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OPERATOR AVERAGES FOR SUBSEQUENCES

RYOTARO SATO

1. Introduction. In this paper we shall show that if T is a (not
necessarily positive) Dunford-Schwartz operator on L, of a o-finite measure
space and &, k,, -+ is a uniform sequence (in the sense of Brunel and Keane
[1]), then the ergodic average
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converges almost everywhere for every f &L, with 1 <<p<oco. Let us then
write

f* lun Z T* f almost everywhere.

2 B i=1

We next show that if 1<p<Coo and f& L, then
lim | =33 T%f = £*1l,= 0.
n i=1

Let (2, <%, m) be a o-finite measure space and T a linear contraction
on L,(Q)=L,(2, £&,m), i.e. T is a linear operator on L,(Q) such that
(T <1. We call T a Dunford-Schwartz operator if T satisfies, in addi-
tion, that ||Tf!|.<||f|l. for every fEL,(2)NL.(2). By the Riesz con-
vexity theorem, the Dunford-Schwartz operator 7 is uniquely extended to a
linear contraction on each L,(2) with 1<<p<Too. It follows from [6] that
if T is a positive Dunford-Schwartz operator on L,(2) and k,, k,, ---is a
uniform sequence, then the average

1 & K
7; Tif((v>

converges almost everywhere for every f=L;(2), and thus also for every
FEL,(Q) with 1 <p<< oo, because the inequalities
B, A
sup 2 L= (see e. g. [1])

and
lsap 1L 33 T ll, < (sup “)usup z:Tflflnp

-<loo (see e.g. [3], p.678)
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enable us to apply Banach’s convergence theorem ([3], p. 332) to obtain
the latter. But so far as we know it has not been known whether the posi-
tivity of T is necessary in the above result. Therefore it would be interest-
ing to investigate this point, and that is the starting point for the work in
this paper., We shall see, as mentioned in the beginning of this section,
that the positivity of T is not necessary.

2. Preliminaries. Let X be a compact Hausdorff space and C(X) the
Banach space of all continuous complex functions on X with the uniform
norm || fil.=sup {|f(x)| : x=X}. Suppose ¢ is a continuous mapping of
X into itself. Since X is compact, there exists a unique uniformity 1 on
X compatible with the topology of X (see e. g. [5], p.188). We will assume,
throughout this paper, that the powers ¢", #=>0, form an equicontinuous
family with respect to U1, i.e. for every x =X and all U €1 there exists a
neighborhood W of x such that (¢"x, ¢"y)E U for every y& W and »=>0.

Put for f= C(X) and n>1

F@=E8 1w @eD.

Since X is compact and so f = C(X) is uniformly continuous with respect to
11, the subset {f,:n>1} C C(X) is equicontinuous. Thus by the Arzela-
Ascoli theorem ([3], p.266), {f.: #=1} is relatively compact, and
therefore by a mean ergodic theorem (see e. g. [3], p.661), there exists
F. € C(X) such that

lim || fo —fu [l = .

Since the dual space of C(X) is the space of all bounded regular
measures on (X, £2°), where 2° stands for the ¢-field of all Borel subsets
of X, it may be readily seen that f.. is a constant function for each f€ C(X)
if and only if ¢ leaves invariant a unique regular probability measure on
(X, £°) which we will denote by . The system (X, ¢) is therefore called
uniquely ergodic if f. is a constant function for each fEC(X). Since
Folpx)=Ff.(x) for all x EX, (X, ¢) is uniquely ergodic whenever ¢ leaves no
nontrivial closed subset of X invariant. If the system (X, 27, u, @) is
uniquely ergodic, then we get

fulw)= | fudp=tim 7, du= {7 au
for every fEC(X) andall x€X. I (X, 27, u, ¢) is uniquely ergodic

and supp p=X, then (X, 2, u,¢) is called strictly ergodic.
Since ¢ leaves p invarint, it follows that if we set Y =supp p then
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¢YC Y, and thus the subsystem (Y, ¢|y) is strictly ergodic.

The following definition of a uniform sequence is somewhat more
general than that due to Brunel and Keane [1]. They considered a compact
metric space and a homeomorphism of the space onto itself to define a uni-
form sequence. :

Definition, A sequence k;, k,,--- of nonnegative integers is called
uniform if there exist

(i) a strictly ergodic system (X, -2, u, ¢) (in the above sense),

(ii) a subset Y of X such that YE 2° and u(Y)>0=u(dY), where
¢Y denotes the boundary of ¥, and

(iii) a point yE X such that

ki=min {i>0:¢yEY]}
and
k,=min {{>k,_,: ¢'yE Y]} (n > 2).

Lemma 1. If &y, ks, -+ is a uniform sequence generated by y and Y as
above, then

oon
hin E=}L(Y).

Proof. Since p(0Y)=0 and p is regular, for any ¢ >0 there exist a
compact subset F and an open subset G of X such that FCY°C Y~ CG and
#(G—F) <<e, where Y° and Y~ denote, respectively, the interior and
closure of ¥. Choose f and g in C(X) so that

Ip<f<1, <g<ls.

Then we have
n—1 ) . . n—1 .
if dp = li7{n~1£ Eﬂ f(go’y)éhmnlnf % ,;0 1:(¢'y)
< lim inf 2 < lim sup —
n kn n kn
n—1
<lim % 2 gle'y) = Sg dp,
and hence
0<Ilim sup 7~ — lim inf 7 < S(g—f) dp <<e.

Thus the lemma follows, since 0 << u(¥Y)— Sf du << e and ¢ is arbitrary.
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Lemma 2. If ky, ks, - is a uniform sequence generated by y and Y
as above, then for any « >0 there exist open subsets Y, Y, and W of X

such that
(i) Y,cycy,, F'(Yz_ Y1)<Eand M(3Y1)=0=I’J(ayz),
(ii) y= W and, for every x= W and all i = 0,

1i(g'x) < 1x(p'y) < 1 (¢'x).
Proof. Let f be the function in the proof of Lemma 1. Since {x:f(x)

=a}, 0<<a<C1, is an uncountable, mutually disjoint collection, there is
0<<a<<1 such that the open set ¥, = {x: f(x) >«} satisfies

FCY,CY® and p(@Y)<up({x:f(x)=a})=0.

On the other hand, since f is uniformly continuous with respect to the
uniformity 1 on X and the family {¢": >0} is equicontinuous with respect
to 11 (by assumption), there exists a neighborhood W, of y such that ‘

| Flx)—flo)| <«

for every xE W, and all i=>0. Therefore if ¢’xEY;, i.e. f(p'x) >a for
x & W, and i >0, then f(¢'y)>>0 and thus ¢’y€ Y°C Y. This implies that

1y(¢'x) < Lile'y)  (xEW,, i=0).

Similarly, we see that there exist an open subset Y, of X and a neigh-
borhood W, of y such that YC Y- C ¥,CG, p(dY,)=0 and, for every xE W,
and all >0,

1x(e'y) < 1, (¢'x).
Therefore, putting W= W, W,, the lemma follows.
3. Ergodic theorems.

Theorem 1. Let (2, &, m) be a o-finite measure space and T a
Dunford-Schwartz operator on L.(2). If ki, ks, - is a uniform sequence
then for any FE L (Q), with 1<p< oo, the limit

Fr@)=1lim 152 T f(w)
n i=1
exists and is finite a. e. on L.

Proof. Let (X, 2, u, ¢) and y, Y be the apparatus connected with
this sequence. S will denote the operator on L,(X) induced by ¢, i.e.

- (Sh)(x)=h(px) (xz€X)
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for all A= L(X). Since ¢ leaves p invariant, S is a Dunford-Schwartz
operator on L,(X), and thus taking (2/, <2/, m’) to be the direct product
of (2, “Z, m)and (X, 2, p)and T’ the tensor product of T and S, it
follows from a direct calculation and an approximation afgument that 77 is
a Dunford-Schwartz operator on L,(2’).

First of all we shall consider the case fe L,(Q)N L.(¥). Without loss
of generality we may assume here that |f| <<l a.e. on £. Let e>0be
given, and choose open subsets Y;, Y, and W of X satisfying conditions (i)
and (ii) in Lemma 2. Define

glw, 1) = f(w)lyx),
&1(w, x) = flo)ly(),
and

8w, x) = flw)l;(x).

Since g, and g, are in L,(2")N L.(2"), by the Dunford-Schwartz individual
ergodic theorem ([3], p. 675) we see that the limits

n~1 n-—-1
lim~1— > T"gw, x) and lim LZ T gyw, x)
n n i=0 n n i=o

exist and are finite a. e. on £’. Thus, by the fact that x(W)>0 (which
is clear, since W is a nonempty open subset of X and supp x=X) we may
apply Fubini’s theorem to infer that there exists a point xE W at which the
limit

. 1 n—1 : . . 1 n—1 i

hrl;ﬂ n §, Tf(tu)l,-1(¢‘x) = 111“ 'y § T g\(w, x)

exists and is finite m-a. e. on £,
On the other hand, since p(0Y;)=0=p(0Y,), we see, as in the proof
of Lemma 1, that

lim % g Liy(¢'x) = u(Y7)
and
. 1 n—1 .
lim - 33 1y (¢'x) = u(Y>).
Since 0< u(Y,)— u(Y7)<<e and

Lyl ) <1 {u9)<lyfpx)  (=0),

then there exists a positive integer N such that

a—1
n=>N implies Og% go (L") — 1, (o'x)] <e.
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Therefore for all #2>N and almost all «&E 2 we have
L 1519 - LT T,
< L5 175 [(p%) —~1(s'n)]

n—-1 .
S“}; 2 [Lrle'y) —1nlg'n)] <e,

n—-1
which shows that for almost all wE £ the sequence {712—;;; Tf()ly(@'y)} mms

is a Cauchy sequence ; and thus the limit

hm = 2 Tf (w)1p(g'y) = hm E + 1 T" Flw)
exists and is finite a.e. on . Now, by Lemma 1, we observe that the
limit A ‘
mli T""'f(w)=lim[k"+1 . "f(m)]
LT n n i=1

= u(¥)"! lim %é % f (o)

exists and is finite a. e, on £

To complete the proof we intend to apply Banach's convergence theorem
([3], p.332). To do this, let = denote the linear modulus of 7 in the sense
of Chacon and Krengel [2]. Thus ~ is a positive Dunford-Schwartz operator
on L,(2) satisfying

| T < f a.e. on Y

for every f&€ L,(£) with 1<< p <o and all i{=0. Then for each f= L,(2)
with 1 << p < oo we have

sup |- L5 7s f(w) < [sup ks +1] [sup L5 111 (w)],

n i=o 21 N i=o

and (see e. g. [3], VIIL 6 or [4], Chap.2) supin 2| f|{w) <<cc a.e. on
£ in particular, if 1<<p <<oo and f EL,,(.Q) then

nsup—”' *|f|<w)n,,<—— £l

This enables us to apply Banach’'s convergence theorem to complete the
proof, because L,(2)N L.(2) is dense in each L,(£) with 1 <p < oo,

Using the above-given argumenf and Lebesgue’s dominated convergence
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theorem, we have at once the following mean ergodic theorem.

Theorem 2. Let (£, 57, m) be a o-finite measure space and T a
Dunford-Schwartz operator on Li(Q). If ky, ky, - is a uniform sequence,

1<<p<<ee and f= L,(2), then the sequence {—}Z—Zl T*t f}r., converges in
L (2) in the norm topology.

4. A generalization. For subsets A and B of the nonnegative integers,
let | A| denote the cardinal number of A and let AA B denote the symmetric
difference of A and B. We will call a strictly increasing sequence %, &,

--of nonnegative integers almost uniform if there exists a uniform sequence
k, k), -+ such that

fim 1401, o n=1} 0 ke i1} A RS 21 ]
i ’ n
In this section we remark that, by a routine modification of the argu-
ment given in the preceding section, Theorems 1 and 2 can be generalized

to almost uniform sequences. That is, we have the following

Theorem 3. Let (2, <%, m) be a o-finite measure space and T a
Dunford-Schwartz operator on L,(2). If ky, ks, - is an almost uniform
sequence then for any f& L,(9), with 1< p <Coo, the limit

£ (w) = 1i£n-}7 ;1 T f{w)

exists and is finite a.e. on 2. In particular, if 1<<p < oo and fEL,(&)
then f- = L,(2) and

mli L 3 7% f —£7|l,=0.

" n i=1
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