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1. Introduction. Let f(#) be an arithmetical function, which is
positive and satisfies the condition that f{#)=0(xn") for some fixed 5>0.
Define the arithmetical function F(#) by setting F(1)=1 and F(n)=5(a.)

fla,)f(a,) if 1<an=1I p*. The main object of this paper is to prove
{=1

the following theorem which gives a useful and easy way of obtaining
the “true maximum order” of F(n).

Theorem. We have

log F(n) log log n log f(m)

lim sup =sup -

7o log n

The usefulness of the theorem is illustrated in § 3 by applying it to
some known divisor functions.

The condition on f(#), namely f(n)=0(n") for some fixed >0 assures
us that sup—lOg’iJ (denoted throughout the rest of the paper by Kj)

is finite. We assume throughout the paper that K,>0.
In 1958 A. A. Drozdova and G. A. Freiman [1] proved the following
result, namely

log n log n
(L.1)  log Flm = K, S +0 ( (log log 7)* log log log # )

where f(n)>0 and satisfies the condition that
— Fly— 1
Fny=r(n—1) {1+ 0f L )}

and F(n) is as defined above. It can be easily shown that any arithme-
tical function f(#) satisfying their condition also satisfies our condition,
namely f(n)=0(n’) for some fixed §>0, so that our class of functions
f(n) is more rich than the class discussed by them. In fact, for the func-
tion F(n)=1“ () defined in § 3, f(#)=.(xn) which satisfies our condition,
but not their condition (see Remark in § 3). Moreover, from (1.1), it
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only follows that K, is an upper bound of lim sup log F(Iggl‘:zg log n

whereas our theorem shows that K, is exactly equal to this limit superior.

2

2. Proof of the theorem. Throughout the following the letter p
with or withont suffixes denotes a prime number, p, denotes the r-th
prime, 7n(x) denotes the number of primes =<z, where z is a real variable
=2, and a(x)zz log p. In the proof of the theorem, we make use of

the well-known result that there exists a positive constant A <1such
that 9(x)>Ax (cf. [2; Theorem 414]).

We first prove that given ¢ >0, there are infinitely many positive
integers » such that

@.1) log F(};) log log n >K—e.

og n
For this, choose an integer />>1 such that —=- log f (l) % Such an
integer / exists, since K,=sup lo_gm}_”(m_). Putting n,=(2+3:5+p,), we

have

Fln)={f)} = {f(@)} <,
Also, Ap, <o(p) =1 log , and x(p,) log 5, =0(p) = 10g n.

Hence

log F(n,)=n(p,) log f(})= 108 ;, log lf (03)

But we have
log A+log p.<<log (Eglﬁ) < log log n,,

so that
log p,<<log log n,—log A.
Hence

log n, log £())
log F(n)> log log n.,—log A /A

Now, since IOL[(—I)— > K, -——% and A<1, we have

log F(n,) log log n, log log n, _& _
log . = log log #,—log A (K 2) > K¢,
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for r=r,(e). Hence (2. 1) follows.
We next prove that given ¢>0,

@.2) log F (’l’())gl‘:zg logn —(1+e) K,

for all =N(e). For this, we choose a number ¢ such that 0<6<<e and

o)

a number 7 such that 0<{»<C iﬁ—é . For n=3, we define

w=o(n)= —&% and 2=20(n)= (log n)' .

Then by the choice of 7, we have
Quzem log ﬂ_:e(l—n) Q+d8) lcf >ekf .
Now, if nzrll p%, then
Prin
(2.3) F(:z) =TI f(ap)=n f(ap) C I f(ay) =1, 1I,,

PIE psa  p»” >a ph¢
n pin

say. Since

0*>¢* and K, gl"—g({(“—ﬂ),
P

we find that each factor in the product /7, is < 1, for
f(ap) < f(ap) < f(ay) <1.

pupu Qapw ekjap
Also, in the product I7,, since f(n)=0(n"), we have
fla,) ~ fla) __ flay) - Bla) _ B

pa.pu = 2¢pm eapmlugﬂ ——(ap(u)t? w?

where B is an absolute positive constant. Thus

log 1,< 8 log((—fﬁ—) ~#log 7)™ log log log n=0 <_151g2%)'

Hence by (2. 3)
log F(n)=w log n+log I1,+1log II,
(1+9) K, log n 1+ (e—9)K, logn
log log » log log n

for n=N(e). Hence (2. 2) follows.
Thus the theorem is completely proved.

2

3. Applications. First of all, let us apply the theorem to determine
the “true maximum order” of =(n), where (%) is the number of divisors
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of the integer n. Let us take f(#)=n-+1, then F(n)—z'(n) 1t is clear
that f(#)=0(n). Since

sup log;:(m) —sup log (::—i—l) —log 2,

in virtue of the theorem we have

(3.1) lim sup log 7(n) log log n

im_su Tog # =log 2.

This result is well known (f. [2; Theorem 317]).

Let us now take f(n)=n, then F(n)=a(n), where a(n) is the number
of square-full divisars of #n. A divisor d of n is called square-full, if a
prime p divides d then p* also divides d (cf. [6]). In this case

Suplog_f(m) - l"—fn”’_=—;— log 3.

m

Hence in virtue of the theorem, we have

. log a(n) loglogn _ 1
(3.2) hﬂm_’sgp———log - 3 log 3.

Let us take f(n)=<(n), then F(n)—r“’(n) where r‘e’(n) is the number
of exponential divisors of #. A divisor d= H Pl of n= H pit is called an

exponential divisor of #, if b;|a; for each ¢ (cf [3; p. 257]) Since f(n)=
t(n)<<n, the condition of the theorem is satisfied with #=1. In this case

log f(m) =sup 108 <(m) log <(m) _ _1_ log 2,
m

Sup—=-—=*
since =(m) < 2™" for m=1 and M log 2. Hence in virtue of
the theorem, we have

. log =“X(n) log logn _ 1
(3.3) lgn_’sgp —logn "2 log 2.

This is a recently known result. A proof of this result due to P. Erdos
may be found in [3; Theorem 6.2]. However, his proof is on different
lines and is rather complicated (at least, not as straight forward as it
is given here),

Remark. The function f(#)=1(n) does not satisfy the condition laid

down by A. A. Drozdova and G. A. Freiman [1], namely f{ (”)1)=1+

1) W(p) 2_1
(0] (n)’ since (p— l)g > for every prime p=7.
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Let £ be a fixed integer = 2. Let r(x) denote the number of ordered
k-tuples of positive integers, whose product equals n#. Let 6,(n) denote
the number of ordered k-tuples of positive integers which are pairwise
relatively prime and whose product equals n. Let #(#n) denote the num-
ber of ordered k-tuples of positive integers whose 1. c. m. equals #. It is
known (cf. [7; p. 5]) that

) =TI (k+"‘“1) if n=TI p%
i=1 aq

{=1

and (cf. [8; p. 587]) 6x(n) = k*™, where (z;) is the binomial coeficient

and w(n) is the number of distinct prime factors of #. It can be easily
shown that ;l‘.' t(d)=(z(n))*, so that

tn) = }i[l {(a;+1)*—af} if n= ﬁ i,

i=]

Let us now apply the theorem for the functions =,(x), 6,(#) and £,(»).

Taking f(n)= (k+2—1), f(n)=F and f(n)=(n+1)*—#* we see that

the condition of the theorem is satisfied with 3=k, 8=1 and f=k—1
respectively. Also
b —
ool *27)

m

sup =log £,

since {log (k—l—z—l) } /m is monotonically decreasing for m=1,

sup =log k

log %
- m
and
log {(m+21)*—m"}

= ko
m log (2¥—1).

sup
m

Hence in virtue of the theorem, we have

. log =(n) log log n _
(3.4) l1nm~sxa1.p Tog 7 =log &,
. log #.(n) log log n
3. — = S 5 =
(3.5) hnm_.sgp Tog log k
and
. log #(n) log log n _ .
(3.6) hjn_.sgp Tog 7 log (2"—1).
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As a particular case of (3. 5) for k=2, we have

=log 2,

. log 7*(n) log log n
3.7 hnm_.s?op g lo)g ng g
where v*(n) denotes the number of unitary divisors of ». By a unitary
divisor of #, we mean as usual, a divisor d of # such that (d, »/d)=1.
Let us now take f(#)=n if n is even and f(n)=n-+1 if » is odd.
Then F(z)=1**(n), where v**(n) is the number of bi-unitary divisors of
n (cf. [5; §1]). By a bi-unitary divisor of #, we mean a divisor d of »
such that (d, #/d)**=1, where the symbol (g, b)** stands for the great-
est unitary divisor of both ¢ and . In this case

sup M:log 2.
m m
Hence in virtue of the theorem, we have

log =**(n) log logn

log =log 2.

(3.8) lim sup

Similarly, we can establish the following results, by making use of
the theorem :

log =(n*) log log n =log (k+1),

3.9 llnm_‘sgp log 1

() k
(3. 10) lim sup E’g—’%g)nl"g—m=mg =(k), if k=2,

. ® log &, if k& is even,
(3.11) lim sup 108 £7(r") log log n_|
noe og 7 llog (k+1), if % is odd.
It should be remarked that the result (3.8) and the result (3.11) in
case k=2, were proved earlier by M. V. Subbarao and the first-named
author (cf. [4; Theorem 3]) using the method adopted by P. Erdés in

proving (3. 3).
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Authors’ remarks, added on July 18, 1975 at the time of proof
correction : While the present paper was in the course of publication,
the main theorem of this paper (in a more precise form) under yet
weaker assumption, namely f(n)=o(n/log n) has been published by
E. Heppner in Archiv der Mathematik 24 (1973), 63-66, under the title
“Die maximale Ordunng primzahl-unabhingiger multiplikativer Funk-
tionen”. However, our method of proof of the theorem is elementary
and does not make use of the ‘Prime Number Theorem’ with or without
an error term; where as E. Heppner’'s proof is not as elementary as
ours and moreover makes use of ‘Prime Number Theorem’ with an error
term. We also remark that a proof of the result (3. 2) has been publi-
shed as Theorem 3 by J. Knopfmacher in Proc. Amer. Math. Soc. 40
(1973), 373-377, in his paper under the title “A prime-divisor function”.
The main theorem with its proof as presented in this could be included
in any of the forthcoming text books on Number Theory.
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