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ON DECOMPOSITIONS INTO SIMPLE RINGS

Dedicated to Professor Kiiti Morita on the occasion
of his 60th birthday

Hisao TOMINAGA

It is the purpose of this paper to give the conditions for a (non-zero)
ring to be a direct sum of complete rings of linear transformations of
finite rank of vector spaces over division rings, which are motivated by
the results in [4], [5] and [6] (Theorem 1). Moreover, we shall give
several equivalent conditions for a ring to be a direct sum of division
rings (Theorem 2).

A ring R is defined to be left (resp. right) s-unital if RI=1I (resp.
IR=1) for every left (resp. right) ideal I of R. Needless to say, if R is
left s-unital then the left R-module zR is unital (or the right R-module
Ry is faithful). Every ring with left identity is left s-unital and every
regular ring is left and right s-unital.

Lemma 1. Let R be a left s-unital ring.

(a) If A is a proper (two-sided) ideal of R then A is contained in a
maxtmal left ideal, in particular, R contains a maximal left ideal.

(b) If every maximal left ideal of R is a direct summand of xR then
zR is completely reducible, and conversely.

Proof. (a) let » be an arbitrary element of R not contained in A.
Then, ex=u with some e=R, and by Zorn’s lemma there exists a maxi-
mal member M in the family of left ideals B of R with B2 {rER|xuc A}
(2A) and Be. One will easily see that M is a maximal left ideal of
R.

(b) Suppose that the socle S of zR does not coincide with R. Then,
by (a) the ideal Sis contained in some maximal left ideal M, and by
hypothesis R=M (D N with a minimal left ideal N. However, thisis a
contradiction.

Lemma 2. The following conditions are equivalent :

(1) R is left non-singular (i.e., the left singular ideal of R is 0).

(@) =R is unital and every left annihilator is closed in xR i. e., every
left annihilator has no proper essential extension in zR).

Proof. Let Z be the left singular ideal of R. If Z=0 then R is
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obviously unital. Let T be an arbitrary subset of R. If J is a left ideal

of R in which the left annihilator /(T) is essential, then for every b J

the left ideal {xER|xb=!(T)} is essential. Hence, bTCZ =0, namely,

bel(T). This proves that /(T)=_]. The converse will be almost evident.
Now, we can state our main theorem.

Theorem 1. The following conditions are equivalent :

(1) R=D,es R\, where R, is the complete ring of linear transforma-
tions of finite rank of a vector space over a division ring.

(2) R is aleft s-unital semi-prime ring and every left ideal of R is
a left annihilator.

() R is a regular ring and every left ideal of R is a left an-
nihilator.

Proof. (3)=>(2) is obvious, and (1) =>(3) is a direct consequence
of [3, Theorem IV. 16. 3].

(2)=(1). We shall prove first that the left singular ideal Z of R
is 0. To see this, we assume Z = 0. As is well-known, there exists a
left ideal I of R such that ZN I=0 and Z+ I is essential. By hypothesis,
Z @ I=UT) with a subset T of R. If T=0then R=Z @ I. Since I=
RI=Z+DNI=ZI+1*_-Z @& I, we obtain ZI=0. Then (IZ)’=0, so
that IZ=0, which implies that I is an ideal of R. By Lemma 1 (a),
there exists then a maximal left ideal M containing I. Again by hypoth-
esis, M = I(u) with some « in the right annihilator »(I) = Z. Noting
here that Ru is isomorphic to R/M as left R-module, R« is a minimal
left ideal and generated by some non-zero idempotent e € Z. But, this
yields a contradiction ReN/(e)=0. Hence, T 0. Now, let ¢ be an
arbitrary non-zero element of T. Then, recalling that teZ by Z P IC
(), one will readily see that (R#)’CZ¢=0. This contradiction shows
that Z=0. Hence, by Lemma 2, R has no proper essential left ideals.
Accordingly, every maximal left ideal is a direct summand of R, and
hence zR is completely reducible by Lemma 1 (b). Now, let R, be an
arbitrary homogeneous component of R. Then, as is well-known, R, is a
(non-trivial) simple ring and every left ideal of R, is a left annihilator
in R,. Hence, again by [3, Theorem IV. 16. 3], R, is the complete ring
of linear transformations of finite rank of a vector space over a division
ring.

Combining Theorem 1 with [3, Theorem IV. 16. 4], we obtain at
once

Corollary 1. The following conditions are equivalent :
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(1) R is adirect sum of artinian simple rings.

(2) R is aleft (or right) s-unital semi-prime ring such that every left
ideal is a left annihilator and every right ideal is a right annihilator.

(3) R is a regular ring such that every left ideal is a left annihilator
and every right ideal is a right annihilator.

The next contains all the results in [4, § 5], [5, Theorem II] and
[6].

Corollary 2. Let R be a ring with 1. Then the following conditions
are equivalent :

(1) R is artinian semi-simple.

(2) Every mazimal left ideal of R is a direct summand of zR.

(3) R isleft non-singular and every essential left ideal of R is a left
annihilator.

(4) R is semi-prime and every essential left ideal of R is a left
annihilator.

(5) R is a regular ring and every essential left ideal of R is a left
annihilator.

(6) R is semi-prime and every left ideal of R is a left annihilator.

(7) R has no proper essential left ideals.

2"N—(7") The left-right analogues of (2)—(7).

Proof. Obviously, (6)=>(4), (5)=>(4), and (1)=>(5), (6). Moreover,
(2)=(1) is contained in Lemma 1 (b), and (3)=(7)=(2) is easy by
Lemma 2. Finally, the argument used in the proof of Theorem 1 will
enables us to see that (4)=>(3).

A ring without non-zero nilpotent elements is called a reduced ring.
If R is a reduced ring then the left annihilator /(T) of a sukset T of R
coincides with #(7) and every idempotent in R is central.

The next is [2, Lemma 2], and is essentially due to R. Yue Chi
Ming.

Lemma 3. The following conditions are equivalent :

(1) R is a left non-singular ring and every closed left ideal of R is
two-sided.

(2) R is areduced ring and 1P I(I) is essential in xR for every left
ideal I of R.

(3) R is a reduced ring and every closed left ideal of R is the
annthilator of a left ideal.

Proof. For the sake of completeness, we shall give here the proof.
(1)=>(2). Suppcse there exists a non-zero element & with &* = Q.
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Then, there exists a non-zero left ideal K which is maximal with re-
spect to /(b)) N K=0. Since K is closed, K is an ideal by hypothesis. Thus
KbZ KNIb)=0, which implies a contradiction KC/(4). Hence, Ris a
reduced ring and I'N/(I)=0 for every left ideal I. Now, let L be a left
ideal of R containing /() which is maximal with respect to INL=0.
Since the closed left ideal L is an ideal, we have then LZI(Z). This
proves that I+/(I)=TI+L is essential in zR.

(2)=(3). Let J be a closed left ideal. If JC/(»(J)), then there
exists a non-zero left subideal K of /(r(J)) such that /N K=0. We have
then {())=r()=r((x(UNSHK D NSr())=I(J), that is, {(J)=UKD)).
But, this yields a contradiction (KB J) DK D J)=KD JDIJ)DJ
® {(J). Hence, J=I(r(])). :

(3)=>(1). Let b be an arbitrary element of the left singular ideal of
R. Since RbN I(b)= RbN »(b) =0, bhas to be 0.

Finally, we shall extremely specialize Theorem 1.

Theorem 2. The following conditions are equivalent :

(1) R is a direct sum of division rings.

(2) R is a left s-unital, reduced ring without proper essential left
ideals.

(3) R is a left s-unital, reduced ring and every maximal left ideal
s a direct summand of zR.

(4) R is aleft s-unital, reduced ring and every maximal left ideal
has a non-zero annihilator.

(5) R is a strongly regular ring and every maximal left ideal has a
non-zero annthilator.

(6) R is aleft V-ring (i.e., R®*=R and every left ideal is an intersec-
tion of maximal left ideals) and every maximal left ideal is the left an-
nihilator of a left ideal.

(7) R is a reduced ring and every left ideal is an annshilator.

(8) R is a reduced ring and I({(I))=I for every left ideal I of R.

9) INJ=1IJ and I((1))=1 for all left ideals I, ] of R.

(10) R is a left non-singular ring and every left ideal is the left an-
nihilator of a left ideal.

(11) R is aregular ring and every left ideal is the left annihilator
of aleft ideal.

(12) Ewvery left ideal of R is the left annihilator of a left ideal and
idempotent.

(2)—(12") The left-right analogues of (2)—(12).

Proof. We shall give the proof without making use of Theorem 1.
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Obviously, (1)=>(2)=(3), (5)=>(4), and (8)=>(7). By [1, Theorem],
R is a strongly regular ring if and only if R is a left V-ring and a left
duo ring (i. e., a ring having no strictly left-sided ideals). Hence, (1)=
(6)=>(11)=(10). Moreover, [1, Theorem] also enables us to see that
(11)<=>(12) and (1)=>(9)=(8).

(3)=(1). By Lemma 1 (b), xR is completely reducible. Since every
minimal left ideal in the reduced ring R is generated by a central idem-
potent, it is a two-sided ideal, and itself a division ring.

(4)=>(3). If M is a maximal left ideal then /(M) 5= 0 and MNI(M)=
0, so that R=M @ I(M).

(7)=(10). Let I be an arbitrary left ideal, and I=/(T) with a subset
T of R. Let T' be the left ideal generated by 7. Then, I=#(T)=r(T)
= [(T"), and by Lemma 3 R is left non-singular.

(10)=>(5). Since R is a left duo ring, by Lemmas 2 and 3 we see
that R is a reduced ring and R=I@ I(I) (and I=I((1))) for every left
ideal I of R. Now, let @ be an arbitrary element of R. Then, consider-
ing I as the left ideal generated by «¢°, we have a=u-+v, u€1, v=I(I).
Since #*+v' =g’ I, it follows then v°=0, and hence v=0. This proves
that ¢ and R is strongly regular.
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