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Throughout the present paper, % will be a fixed field. All vector
spaces are k-vector spaces and linear maps are k-linear. Unadorned @
means ;. As for notations and terminologies used here, we follow [4]
and [5]. '

- Let A and C be coalgebras, and ¢: A—> C a coalgebra map. If
M is an A-comodule, then M is a C-comodule via ¢. Let M be an A-A-
bicomodule. A C-comodule map f: M ——> A is called a C-coderivation if

daf=Q00Np + (fODp": M—> ALlA,

where p~ (resp. p') is the left (resp. right) A-comodule structure map of M.
A C-coderivation f is an inner C-coderivation if there exists a C-comodule
map 7: M—— C such that

f=Q0er)p” — (a7 T Dp".

This is a generalization of the notion of a k-coderivation in the sense of Doi
[2]. A C-coderivation t: M——> A is called a coextension of a k-coderi-
vation 4: M —> C if ¢ =34,

In what follows, we assume always that C is a cocommutative coal-
gebra, A is a C-coalgebra (i. e., a coalgebra over C via ¢ ([4, p. 127])),
and that M is an A-A-bicomodule.

One of the purposes of this paper is to extend Doi’s theorem on
coseparable coalgebras [2, Th. 3] to coseparable C-coalgebras. We prove
also the following: If A isa C-injective coalgebra and if H*N, A) =0
for all A-A-bicomodules N (in the sense of Jonah [3, §4]), then for any
k-coderivation 4: M —> C, there exists a C-coderivation 7: M—— A
which is a coextension of 4. Note thatif A is a coseparable coalgebra,
then H*(N, A) = 0.

1. Coseparable coalgebras. In thissection, we extend Doi’s theorem
on coseparable coalgebras [2, Th. 3] to our coseparable C-coalgebras. First,
we consider the following exact sequence of A-A-bicomodules

M1 00— A4 AT 0A-2n (AT 0A)/ 44(4) —> 0
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where o is the canonical linear map and the A-A-bicomodule structure of
(A0 cA)/ 44(A) is defined naturally,. Weset L= (A[]sA)/44(A) and
aob = w(a[]b).

Lemma 1.1 (cf. [2, §3]). A linear map 2: L —> A defined by
a(a o b) = aecp(h) — ecP(a)b

is a C-coderivalion.

Proof. By the definition of C-coalgebras and the A-A-bicomodule
structure of L, we obtain 4.2 = (1[J2)pz + [ 1)pi, where oz (resp.
pt) is the right (resp. left) A-comodule structure map of L. It remains
to show that A is a left C-comodule map. We have

(PQ@1)du2(ab) = TP (am) QamecP(d) — Loyecd(@) P (bay) @ bey
and
QXD (@D pz (a ° b)=(1QR 1) (XEw? (@) @ aw ° b)
= TP @) @ aw ecp (B) — ¢ (@) Q b.

Since a°b isin L, we have

2w an QP (ae) @b = Lwa @ ¢ (bay) Q bey,

and therefore
ZrecP (@) b (buy) by = Ziwrec?(@ay) QP (22) Qb = $(a) Q6.

Hence (@14t = (1Q1)(#&@1)pz, which shows that 2 is a left C-
comodule map. By the cocommutativity of C, 2 is a C-comodule map.

Theorem 1.2. Let A be a C-coalgebra. Then the following condi
tions are equivalent :

(a) A is a coseparable C-coalgebra.
(b) For any A-A-bicomodule M, every C-coderivation from M to A

is an inner C-codertvation,

Proof. (a)=>(b). Since A is a coseparable C-coalgebra, there
exists a linear map <: A[JcA—— A such that <4, =1 and 4, =
1R =ER1)(A[]4,). Hence we have

T = (;@EAT)(AATD 1) = (ea ®1)(1D44)
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Let f: M—> A be an arbitrary C-coderivation. Setting 2= ¢:(1[]f)p :
M-—> C, we can easily see that % is a C-comodule map. By the
property of -, we have

(10eech) o™ = (1ecP)daz (AT f)p~ == A p~.
Since f=rcdsf =1AOf)p” +z(f[J1)p" and ecdf=c,f =0, we

obtain that
(ech1) p* = (ecbLIN(f—=(f/TIDp" ) A Dp" = — (ecp[ 1) du=(f [I1)p"
=—7(fO1)p". ,
Therefore f = (1[Jech)p~ — (ech[]1) p*, which shows that f is an inner
C-coderivation.

(b)=>(a). This can be proved by the same way as in the proof
(iv) = (@) of [2, Th. 3]. For the sake of comleteness, we give the proof.
By assumption, there exists a C-comodule map 7 : L — C such that 2 =
(10 pz — (ee7[1)pi. Define §: L—> A[JcA by § = (1[He[]1)
1O 7OD(ez[O1)pt. Then itis easy to see that & is an A-A-bicomodule
map and

E=(10ecODQO1I+GODpz O p%
= (10e.O2 ez + A0 40 O 1)pz) = A1) p7 + 4.61T01)pi.
By wd, =0, we have wf = w (1[J1)p{. Finally, we shall show that
o1 pt=1. If gob isin L, then
C (1) pi(ab) = o(Zmaech (bay) — ecP(@)bay) @ bery)
=aob—w(Xueet(@)by,@bw) = acb.
Thus the sequence (1. 1) is split as A-A-bicomodule.

2. Coextensions of coderivations. Let B be the direct sum of A
and M as a vector space.

In [3], Jonah shows the following: Let Adz: B——> B B and e;:
B—— k be linear maps defined respectively by

ds 0 l
0 o
dp = p+ and eB=(€A)
0 p 0
0 O

Then (B, 4z es) is a coalgebra. v
Now, let 6: M ——> C be a k-coderivation, and let p;: B—>CQ B
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be a linear map defined by

=(@®DL @@Df)
- 0 @R p /-

We shall show that (B, ps) is a left C-comodule. Since @ isa k-coderi-
vation and M is a C-comodule, we have Jd =(1Q ) (P R1)p + (P R1)
(1®$)p*, and so

2.1) A®Lp" = (PQIRN(URp)p +((RPRN(ARLp".

Moreover it is easy to see that

_{ Uep @D Ly (L @DER) p*
@b = (77 (dc®1><¢®1>,o—)
and
(1@ ) _((li)®(i>®1)(1®JA)JA (5®¢®1)(1®J,,)p++(<p®a®1)(1®,,+)p—)
e o (PSHRA®p )p™

Then by (2. 1), we have (4,Q1)po = (1Q ps)ps and
_ (ee@D(PR1)ds (cQD(IR l)P+ - 1 0
(€c®1)Pn-— ( 0 (€c®1)(ﬂb®1)p—) = (0' 1 )
Thus Bis a left C-comodule.

Finally, by making use of the structure of A & M mentioned above,
we shall prove the following

Theorem 2.1, Let A be a Ccoalgebra, and let 6: M——> C bea
k-coderivation. If A fis aninjective C-comodule and if H*(N, A) =0 for
all A-A-bicomodules N, then there exists a C-coderivation d: M—s A
which is a coextension of 9.

Proof. As is claimed above, B= AP M is a coalgebra and a C-
comodule, Since the canonical projection B——> A is a coalgebra map,
B is a C-coalgebra. Consider the exact sequence of C-comodules

2.2) 0—>a—>B2 . —s0

where i is the canonical injection and p is the canonical projection. Then
(2. 2) is a singular coalgebra extension ([3, §4]). By the C-injectivity of
A, (2.2)is split as C-comodule. Hence by [3, Th. 4. 10], there exists a
C-coalgebra map 3: B—> A such that 9; = 1. Identifying m in M

with ( ;(9)1) in B, 4,0 = ('5® 3)ds implies
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(2.3) 43 (m) = A Q@ o~ (m) + G ® 1) p~(m).
Thus 6 is a C-coderivation. Moreover, since 3 is a C-comodule map we
have
~ ~ « (@A (QR1)p”
FRV LT = 1@ ( )
! 0 (PR

and so by (2. 3), we obtain
(bR p* + (3R V) p7)(m) = (FRVp™ + (BR3)p7)(m).
Therefore (xffr?@ Dp* =(@QR1)p* on M. This shows that «,’)E =0,
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