+s\right)}{\sqrt{1-\cos ^{2} t \cos ^{2}\left(\frac{\pi}{3}+s\right)}}\right. \\
& \left.-\frac{\cos \left(\frac{\pi}{3}-s\right)}{\sqrt{1-\cos ^{2} t \cos ^{2}\left(\frac{\pi}{3}-s\right)}}\right\}
\end{aligned}
$$

Now set $a=|\cos t|$ and

$$
\begin{equation*}
g(u)=\frac{u}{\sqrt{1-a^{2} u^{2}}} \tag{3.8}
\end{equation*}
$$

Set $u_{1}=\cos (\pi / 3+s), u_{2}=\cos (\pi / 3-s)$, and note that $u_{1}+u_{2}=\cos s$ holds. Then for $0 \leq s \leq \pi / 6$ noting that

$$
\begin{equation*}
0 \leq u_{1} \leq \frac{1}{2}, \frac{1}{2} \leq u_{2} \leq \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \leq u_{1}+u_{2} \leq 1 \tag{3.9}
\end{equation*}
$$

we easily have $g\left(u_{1}+u_{2}\right) \geq g\left(u_{1}\right)+g\left(u_{2}\right)$. It follows that

$$
l_{1}^{\prime}(t)+l_{2}^{\prime}(t)+l_{3}^{\prime}(t) \geq 0
$$

for $0 \leq s \leq \pi / 6$. Next for $\pi / 6 \leq s \leq \pi / 3$, noting that

$$
\begin{equation*}
-\frac{1}{2} \leq u_{1} \leq 0, \frac{\sqrt{3}}{2} \leq u_{2} \leq 1, \frac{1}{2} \leq u_{1}+u_{2} \leq \frac{\sqrt{3}}{2} \tag{3.10}
\end{equation*}
$$

we have $g\left(u_{1}+u_{2}\right) \leq g\left(u_{1}\right)+g\left(u_{2}\right)$. Therefore we have

$$
l_{1}^{\prime}(t)+l_{2}^{\prime}(t)+l_{3}^{\prime}(t) \leq 0
$$

for $\pi / 6 \leq s \leq \pi / 3$. Hence $l_{1}(t)+l_{2}(t)+l_{3}(t)$ assumes the maximum value at $t=\pi$ for $0 \leq s \leq \pi / 6$ and at $t=0$ for $\pi / 6 \leq s \leq \pi / 3$. Especially for $s=\pi / 6$, we have $l_{1}(t)+l_{2}(t)+l_{3}(t) \equiv 3 \pi / 2<5 \pi / 3$ and this value is less than $\max _{x \in S^{2}} f_{x_{1}, x_{2}, x_{3}}(x)$. It follows that $f: S^{2} \rightarrow \boldsymbol{R}^{2}$ assumes the maximum at a point of the great circle S. Then we have our assertion by Theorem 1.1. Finally we consider the case of general $n \geq 2$. Let $x_{1}, x_{2}, x_{3} \in S^{n}$ be given. If $x_{1}=x_{2}=x$ then for the antipodal \bar{x} of x we have

$$
\begin{equation*}
\max _{x \in S^{n}} f_{x_{1}, x_{2}, x_{3}}(x) \geq f_{x_{1}, x_{2}, x_{3}}(\bar{x}) \geq 2 \pi>\frac{5}{3} \pi . \tag{3.11}
\end{equation*}
$$

Therefore we may assume that x_{1}, x_{2}, x_{3} are different. Then x_{1}, x_{2}, x_{3} are on either a small or a great circle of some 2-dimensional sphere S^{2}. If they are on a small sphere then the above argument implies that $\max _{x \in S^{n}} f>5 \pi / 3$. If they are on a great circle, then for any $x \in S^{n}$ we may assume that x, x_{1}, x_{2}, x_{3} are contained in some great 2-dimensional sphere S^{2} and the above argument works. This completes the proof of Theorem 1.2.

4. Proof of Theorem 1.3 and Theorem 1.4

First we show that $a_{k}\left(S^{n}\right)$ is equal to $\pi / 2$ for $k=2 p$. Suppose

$$
\begin{equation*}
f_{x_{1}, x_{2}, \cdots, x_{k}}(x)=\sum_{i=1}^{k} \operatorname{dist}\left(x, x_{i}\right) \tag{4.1}
\end{equation*}
$$

as before. Then we have

$$
\begin{equation*}
a_{k}\left(S^{n}\right)=\min _{x_{1}, x_{2}, \cdots, x_{k}} \max _{x \in S^{n}} f_{x_{1}, x_{2}, \cdots, x_{k}}(x)=\min _{x_{1}, x_{2}, \cdots, x_{k}}\left\|f_{x_{1}, x_{2}, \cdots, x_{k}}\right\|_{\infty} \tag{4.2}
\end{equation*}
$$

Set

$$
\begin{align*}
M_{x_{1}, \cdots, x_{2 p}} & :=\max _{x \in S^{n}} f_{x_{1}, \cdots, x_{2 p}}(x), \tag{4.3}\\
m_{x_{1}, \cdots, x_{2 p}} & :=\min _{x \in S^{n}} f_{x_{1}, \cdots, x_{2 p}}(x), \tag{4.4}
\end{align*}
$$

as before. Here we have

$$
\begin{equation*}
\left\|f_{x_{1}, x_{2}, \cdots, x_{2 p}}\right\|_{1}=\int_{S^{n}} f_{x_{1}, \cdots, x_{2 p}}(x) d x=\operatorname{p\pi vol}\left(S^{n}\right) \tag{4.5}
\end{equation*}
$$

Suppose $M_{x_{1}, \cdots, x_{2 p}}<p \pi$, then we have $\int_{S^{n}} f_{x_{1}, \cdots, x_{2 p}}(x)<p \pi v o l\left(S^{n}\right)$. It contradicts the assumption. Therefore we obtain $M_{x_{1}, \cdots, x_{2 p}} \geq p \pi$. Next suppose $m_{x_{1}, \cdots, x_{2 p}}>p \pi$, then we have $\int_{S^{n}} f_{x_{1}, \cdots, x_{2 p}}(x)>p \pi v o l\left(S^{n}\right)$. It contradicts the assumption. Therefore we obtain $m_{x_{1}, \cdots, x_{2 p}} \leq p \pi$. Hence

$$
\begin{equation*}
a_{2 p}\left(S^{n}\right)=\frac{1}{2 p} \min M_{x_{1}, \cdots, x_{2 p}} \geq \frac{\pi}{2} \tag{4.6}
\end{equation*}
$$

and for a symmetric configuration(see the statement of Theorem 1.3) we have $M_{x_{1}, \cdots, x_{2 p}}=m_{x_{1}, \cdots, x_{2 p}}=p \pi$. Therefore $a_{2 p}\left(S^{n}\right)=\pi / 2$. To complete the proof of this theorem it suffices to show that a configuration $\left(x_{1}, \cdots, x_{2 p}\right)$ with $M_{x_{1}, \cdots, x_{2 p}}=p \pi$ must be symmetric. In this case we have $M_{x_{1}, \cdots, x_{2 p}}=$ $p \pi$ and $\int_{S^{n}} f_{x_{1}, \cdots, x_{2 p}}(x)=\operatorname{prvol}\left(S^{n}\right)$. Therefore $f_{x_{1}, \cdots, x_{2 p}}(x) \equiv p \pi$ is a constant function and every $x \in S^{n}$ is a critical point of $f_{x_{1}, \cdots, x_{2 p}}(x)$. Since $f_{x_{1}, x_{2}, \cdots, x_{2 p}}(x)=p \pi, f_{x_{1}, x_{2}, \cdots, x_{2 p}}(x)$ is smooth. $\operatorname{dist}\left(x, x_{i}\right)$ is differentiable at any point except for x_{i} and \bar{x}_{i}. If none of points $x_{1}, x_{2}, \cdots, x_{2 p}$ coincides with $\bar{x}_{i}, f_{x_{1}, x_{2}, \cdots, x_{2 p}}(x)$ is not differentiable at \bar{x}_{i}. It contradicts that $f_{x_{1}, x_{2}, \cdots, x_{2 p}}(x)$ is smooth. It happens only for a symmetric configuration. This completes the proof of Theorem 1.3.

Now we turn to the proof of Theorem 1.4. Let X be an n-dimensional Alexandrov space with curvature ≥ 1. First we recall the notion of the exponential map ([G-W],[Pe]). For $p \in X$ we denote by S_{p} the space of directions at p, that is an $(n-1)$-dimensional Alexandrov space with curvature ≥ 1. Note that each $v \in S_{p}$ determines a quasigeodesic $c_{v}:[0, \pi] \longrightarrow X$ emanating from p with the initial direction v. Then for the spherical suspension $\sum_{1} S_{p}=S_{p} \times[0, \pi] / \sim$, the exponential map $\exp _{p}: \sum_{1} S_{p}-\left(S_{p} \times\{\pi\}\right) / \sim \longrightarrow$ X is defined as follows. For $v \in S_{p}$ we denote by $\bar{c}_{v}(t)=(t, v)(0 \leq t \leq \pi)$, the corresponding segment in $\sum_{1} S_{p}$ emanating from the vertex \bar{p}. Then we set $\exp _{p} \bar{c}_{v}(t)=c_{v}(t)$.

Now we show that $a_{k}(X)$ does not exceed $a_{k}\left(S^{n}\right)$ by the generalized Toponogov comparison theorem. Let $\tilde{x}_{1}, \tilde{x}_{2}, \cdots, \tilde{x}_{k}$ be points in S^{n} that realizes $a_{k}\left(S^{n}\right)$. And take a point $\tilde{p} \in S^{n}$ different from the antipodal points of $\tilde{x}_{i}(i=1, \cdots, k)$. Take a regular point $p \in X$. Then $\sum_{1} S_{p}$ is isometric to S^{n}, and we identify $\sum_{1} S_{p}$ (resp., S_{p}) with $S^{n}=\sum_{1} S_{\tilde{p}}\left(\right.$ resp., $S_{\tilde{p}}=S^{n-1}$).

Let x_{i} be a point such that $\exp _{p} \bar{c}_{v_{i}}(t)=c_{v_{i}}(t)$, where $\bar{c}_{v_{i}}$ is a geodesic emanating from \tilde{p} with initial direction v_{i} to $\tilde{x}_{i} \in \sum_{1} S_{\tilde{p}}=S^{n}(i=1, \cdots, k)$ and $c_{v_{i}}$ is a quasigeodesic emanating from p with initial direction v_{i} to x_{i}. Take a point $x_{0} \in X$ such that

$$
\begin{equation*}
a_{k}\left(x_{1}, \cdots, x_{k}\right):=\max _{x \in X} \frac{1}{k} \sum_{i=1}^{k} \operatorname{dist}\left(x, x_{i}\right)=\frac{1}{k} \sum_{i=1}^{k} \operatorname{dist}\left(x_{0}, x_{i}\right) . \tag{4.7}
\end{equation*}
$$

Let $\gamma_{0}:\left[0, \operatorname{dist}\left(p, x_{0}\right)\right] \longrightarrow X$ be a minimal geodesic from p to x_{0}, and set $\tilde{x_{0}}=\exp _{\tilde{p}}^{S^{n}}\left(\operatorname{dist}\left(p, x_{0}\right) \dot{\gamma}_{0}(0)\right)$. By the generalized Toponogov comparison theorem for $\triangle p x_{i} x_{0}$ and $\triangle \tilde{p} \tilde{x}_{i} \tilde{x}_{0}$ (see (1.10)) we have

$$
\begin{equation*}
\operatorname{dist}\left(x_{0}, x_{i}\right) \leq \operatorname{dist}\left(\tilde{x}_{0}, \tilde{x}_{i}\right) \tag{4.8}
\end{equation*}
$$

It follows that

$$
\begin{align*}
a_{k}(X) & \leq a_{k}\left(x_{1}, x_{2}, \cdots, x_{k}\right)=\frac{1}{k} \sum_{i=1}^{k} \operatorname{dist}\left(x_{0}, x_{i}\right) \tag{4.9}\\
& \leq \frac{1}{k} \sum_{i=1}^{k} \operatorname{dist}\left(\tilde{x}_{0}, \tilde{x}_{i}\right) \leq a_{k}\left(\tilde{x}_{1}, \tilde{x}_{2}, \cdots, \tilde{x}_{k}\right)=a_{k}\left(S^{n}\right) .
\end{align*}
$$

Therefore we have

$$
\begin{equation*}
a_{k}(X) \leq a_{k}\left(S^{n}\right) \tag{4.10}
\end{equation*}
$$

and the proof of Theorem 1.4 is complete. By Theorem 1.3 and Theorem 1.4 we obtain $a_{2 p}(X) \leq a_{2 p}\left(S^{n}\right)=\pi / 2$.

We show that when M is an n-dimensional Riemannian manifold with some conditions on $a_{2}(M)$ and the injective radius, M is isometric to the unit n-dimensional sphere.

Proposition 4.1. Suppose that M is an n-dimensional Riemannian manifold with curvature ≥ 1. Suppose that $a_{2}(M)=\pi / 2$ holds and in addition that the injective radius $i(M)$ of M is greater than $\pi / 2$. Then M is isometric to the n-dimensional unit sphere S^{n}.

Proof. Let x_{1}, x_{2} be a pair of points in M such that $\operatorname{diam} M=\operatorname{dist}\left(x_{1}, x_{2}\right)$. First we show that

$$
\begin{equation*}
\operatorname{dist}\left(x_{1}, x\right)+\operatorname{dist}\left(x_{2}, x\right) \leq \pi \tag{4.11}
\end{equation*}
$$

holds for any point x. Let γ_{i} be a minimal geodesic from x_{i} to $x(i=1,2)$. Since x_{1} is critical for the distance function $y \longrightarrow \operatorname{dist}\left(x_{2}, y\right)$ and x_{2} is also critical for the distance function $y \longrightarrow \operatorname{dist}\left(x_{1}, y\right)$, we may take a minimal geodesics from x_{1} to x_{2} and from x_{2} to x_{1}, so that we have $\varangle\left(x_{2} x_{1}, x_{2} x\right) \leq$
$\pi / 2$ and $\varangle\left(x_{1} x_{2}, x_{1} x\right) \leq \pi / 2$ for the angle of hinges. Then by the Toponogov comparison theorem and the cosine formula we obtain

$$
\begin{align*}
& \cos \operatorname{dist}\left(x_{1}, x\right) \geq \cos \operatorname{dist}\left(x_{1}, x_{2}\right) \cos \operatorname{dist}\left(x_{2}, x\right) \\
& +\sin \operatorname{dist}\left(x_{1}, x_{2}\right) \sin \operatorname{dist}\left(x_{2}, x\right) \cos \varangle\left(x_{2} x_{1}, x_{2} x\right) \tag{4.12}\\
& \geq \cos \operatorname{dist}\left(x_{1}, x_{2}\right) \cos \operatorname{dist}\left(x_{2}, x\right),
\end{align*}
$$

and

$$
\begin{align*}
& \cos \operatorname{dist}\left(x_{2}, x\right) \geq \cos \operatorname{dist}\left(x_{1}, x_{2}\right) \cos \operatorname{dist}\left(x_{1}, x\right) \\
& +\sin \operatorname{dist}\left(x_{1}, x_{2}\right) \sin \operatorname{dist}\left(x_{1}, x\right) \cos \varangle\left(x_{1} x_{2}, x_{1} x\right) \tag{4.13}\\
& \geq \cos \operatorname{dist}\left(x_{1}, x_{2}\right) \cos \operatorname{dist}\left(x_{1}, x\right) .
\end{align*}
$$

Adding these inequalities it follows that

$$
\begin{equation*}
\cos \frac{\operatorname{dist}\left(x_{1}, x\right)+\operatorname{dist}\left(x_{2}, x\right)}{2} \cos \frac{\operatorname{dist}\left(x_{1}, x\right)-\operatorname{dist}\left(x_{2}, x\right)}{2} \geq 0 \tag{4.14}
\end{equation*}
$$

Then we get $\operatorname{dist}\left(x_{1}, x\right)+\operatorname{dist}\left(x_{2}, x\right) \leq \pi$, and therefore

$$
\begin{equation*}
\frac{\pi}{2}=a_{2}(M) \leq \frac{1}{2} \max _{x \in M}\left\{\operatorname{dist}\left(x_{1}, x\right)+\operatorname{dist}\left(x_{2}, x\right)\right\} \leq \frac{\pi}{2} \tag{4.15}
\end{equation*}
$$

Hence we can take a point $x_{0} \in M$ such that $\operatorname{dist}\left(x_{1}, x_{0}\right)+\operatorname{dist}\left(x_{2}, x_{0}\right)=$ π. Further for this $x=x_{0}$ equality holds in (4.12), (4.13). Now suppose $d\left(x_{1}, x_{2}\right)<\pi$. Then we have $\operatorname{dist}\left(x_{1}, x_{0}\right)=\operatorname{dist}\left(x_{2}, x_{0}\right)=\pi / 2$, and $\varangle\left(x_{2} x_{1}, x_{2} x_{0}\right)=\varangle\left(x_{1} x_{2}, x_{1} x_{0}\right)=\pi / 2$. Since the injective radius $i(M)>\pi / 2$ minimal geodesics γ_{i} from x_{i} to x_{0} are unique, and we show $\varangle\left(\dot{\gamma}_{1}(\pi / 2), \dot{\gamma}_{2}(\pi / 2)\right)=\pi$. Otherwise we take a point $x^{\prime}=\gamma_{1}(\pi / 2+\epsilon)(0<$ $\epsilon<i(M)-\pi / 2)$. Then we have by the triangle inequality

$$
\begin{align*}
\operatorname{dist}\left(x_{1}, x^{\prime}\right) & +\operatorname{dist}\left(x_{2}, x^{\prime}\right) \\
& =\frac{\pi}{2}+\epsilon+\operatorname{dist}\left(x_{2}, x^{\prime}\right) \tag{4.16}\\
& =\operatorname{dist}\left(x_{1}, x_{0}\right)+\operatorname{dist}\left(x_{0}, x^{\prime}\right)+\operatorname{dist}\left(x^{\prime}, x_{2}\right) \\
& >\operatorname{dist}\left(x_{1}, x_{0}\right)+\operatorname{dist}\left(x_{0}, x_{2}\right)=\pi
\end{align*}
$$

$\triangle x_{0} x_{1} x_{2}$ spans a totally geodesic surface of constant curvature 1 . Since equality holds in the Toponogov comparison theorem, it follows that $\operatorname{dist}\left(x_{1}, x_{2}\right)=\pi$. Therefore we have $\operatorname{diam} M=\pi$, and $M=S^{n}$ by the maximal diameter theorem.
Remark 4.1. (1) By adding the condition $i(M)>\pi / 2 M$ is not isometric to the real projective space $R P^{n}$ or the hemisphere S^{+}. Since $a_{2}\left(R P^{n}\right)=\pi / 2$ holds for the real projective space $R P^{n}$ of constant curvature 1 and $n \geq 2$ we need an assumption such that $i(M)>\pi / 2$ in Proposition 4.1.
(2) On the other hand, when X is an Alexandrov space such that curvature \geq 1 and $a_{2}(X)=\pi / 2$, we do not know yet such a structure theorem for X.

5. Proof of Theorem 1.5

Let X be an n-dimensional Alexandrov space with curvature ≥ 1 and $n \geq 2$. Recall that we have an inequality

$$
\begin{equation*}
a_{3}(X) \leq a_{3}\left(S^{n}\right)=\frac{5}{9} \pi \tag{5.1}
\end{equation*}
$$

by Theorem 1.2 and Theorem 1.4. Now in this section we show that X is isometric to a spherical double suspension $\sum_{2} Z$ when equality holds in (5.1). First we show that X is isometric to a spherical suspension $\sum_{1} Y$.

Lemma 5.1. Let X be an n-dimensional Alexandrov space with curvature ≥ 1. Suppose $a_{3}(X)=a_{3}\left(S^{n}\right)=5 \pi / 9$. Then X is isometric to $\sum_{1} Y$, where Y is an ($n-1$)-dimensional Alexandrov space with curvature ≥ 1.

Proof. We show that $\operatorname{diam} X$ is equal to π.@ Let $\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}$ be points in S^{n} that realize $a_{3}\left(S^{n}\right)$. Then the configuration ($\left.\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right)$ is equally spaced on a great circle S^{1}, and take a point $\tilde{p} \in S^{n}$ different from the antipodal of $\tilde{x}_{i}(i=1,2,3)$. Take a regular point $p \in X$. Then $\sum_{1} S_{p}$ is isometric to S^{n}, and we identify $\sum_{1} S_{p}$ (resp., S_{p}) with $S^{n}=\sum_{1} S_{\tilde{p}}$ (resp., $S_{\tilde{p}}=S^{n-1}$). Let x_{i} be a point $\exp _{p} \bar{c}_{v_{i}}\left(\operatorname{dist}\left(\tilde{p}, \tilde{x}_{i}\right)\right)=c_{v_{i}}\left(\operatorname{dist}\left(\tilde{p}, \tilde{x}_{i}\right)\right)$, where $\bar{c}_{v_{i}}$ is a geodesic emanating from \tilde{p} with initial direction v_{i} to $\tilde{x}_{i} \in \sum_{1} S_{\tilde{p}}=S^{n}(i=1,2,3)$ and $c_{v_{i}}$ is a quasigeodesic emanating from p with initial direction v_{i} to x_{i} as in the proof of Theorem 1.4. Take a point $x_{0} \in X$ such that

$$
\begin{equation*}
a_{3}\left(x_{1}, x_{2}, x_{3}\right):=\max _{x \in X} \frac{1}{3} \sum_{i=1}^{3} \operatorname{dist}\left(x, x_{i}\right)=\frac{1}{3} \sum_{i=1}^{3} \operatorname{dist}\left(x_{0}, x_{i}\right) . \tag{5.2}
\end{equation*}
$$

Let $\gamma_{0}:\left[0, \operatorname{dist}\left(p, x_{0}\right)\right] \longrightarrow X$ be a minimal geodesic from p to x_{0}. And set $\tilde{x}_{0}=\exp _{\tilde{p}}^{S^{n}}\left(\operatorname{dist}\left(p, x_{0}\right) \dot{\gamma}_{0}(0)\right)$. By the generalized Toponogov comparison theorem for $\triangle p x_{i} x_{0}$ and $\triangle \tilde{p} \tilde{x}_{i} \tilde{x}_{0}$, we have for $i=1,2,3$

$$
\begin{equation*}
\operatorname{dist}\left(x_{0}, x_{i}\right) \leq \operatorname{dist}\left(\tilde{x}_{0}, \tilde{x}_{i}\right) \tag{5.3}
\end{equation*}
$$

and hence

$$
\left\{\begin{align*}
a_{3}(X) & \leq a_{3}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{3} \sum_{i=1}^{3} \operatorname{dist}\left(x_{0}, x_{i}\right) \tag{5.4}\\
& \leq \frac{1}{3}\left\{\operatorname{dist}\left(\tilde{x}_{0}, \tilde{x}_{1}\right)+\operatorname{dist}\left(\tilde{x}_{0}, \tilde{x}_{2}\right)+\operatorname{dist}\left(\tilde{x}_{0}, \tilde{x}_{3}\right)\right\} \\
& \leq a_{3}\left(\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right)=a_{3}\left(S^{n}\right)=a_{3}(X)
\end{align*}\right.
$$

Therefore for any i we obtain

$$
\begin{equation*}
\operatorname{dist}\left(x_{0}, x_{i}\right)=\operatorname{dist}\left(\tilde{x}_{0}, \tilde{x}_{i}\right) \tag{5.5}
\end{equation*}
$$

and $a_{3}\left(S^{n}\right)=a_{3}\left(\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right)=1 / 3 \sum_{i=1}^{3} \operatorname{dist}\left(\tilde{x}_{0}, \tilde{x}_{i}\right)$. It follows that \tilde{x}_{0} must be an antipodal point of some \tilde{x}_{i}, namely,

$$
\begin{equation*}
\operatorname{dist}\left(\tilde{x}_{0}, \tilde{x}_{i}\right)=\pi \tag{5.6}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dist}\left(x_{0}, x_{i}\right)=\pi \tag{5.7}
\end{equation*}
$$

Then $\operatorname{diam} X=\pi$ and X is isometric to $\sum_{1} Y$ by the Toponogov maximal diameter theorem([G-P2]).

Next we show that X is isometoric to $\sum_{2} Z$ if $\operatorname{dim} X \geq 2$.
Lemma 5.2. Suppose $X=\sum_{1} Y$, where Y is an $(n-1)$-dimensional Alexandrov space with curvature ≥ 1 and $\operatorname{diam} Y<\pi$ and $n \geq 2$. Let $x_{1}, x_{2} \in X$ be the pole points of the suspension $X=\sum_{1} Y$. Then there is no pair of points whose distance is π except for x_{1}, x_{2}.

Proof. Let y_{1}, y_{2} be points in Y. Set $z_{1}=\left(y_{1}, t_{1}\right)\left(0 \leq t_{1} \leq \pi\right), z_{2}=$ $\left(y_{2}, t_{2}\right)\left(0 \leq t_{2} \leq \pi\right)$, where t_{1}, t_{2} is the distance from x_{1} in $\sum_{1} Y$. Suppose $\operatorname{dist}\left(z_{1}, z_{2}\right)=\pi$. By the definition of the spherical suspension we have

$$
\begin{align*}
-1 & =\cos \operatorname{dist}\left(z_{1}, z_{2}\right) \\
& =\cos t_{1} \cos t_{2}+\sin t_{1} \sin t_{2} \cos \operatorname{dist}\left(y_{1}, y_{2}\right) \\
& \geq \cos \left(t_{1}+t_{2}\right)+\sin t_{1} \sin t_{2}\left\{\cos \operatorname{dist}\left(y_{1}, y_{2}\right)+1\right\} \tag{5.8}\\
& \geq-1
\end{align*}
$$

It follows that we have either $t_{1}=\pi, t_{2}=0$ or $t_{1}=0, t_{2}=\pi$. Hence there is no pair of points whose distance is π except for x_{1}, x_{2}.

Lemma 5.3. Let X be an n-dimensional Alexandrov space with curvature ≥ 1 and $n \geq 2$. Suppose $a_{3}(X)=a_{3}\left(S^{n}\right)=5 \pi / 9$. Then $X=\sum_{2} Z$.
Proof. By Lemma 5.1 we may write $X=\sum_{1} Y$. Suppose $\operatorname{diam} Y<\pi$. In the proof of Lemma 5.1 a point p is an arbitrary regular point. Recall that regular points are dense in X. If the base point $p \in X$ is shifted, the points x_{1}, x_{2}, x_{3} that realize $a_{3}(X)$ can be moved. Then $a_{3}(X)$ is realized by another pair of points $x_{0}, x_{i}(i=1,2,3)$ whose distance is equal to π. This contradicts Lemma 5.2. Therefore we have $\operatorname{diam} Y=\pi$ and $X=\sum_{2} Z$.

By Lemma 5.1, 5.3 the proof of Theorem 1.5 is complete.
Remark 5.1. By applying the same argument for $k=2 p-1$ we may show that X is isometric to a spherical suspension if $a_{k}(X)=\frac{2 p^{2}-2 p+1}{(2 p-1)^{2}} \pi$ holds. We also conjecture that X is isometric to $\sum_{1} Y$ if $a_{2}(X)=\pi / 2$ and $\operatorname{radX}>\pi / 2$ hold.

After the completion of the present paper we settled the conjecture about $a_{k}\left(S^{n}\right)$ in the introduction. We give a proof and also discuss some results about Remark 5.1 in a forthcoming paper.

Ackowledgement

I would like to express my deepest gratitude to professors, Takashi Sakai, Atsushi Katsuda, and Kazuyoshi Kiyohara for the encouragement and helpful suggestions, as well as for teaching me all the necessary background.

References

[B-G-P] Y.Burago-M.Gromov-G.Perelman, Alexandrov spaces with curvature bounded below I, Russ. Math. Surveys. 47, 1-58(1992).
[G-M] K.Grove and S.Markvorsen, New extremal problems for the Riemannian recognition program via Alexandrov geometry, J. Amer. Math. 8, 1-28(1995).
[G-P1] K.Grove and P.Petersen, A radius sphere theorem, Invent. Math. 112, 577583(1993).
[G-P2] K.Grove and P.Petersen, On the excess of metric spaces and manifolds, preprint.
[G-W] K.Grove and F.Wilhelm, Hard and soft packing theorems, Ann. of Math. 142, 213-237(1995).
[P] G.Perelman, Alexandrov spaces with curvature bounded below II, Preprint.
[Pe] A.Petrunin, Quasigeodesics in multidimensional Alexandrov spaces, Diploma, University of Illinois(1995).
[P-P] G.Perelman and A.Petrunin, Extremal subsets in Alexandrov spaces and the generalized Lieberman theorem, St. Petersburg Math J 5, 215-227(1994).
[S] S.Shteingold, Covering Radii and Paving Diameters of Alexandrov Spases, J. Geom. Anal. 8, 613-627(1998).

Nobuyuki Sochi
The graduate school of natural science and technology
Okayama University
Okayama 700-8530, Japan
e-mail address: iputiko@yahoo.co.jp
(Received February 3, 2004)

