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ON THE SUBGROUPS H OF A GROUP ¢ SUCH
THAT J(KH)KG D J(KG)

Dedicated to Professor KiiITI MORITA on his 60th birthday

KAORU MOTOSE and YASUsSHI NINOMIY A

Let K be a field of characteristic p >0, and G a finite group
whose order is divisible by p. J(KG) will denote the Jacobson radical
of the group algebra KG, and all modules under consideration will be
right modules. For a subset S of G, S will denote the sum of all
elements of S. If T is a subset of KG then I(T) (resp. »(T)) will
denote the left (resp. right) annihilator of 7T in KG.

We consider the following classes of subgroups of G: PB(G) = {HC
G| H contains a Sylow p-subgroup of G}, R(G) = {HC G| J(KG)C
J(KH)KG}, and €(G) = {HC G| the induced KG-module N¢ =
NQxx KG is completely reducible for every irreducible KH-module
N}. By [3], it is known that the class P(G) coincides with that of
subgroups H of G such that every KG-module is (G, H)-projective.

Recently, in his paper [2], D. C. Khatri gave some sufficient condi-
tions under which the above three classes are identical. In the present
paper, we shall prove that R(G)=E(G) without any restriction(Theorem
1) and that G is p-radical, namely, PB(G) = R(G) if and only if R(G)
contains a Sylow p-subgroup of G (Theorem 3). In §2, one will see
that the results in [2] can be easily derived from Theorem 3. Further-
more, in case (G is a Frobenius group and the order of its complement
is divisible by p, we shall show that G is p-radical if and only if so is
H (Theorem 8). Finally, as an application of Theorem 3, we shall
present the condition for a p-solvable, p-radical group to have no blocks
of p-defect 0 (Theorem 10).

1. At first, we shall prove the following which contains a result in
[2]:
Theorem 1. R(G) = C(G).

Proof. Let He= R(G), and N an irreducible KH-module. Then,
we have NJ(KG) = (RQ KG)J(KG) = RYJ(KG)CRQ (KHKG =
NJ(KH)Q KG= 0. Hence, % is completely reducible, and H=€(G).
Conversely, assume that H= €(G). Let G= U?., Hx;, x,=1, bea
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coset decomposition of G over H. Let a = X%, ax; be an arbitrary
element of J(KG), where ¢, € KH. If R is an arbitrary irreducible
KH-module then N°a =0, since N? is completely reducible. Therefore,
0=(N®1) a = 27 Na; @ x,.. This implies that Na, =0 for all 7, and
so a; € J(KH), Hence H & R(G).

Remark 1. Since there exists a splitting field for G which is finite
separable over K, KG/J(KG) is a separable algebra. Therefore, for
an arbitrary extension field F of K there holds J{(FG)=FJ(KG) and
J(KG) = J(FG) N KG. Now, let L be an arbitrary field of charac-
teristic p, and Z, the prime field of characteristic p. If H e R(G),
that is, J(KG) C J(KH)KG, then J(Z,G) = J(KG) N Z,GC J(KH)KG
nz,G = KJ(Z,H)z,GN Z,G = J(Z,H)Z,G. Therefore, J(LG) =
Lj(Z,G)c LJ(Z,H) Z,G = J(LH)LG. This means that R(G) is deter-
mined by G and p.

Khatri [2] proved that R(G) C PB(G) for any p-nilpotent group G.
However, as was stated in [6], we obtain the following :

Theorem 2. R(G) C B(G).

Proof. Let HE R(G). Then U = KH QxuKG is completely re-
ducible by Theorem 1. Let e = 23, H Rz, €, and ¢: A—> Ke
a KG-epimorphism defined by ga(?_.“?.lk,fl ® x) = X h ke (k€ K), where
G = U/ Hx; is a coset decomposition of G over H. Then Ker ¢ =
{Z};L,k(ﬁ @ 2| 21 k: = 0}. We can easily see that Ke is the unique
trivial K G-submodule of the completely reducible KG-module 2, and so
we have A = Ker ¢ D Ke. If p divides [G: H], then ¢ € Ker ¢. This
contradiction shows that [G: H] is prime to p, and hence H € P(G).

If B(G) coincides with R(G), G will be called a p-radical group.
(Any p'-group is p-radical by definition. )

Theorem 3. The following conditions are equivalent :

Q) G is pradical,

2) R(G) contains a Sylow p-subgroup of G.

() J(KG)=N.ec¢ J(KP*) KG, where P is a Sylow p-subgroup of

4) I(J(KG)) = 2.ecK GI/’\‘, where P is a Sylow p-subgroup of G.

Proof. (1) => (2)is trivial. (2)=>(3) : Let o, be the inner auto-
morphism of G by x € G, and ¢} the algebra automorphism of KG
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induced by e,. If R(G) contains a Sylow p-subgroup P of G then
J(KG)  J(KP)KG. Hence, J(KG)=ai(J(KG)) C a}(J(KP)KG) =
J(KP®)KG, whence it follows J(KG) C N.ee¢ J(KPY)KG. On the other
hand, N.;es J(KP?)KG is a nilpotent ideal of KG by [7, Prop. 2], and
so J(KG) = N.ec J(KP)KG. (3)=>(4): Since KG is a Frobenius
algebra, we have 7I(R) = R for any right ideal R of KG. Hence, v/v\e
have {(JKG)) = I(N;es J(KP)KG) = ee {J(KPHK G) = X6 KGP~.
(4)=> (2): Since I(J(KG)) D KGP, we have J(KG) = ri(JI(KG))C
7(KGP) = J(KP)KG. Hence, P = R(G). (3)=> (1): If H=PB(G) then
H contains a Sylow p-subgroup P of G Let G = UJ., Hx; be a coset
decomposition of G over H. Then, wehave J(KG) = N.,ecJ(KPHKG
C N/ (KP)K G = N = o= J(KP?)KHz) = 330 Mo J(KP))KH)x: =
(Nsex JIKP)KH)KGC J(KH)KG. Hence HER(G). By Theorem 2,
we have eventually B(G) = R(G).

Remark 2. In [1], W.E. Deskins asserted that if G is a p-nilpo-
tent group then R(G) contains a Sylow p-subgroup of G. But this is
false and a counter example is given by A.I. Saksonov [6]: Let p=3,
and G=SL (2,3). Then, G=<x, 3, z|x*=1, £*=3° yxy~'=g"?, 2*=
1, zxz™' =y, zyz ' = xy >. Let ¢, be the class sum of the cunjugate
class containing ¢ = G. Then, c,=x+2°+y+xy-2°y+2°y, c.=z+22"y
+zx*+2z4°y and ¢:=1—c¢,. Since ¢, is an idempotent, we have (c,+
c.—1)*=c¢+ci—1=0. Hence, ¢,+c,—1 is a central nilpotent element
of KG, and so an element of J(KG). However, it is not contained in
J(K<2>)KG. The above example shows also that an extention of a

p-radical group by a p-radical group is not always p-radical (cf. [2, p. 61]).

2. In virtue of Theorem 3, we can prove the results of Khatri [2]
without effort,

Theorem 4. ([2, Th. 2]). Let H be a normal subgroup of G.
Then, H isin P(G) if and only if H is in R(G).

Proof. If HEP(G) then G/H is a p'-group. Therefore, J(KG)=
J(KH) KG, and so HER(G). The converse is contained in Theorem 2.

Theorem 5. ([2, Th. 5]). Let N be a normal subgroup of G such
that G/N is a p'-group. Then, G is p-radical if and only if sois N.

Proof. If G is p-radical then J(KG)C J(KP)KG, where P is a
Sylow p-subgroupof G. Since G/N is a p’-group, N -contains P. There-
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fore, J(KN)=J(KG)NKNC J(KP)KGNKN=J(KP)KN. Hence, P
R(N), and so N is pradical by Theorem 3. Conversely, if N is
p-radical then J(KN)C J(KP)KN, where P is a Sylow p-subgroup of N.
Since G/N is a p'-group, P is a Sylow p-subgroup of G and J(KG) =
JIKN)KGC J(KP)KG. Hence, PER(G), and so G is p-radical again
by Theorem 3.

Theorem 6. If G is a p-radical group, and H a normal subgroup
of G, then G/H is p-radical.

Proof. Let v: G—— G/H be the natural homomorphism, and
v*: KG—> K(G/H) the algebra homomorphism induced by ». Since
G is p-radical, J(KG)C J(KP)KG, where P is a Sylow p-subgroup
of G. Hence, J(K(G/H))=»*(J(KG))C»*(J(KP)KG)=J(K(PH/H)) -
K(G/H), andso G/H is p-radical by Theorem 3.

Theorem 7. ([2, Th. 7]). Let M be a normal p-subgroup of G.
Then, Gis p-radical if and only if sois G/M.

Proof. If G/M is p-radical then J(K(G/M))C J(K(P/M)K(G/M),
where P is a Sylow p-subgroup of G. This together with J(K(G/M))
= J(KG)/J(KM)KG and J(K(P/M))K(G/M) = J(KP)KG/J(KM)KG
implies that J(KG) C J(KP)KG. Hence, G is p-radical by Theorem 3.
The converse is contained in Theorem 6.

The next contains [2, Th. 4].

Theorem 8. Let G be a Frobenius group with kernel N and com-
plement H.

(1) If p divides the order of N, then G is p-radical.

(2) Incase p divides the order of H, G ¢s p-radical if and only
tf sois H.

Proof. (1) If p divides the order of N, then any Sylow p-subgroup
of G is normal by Thompson’s theorem. Hence, G is p-radical by
Theorem 7. :

(2) By Theorem 6, it remains only to prove the if part. If H is
p-radical then J(KH) C J(KP)KH, where P is a Sylow p-subgroup of
H. Since J(KG)=J(KH)N by [4, Th.4], we have J(KG)C J(KP)KHN
C J(KP)KG, andso G is p-radical by Theorem 3.

Theorem 9. ([2, p.61]). Let G=H,x H,. Then, G is p-radical
if and only if so are H, and H,.
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Proof. If H, and H, are p-radical then J(KH, C J(KP)KH,,
where P, is a Sylow p-subgroup of H;. Since J(KG)= J(KH,)KH, -
J(KH,)KH, by [5 Th.], we have J(KG)C J(KP,)KG+ J(KP,)KG.
If we put P=P, X P, then J(KP;)CJ(KP). Hence, we have J(KG)
C J(KP)KG, and so G is p-radical by Theorem 3. The converse is
contained in Theorem 6.

3. For a moment let G be a permutation group on 2= {1, 2, ---, #n},
and G ,...,, be the stabilizer of the points {f,, &, ---, 4} C 2. Then
we have

'il

Lemma. If p divides the order of G.; for every {a, 3} C 2, then
C.ca KG &,)2 =0, and conversely.

Proof. Let G; = Ui~ G.; % be a coset decomposition of G; over
G.s. If p divides the order of every G, then ééa = @63 (x,+
Xyt x) =] Gap| éa(x1+x2+--- +%,)=0. For any x € G we have
2G4 = Gy, and so @ax@,qzo. Thus, we obtain (X.ec K G§Q)2= 0.
Conversely, if (3.0 KG @a)z =0 then 0= @,,CA?E = | éa,ﬁ] @a(x + x,+

o+ x,) for every {a, S} C 2. Since G,x N Gy = @ for i~7, »p
divides the order of every G.,,.

Theorem 10. Let G be a p-solvable and p-radical group. Then, G
has no blocks of p-defect 0 if and only if each pair of Sylow p-subgroups
of G has a non-trivial intersection.

Proof. We choose K a splitling field for G. Let ¢ be the sum
of all p-elements of G. Then, by [8, Th. 1] and [7, Cor. 4], ¢* is
equal to the sum of the block idempotents of p-defect 0 and I(J(KG))

A
= KGc. Since G is pradical, we have (J(KG)) = 3.,es KGP* by
Theorem 3, where P is a Sylow p-subgroup of G. Therefore, G has
no blocks of p-defect 0 if and only if (Z,.¢ KGP** = 0. Let G= U™,
Px;, x,=1, be a coset decomposition of G over P. Regarding G as
a permutation group on £ = {P, Px,, -, Px,}, we see that the stabiliz-
raN
er of Px, is x7' Px. Hence, by Lemma, (3l..¢ KGP?)? =0 if and
only if %' Px;Nx;' Px; 1 for 1 <4, j <n. This complets the proof.
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