Mathematical Journal of Okayama University

Volume 17, Issue 2

1974

Article 9

JUNE 1975

On the subgroups H of a group G such that $J(KH)KG \supset J(KG)$

Kaoru Motose* Yasushi Ninomiya[†]

Copyright ©1974 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Shinshu University

[†]Okayama University

ON THE SUBGROUPS H OF A GROUP G SUCH THAT $J(KH)KG \supset J(KG)$

Dedicated to Professor KIITI MORITA on his 60th birthday

KAORU MOTOSE and YASUSHI NINOMIYA

Let K be a field of characteristic p > 0, and G a finite group whose order is divisible by p. J(KG) will denote the Jacobson radical of the group algebra KG, and all modules under consideration will be right modules. For a subset S of G, \hat{S} will denote the sum of all elements of S. If T is a subset of KG then l(T) (resp. r(T)) will denote the left (resp. right) annihilator of T in KG.

We consider the following classes of subgroups of $G: \mathfrak{P}(G) = \{H \subset G \mid H \text{ contains a Sylow p-subgroup of } G\}$, $\mathfrak{R}(G) = \{H \subset G \mid J(KG) \subset J(KH)KG\}$, and $\mathfrak{C}(G) = \{H \subset G \mid \text{ the induced } KG\text{-module } \mathfrak{R}^G = \mathfrak{R} \otimes_{KH} KG \text{ is completely reducible for every irreducible KH-module $\mathfrak{R}\}$. By [3], it is known that the class $\mathfrak{P}(G)$ coincides with that of subgroups H of G such that every KG-module is G, G, G-projective.

Recently, in his paper [2], D. C. Khatri gave some sufficient conditions under which the above three classes are identical. In the present paper, we shall prove that $\Re(G) = \Im(G)$ without any restriction (Theorem 1) and that G is p-radical, namely, $\Re(G) = \Re(G)$ if and only if $\Re(G)$ contains a Sylow p-subgroup of G (Theorem 3). In §2, one will see that the results in [2] can be easily derived from Theorem 3. Furthermore, in case G is a Frobenius group and the order of its complement is divisible by p, we shall show that G is p-radical if and only if so is H (Theorem 8). Finally, as an application of Theorem 3, we shall present the condition for a p-solvable, p-radical group to have no blocks of p-defect 0 (Theorem 10).

1. At first, we shall prove the following which contains a result in [2]:

Theorem 1. $\Re(G) = \mathbb{G}(G)$.

Proof. Let $H \in \Re(G)$, and \Re an irreducible KH-module. Then, we have $\Re^{\sigma}J(KG) = (\Re \otimes KG)J(KG) = \Re \otimes J(KG) \subset \Re \otimes J(KH)KG = \Re J(KH) \otimes KG = 0$. Hence, \Re^{σ} is completely reducible, and $H \in \mathbb{C}(G)$. Conversely, assume that $H \in \mathbb{C}(G)$. Let $G = \bigcup_{i=1}^{n} Hx_i$, $x_1 = 1$, be a

172

coset decomposition of G over H. Let $\alpha = \sum_{i=1}^n a_i x_i$ be an arbitrary element of J(KG), where $a_i \in KH$. If $\mathfrak R$ is an arbitrary irreducible KH-module then $\mathfrak R^a \alpha = 0$, since $\mathfrak R^a$ is completely reducible. Therefore, $0 = (\mathfrak R \otimes 1) \alpha = \sum_{i=1}^n \mathfrak R a_i \otimes x_i$. This implies that $\mathfrak R a_i = 0$ for all i, and so $a_i \in J(KH)$. Hence $H \in \mathfrak R(G)$.

Remark 1. Since there exists a splitting field for G which is finite separable over K, KG/J(KG) is a separable algebra. Therefore, for an arbitrary extension field F of K there holds J(FG) = FJ(KG) and $J(KG) = J(FG) \cap KG$. Now, let L be an arbitrary field of characteristic p, and Z_p the prime field of characteristic p. If $H \in \Re(G)$, that is, $J(KG) \subset J(KH)KG$, then $J(Z_pG) = J(KG) \cap Z_pG \subset J(KH)KG$ $\cap Z_pG = KJ(Z_pH)Z_pG \cap Z_pG = J(Z_pH)Z_pG$. Therefore, $J(LG) = LJ(Z_pG) \subset LJ(Z_pH)Z_pG = J(LH)LG$. This means that $\Re(G)$ is determined by G and p.

Khatri [2] proved that $\Re(G) \subset \Re(G)$ for any p-nilpotent group G. However, as was stated in [6], we obtain the following:

Theorem 2. $\Re(G) \subset \Re(G)$.

Proof. Let $H \in \mathfrak{R}(G)$. Then $\mathfrak{A} = K\widehat{H} \otimes_{KH} KG$ is completely reducible by Theorem 1. Let $e = \sum_{i=1}^n \widehat{H} \otimes x_i \in \mathfrak{A}$, and $\varphi : \mathfrak{A} \longrightarrow Ke$ a KG-epimorphism defined by $\varphi(\sum_{i=1}^n k_i \widehat{H} \otimes x_i) = \sum_{i=1}^n k_i e \ (k_i \in K)$, where $G = \bigcup_{i=1}^n Hx_i$ is a coset decomposition of G over H. Then $\ker \varphi = \{\sum_{i=1}^n k_i \widehat{H} \otimes x_i \mid \sum_{i=1}^n k_i = 0\}$. We can easily see that Ke is the unique trivial KG-submodule of the completely reducible KG-module \mathfrak{A} , and so we have $\mathfrak{A} = Ker \varphi \oplus Ke$. If p divides [G: H], then $e \in \ker \varphi$. This contradiction shows that [G: H] is prime to p, and hence $H \in \mathfrak{P}(G)$.

If $\mathfrak{P}(G)$ coincides with $\mathfrak{R}(G)$, G will be called a *p-radical* group. (Any p'-group is p-radical by definition.)

Theorem 3. The following conditions are equivalent:

- (1) G is p-radical.
- (2) $\Re(G)$ contains a Sylow p-subgroup of G.
- (3) $J(KG) = \bigcap_{x \in G} J(KP^x) KG$, where P is a Sylow p-subgroup of G.
 - (4) $l(J(KG)) = \sum_{x \in G} KG\widehat{P}^x$, where P is a Sylow p-subgroup of G.

Proof. (1) \Longrightarrow (2) is trivial. (2) \Longrightarrow (3): Let σ_x be the inner automorphism of G by $x \in G$, and σ_x^* the algebra automorphism of KG

induced by σ_x . If $\Re(G)$ contains a Sylow p-subgroup P of G then $J(KG) \subset J(KP)KG$. Hence, $J(KG) = \sigma_x^*(J(KG)) \subset \sigma_x^*(J(KP)KG) = J(KP^x)KG$, whence it follows $J(KG) \subset \bigcap_{x \in G} J(KP^x)KG$. On the other hand, $\bigcap_{x \in G} J(KP^x)KG$ is a nilpotent ideal of KG by [7, Prop. 2], and so $J(KG) = \bigcap_{x \in G} J(KP^x)KG$. (3) \Longrightarrow (4): Since KG is a Frobenius algebra, we have rl(R) = R for any right ideal R of KG. Hence, we have $l(JKG)) = l(\bigcap_{x \in G} J(KP^x)KG) = \sum_{x \in G} l(J(KP^x)KG) = \sum_{x \in G} KGP^x$. (4) \Longrightarrow (2): Since $l(J(KG)) \supset KGP$, we have $J(KG) = rl(J(KG)) \subset r(KGP) = J(KP)KG$. Hence, $P \in \Re(G)$. (3) \Longrightarrow (1): If $H \in \Re(G)$ then H contains a Sylow p-subgroup P of G. Let $G = \bigcup_{i=1}^n Hx_i$ be a coset decomposition of G over H. Then, we have $J(KG) = \bigcap_{x \in G} J(KP^x)KG \subset \bigcap_{x \in H} J(KP^x)KG \subseteq \bigcap_{x \in H} J(KP^x)KG \subseteq I(KH)KG$. Hence $H \in \Re(G)$. By Theorem 2, we have eventually $\Re(G) = \Re(G)$.

Remark 2. In [1], W. E. Deskins asserted that if G is a p-nilpotent group then $\Re(G)$ contains a Sylow p-subgroup of G. But this is false and a counter example is given by A. I. Saksonov [6]: Let p=3, and G=SL (2, 3). Then, $G=\langle x,y,z|x^4=1,x^2=y^2,yxy^{-1}=x^{-1},z^3=1$, $zxz^{-1}=y$, $zyz^{-1}=xy$. Let c_a be the class sum of the cunjugate class containing $a\in G$. Then, $c_x=x+x^3+y+xy+x^2y+x^3y$, $c_z=z+zx^2y+zx^3+zx^3y$ and $c_z^3=1-c_x$. Since c_x is an idempotent, we have $(c_x+c_z-1)^3=c_x^3+c_z^3-1=0$. Hence, c_x+c_z-1 is a central nilpotent element of KG, and so an element of J(KG). However, it is not contained in $J(K \leqslant z)KG$. The above example shows also that an extention of a p-radical group by a p-radical group is not always p-radical (cf. [2, p. 61]).

2. In virtue of Theorem 3, we can prove the results of Khatri [2] without effort.

Theorem 4. ([2, Th. 2]). Let H be a normal subgroup of G. Then, H is in $\mathfrak{P}(G)$ if and only if H is in $\mathfrak{R}(G)$.

Proof. If $H \in \mathfrak{P}(G)$ then G/H is a p'-group. Therefore, $J(KG) = J(KH) \ KG$, and so $H \in \mathfrak{R}(G)$. The converse is contained in Theorem 2.

Theorem 5. ([2, Th. 5]). Let N be a normal subgroup of G such that G/N is a p'-group. Then, G is p-radical if and only if so is N.

Proof. If G is p-radical then $J(KG) \subset J(KP)KG$, where P is a Sylow p-subgroup of G. Since G/N is a p'-group, N-contains P. There-

174

fore, $J(KN)=J(KG)\cap KN\subset J(KP)KG\cap KN=J(KP)KN$. Hence, $P\in\Re(N)$, and so N is p-radical by Theorem 3. Conversely, if N is p-radical then $J(KN)\subset J(KP)KN$, where P is a Sylow p-subgroup of N. Since G/N is a p'-group, P is a Sylow p-subgroup of G and $J(KG)=J(KN)KG\subset J(KP)KG$. Hence, $P\in\Re(G)$, and so G is p-radical again by Theorem 3.

Theorem 6. If G is a p-radical group, and H a normal subgroup of G, then G/H is p-radical.

Proof. Let $\nu: G \longrightarrow G/H$ be the natural homomorphism, and $\nu^*: KG \longrightarrow K(G/H)$ the algebra homomorphism induced by ν . Since G is p-radical, $J(KG) \subset J(KP)KG$, where P is a Sylow p-subgroup of G. Hence, $J(K(G/H)) = \nu^*(J(KG)) \subset \nu^*(J(KP)KG) = J(K(PH/H)) \cdot K(G/H)$, and so G/H is p-radical by Theorem 3.

Theorem 7. ([2, Th. 7]). Let M be a normal p-subgroup of G. Then, G is p-radical if and only if so is G/M.

Proof. If G/M is p-radical then $J(K(G/M)) \subset J(K(P/M))K(G/M)$, where P is a Sylow p-subgroup of G. This together with $J(K(G/M)) \cong J(KG)/J(KM)KG$ and $J(K(P/M))K(G/M) \cong J(KP)KG/J(KM)KG$ implies that $J(KG) \subset J(KP)KG$. Hence, G is p-radical by Theorem 3. The converse is contained in Theorem 6.

The next contains [2, Th. 4].

Theorem 8. Let G be a Frobenius group with kernel N and complement H.

- (1) If p divides the order of N, then G is p-radical.
- (2) In case p divides the order of H, G is p-radical if and only if so is H.

Proof. (1) If p divides the order of N, then any Sylow p-subgroup of G is normal by Thompson's theorem. Hence, G is p-radical by Theorem 7.

(2) By Theorem 6, it remains only to prove the if part. If H is p-radical then $J(KH) \subset J(KP)KH$, where P is a Sylow p-subgroup of H. Since $J(KG) = J(KH)\hat{N}$ by [4, Th. 4], we have $J(KG) \subset J(KP)KH\hat{N} \subset J(KP)KG$, and so G is p-radical by Theorem 3.

Theorem 9. ([2, p. 61]). Let $G = H_1 \times H_2$. Then, G is p-radical if and only if so are H_1 and H_2 .

SUBGROUPS H OF G SUCH THAT $J(KH)KG \supset J(KG)$

175

Proof. If H_1 and H_2 are p-radical then $J(KH_1) \subset J(KP_1)KH_1$, where P_1 is a Sylow p-subgroup of H_1 . Since $J(KG) = J(KH_1)KH_2 + J(KH_2)KH_1$ by [5, Th.], we have $J(KG) \subset J(KP_1)KG + J(KP_2)KG$. If we put $P = P_1 \times P_2$ then $J(KP_1) \subset J(KP)$. Hence, we have $J(KG) \subset J(KP)KG$, and so G is p-radical by Theorem 3. The converse is contained in Theorem 6.

3. For a moment let G be a permutation group on $\mathcal{Q} = \{1, 2, \dots, n\}$, and G_{i_1, i_2, \dots, i_l} be the stabilizer of the points $\{i_1, i_2, \dots, i_l\} \subset \mathcal{Q}$. Then we have

Lemma. If p divides the order of $G_{\alpha,\beta}$ for every $\{\alpha,\beta\} \subset \Omega$, then $(\sum_{\alpha \in \Omega} KG \hat{G}_{\alpha})^2 = 0$, and conversely.

Proof. Let $G_{\beta} = \bigcup_{i=1}^{s} G_{\alpha,\beta} x_{i}$ be a coset decomposition of G_{β} over $G_{\alpha,\beta}$. If p divides the order of every $G_{\alpha,\beta}$, then $\hat{G}_{\alpha}\hat{G}_{\beta} = \hat{G}_{\alpha}\hat{G}_{\alpha,\beta} (x_{1} + x_{2} + \cdots + x_{s}) = 0$. For any $x \in G$ we have $xG_{\beta}x^{-1} = G_{x(\beta)}$, and so $\hat{G}_{\alpha}x\hat{G}_{\beta} = 0$. Thus, we obtain $(\sum_{\alpha \in \Omega} KG\hat{G}_{\alpha})^{2} = 0$. Conversely, if $(\sum_{\alpha \in \Omega} KG\hat{G}_{\alpha})^{2} = 0$ then $0 = \hat{G}_{\alpha}\hat{G}_{\beta} = |\hat{G}_{\alpha,\beta}|\hat{G}_{\alpha}(x + x_{2} + \cdots + x_{s})$ for every $\{\alpha, \beta\} \subset \Omega$. Since $G_{\alpha}x_{i} \cap G_{\alpha}x_{j} = \emptyset$ for $i \neq j$, p divides the order of every $G_{\alpha,\beta}$.

Theorem 10. Let G be a p-solvable and p-radical group. Then, G has no blocks of p-defect 0 if and only if each pair of Sylow p-subgroups of G has a non-trivial intersection.

Proof. We choose K a splitling field for G. Let c be the sum of all p-elements of G. Then, by [8, Th. 1] and [7, Cor. 4], c^2 is equal to the sum of the block idempotents of p-defect 0 and l(J(KG)) = KGc. Since G is p-radical, we have $l(J(KG)) = \sum_{x \in G} KG\widehat{P}^x$ by Theorem 3, where P is a Sylow p-subgroup of G. Therefore, G has no blocks of p-defect 0 if and only if $(\sum_{x \in G} KG\widehat{P}^x)^2 = 0$. Let $G = \bigcup_{i=1}^n Px_i, x_i = 1$, be a coset decomposition of G over G. Regarding G as a permutation group on G0 = G1, G2, G3, we see that the stabilizer of G3 is G4. Hence, by Lemma, G5 if and only if G6. This complets the proof.

REFERENCES

[1] W.E. DESKINS: On the radical of a group algebra, Pacific J. Math. 8(1958), 693-697.

K. MOTOSE and Y. NINOMIYA

176

- [2] D.C. Khatri: Relative projectivity, the radical and completely reducibility in modular group algebras, Trans. Amer. Math. Soc. 186 (1973), 51-63.
- [3] D.C. Khatri and I. Sinha: Projective parings in groups II, Math. Japon. 14 (1969), 127—135.
- [4] K. Motose: On radicals of group rings of Frobenius groups, Hokkaido Math. J. 3 (1974), 23-34.
- [5] K. Motose: On C. Loncour's results, Proc. Japan Acad. 50 (1974), 570-571.
- [6] A. I. SAKSONOV: On the decomposition of a permutation group over a characteristic field, Dokl. Akad. Nauk SSSR 198 (1971), 293-296; Soviet Math. Dokl. 12 (1971), 786 -790.
- [7] Y. TSUSHIMA: On the annihilator ideals of the radical of a group algebra, Osaka J. Math. 8 (1971), 91—97.
- [8] Y. TSUSHIMA: On the blocks of defect zero, Nagoya Math. J. 44 (1971), 57-59.

SHINSHU UNIVERSITY
OKAYAMA UNIVERSITY

(Received August 30, 1974)

http://escholarship.lib.okayama-u.ac.jp/mjou/vol17/iss2/9

6