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INDIVIDUAL ERGODIC THEOREMS FOR
PSEUDO-RESOLVENTS

RYOTARO SATO

1. Introduction. This paper deals with individual ergodic theorems
for a pseudo-resolvent of linear operators acting on the space of functions
which take their values in a reflexive Banach space.

Let (2,.%, ) be a o-finite measure space and (X, | - |) a reflexive
Banach space. Denote by D the set of all complex numbers i with Re (1)>
0. Then the family J=(J.: 2 = D) of linear operators on L,(2, X)=L,(2,
F , w, X) will be called a pseudo-resolvent if J satisfies the resolvent
equation

L—=15=0=0N], (A vED).

Denote by D, the set of all positive reals. In this paper we shall
assume that ||£/.|l; < 1 for all t=D. and that for some constant M >1,
2], flle < M|l f |l for all fEL(Q, X)NL(L, X) and all ¢=D,. By the
Riesz convexity theorem we see that for each t&€ D, and each 1<<p<Too,
¢J, may be regarded as a linear operator on L (%, X) such that ||t/.||, < M.
We shall prove below that for each 1<{p <Ceo and each f =L (£, X) there
exists an X-valued function g(2, ), defined on DX £ and strongly measurable
with respect to the product of the Lebesgue measure on D and g, such that
for each fixed A€ D, g(1, w) as a function of » belongs to the equivalence
class of /,f and also such that for each fixed w= £, g(4, ») as a function of
2 is continuous on D. Thus we may agree to take, for all i€ D,

(L S) (0)=2Q, »).
The main purpose of this paper is to prove that, putting

D(K):{xelk' g‘;glg |<K}

for each constant K>0, the following two individual ergodic limits

Ik}i_r{lwlfxf(w) and lAliir_lloi-ﬁf(w)

ASD(K) AEDK)

exist almost everywhere on 2. To do this we use abelian limit theorems,
which will be prepared in the next section.
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2. Abelian limit theorems. In this section the following two theorems
are proved. (Cf. [4].)

Theorem 1. Let f be a strongly Lebesgue measurable function from the
interval (0, ) to a Banach space (Y, | « |) such that for some 2, D.,

g: e | F(O) | dt<oo. If the limit
lim 5 F@) dt=2(=Y)
exists, then we have

lim ,S eME(R) dE=x.

Al —>eo
AEIK)

Theorem 2. Let f be a strongly Lebesgue measurable function from
the interval (0, ) to a Banach space (Y, | - |) such that for all 2€D,,

re‘”lf(t) |dt<<oo. If the limit
l1m S f@ dt=x(€Y)
exists, then we have

lim AS e ™M) dt =x.

|A]—>0
AED(K)

Proof of Theorem 1. Using Fubini’s theorem and Tonelli’s theorem
(see e. g. [1], Theorems III 11.9 and IIL 11. 14), for 2€ D(K) with Re (1)

> i, we have
s a=e| e | 1) as ar
=7\ 10 as any ([ rer an.
By hypothesis, given an €>>0, we can choose B>0 so that
0<b<B implies |%§Zf(t) dt—z|<e.
Then
ISZe"“ g:f(s) ds dt | ée“[“"("’““o“’S:e“"o‘S: | £(s)] ds dt
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and further

2gReMB| =

| 1% "[Re(x)] 2gmieE

_A
Re(a)
<1+ K»)[Re())]%e ™™ (1€ D(K)),

therefore, since 2& D(K) and |1|——>oco imply Re (i)—>ce, we get

lim Azre"“g f(s) ds dt=0.
[A] —>os B []
AEIXK)

Similarly (or directly)
lim (g:te‘“dt)/(g: te Mdt)=0.

IA|—> o=
ASED(K)

Thus to prove the theorem it suffices to show that

i B [ B
lirkn sup (5 e‘“s f(s)ds dt)/(s te Mdt)—x \
I)\EI;Z[;; 1] 9 Q

¢
0

can be arbitrarily small. To see this, put £(¢)= %S f(s) ds—x for 0<<t
<< B. Then we have

(g:e“" SO #(s) ds di) /(g:te"“ at)
—x+ (X:te"'\’ E(t) df) /(S:te‘“ dr)
and

lim sup
|A| —>ea
AEIXK)

(E:te““ E(t) dt)/(S:ie‘“ )|

. 2 2 I1___e—-RcU\)E_Re(l)Be—Re(X)HI
< E-1
- }gl—ffp’Re (2) [1—e™*#— ) Be™*|
AEIK)
< E(1+K?).

Therefore the proof is complete.
Proof of Theorem 2. Since for any constant B> 0

n I3
lim /‘.ZS e”“g f(s)dsdt=0
IA|—>0 0 0

A= D(K)

and
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B oo
lim ( S te™™dt)/ (§ te™™dt) =0,
ity 0 B
Theorem 2 follows from an easy modification of the proof of Theorem 1,
and so we omit the details.

3. Ergodic theorems for pseudo-resolvents. In this section J=(/,:
1€ D) will denote a pseudo-resolvent of linear operators on L,(2, X), where
(X, | - 1) is a reflexive Banach space, such that |[#/,]|; <1 for all tE D, and
also such that for some M =1, |t].fll. < Ml f|l. for all f EL(2, X)N
L.(©, X)and allteD,.

Lemma 1. (a) For every 1<<p<<oo and every fELL, X), t].f
converges itn Lynorm as t —> oo, when t is restricted to be in D,.

(b) For every 1<<p < oo and every fEL L, X), t].f converges in
Lnorm as t —> 0, when t is restricted to be in D,.

Proof. Since L (2, X), with 1<<p <<oo, is reflexive (because X is
reflexive) and ||¢/].]l, < M for all tD., it tollows from Yosida’s theory
(cf. [5], VIII) that for every 1<<p <Ceo and every fEL,(2, X), t], con-
verges in L,-norm as { ——> oo and also does as  —> 0, when ¢ is restricted
to be in D.. Thus we have proved (b). To complete the proof of (a), it
suffices to show that for each f=L,(2, X)NL.(2, X), t].f converges in
L,norm as t —> oo, tED,, since ||¢],ll; <1 for all tED,. To do this,
choose f..E L,(2, X) so that

lim [|¢]. f—f-ll.=0.

f—>o00
LED,

Then using Fatou’s lemma we have || f..||; <|| f|l;. On the other hand, the
resolvent equation shows that

],\(t],)=(2——t)—l[l‘f,—tf,\] ’
and hence [, f.=/if for all i D. Therefore {| f.ll;= linl N¢].f-l1, and

=N

since t ], f converges in measure to f.. as t —> oo, t& D_, we conclude that

llir)nm NET f—folli= ,li‘,“m 2] fe—fwlli =0,

1ED, IED+

which completes the proof.

Lemma 2, There exisis a strongly continuous one-parameter semigroup
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I'=(T.:t = 0) of linear operators on L\(Q, X) such that
(i) T <1 forallt >0,
(i) Tf ll- < M2 £ lie for all fE LAY, X)NLAL. X) and all >0,
(iii) tJ. converges strongly to Ty as t—> oo, when t is restriced to be
in D.,
(iv) for all =D and all fE L,(L, X)

If= S:e"“ T.f dt.

Proof. For f€L,(£, X) define Ef to be the function in L,(£, X) such
that

Jim [i¢7.f~ Ef =0,

ten,
Then E is a linear operator on L,(2, X) such that
E=E? LE=EL=],(€D), |El; <1
and
lEflle < Milfll. (fEL(L X)NL(2, X)).

Let us put R=EL,(2, X). Then J=(J,: 2€ D) may be regarded as a
pseudo-resolvent of linear operators on the Banach space R. To see that
Jr, ~ED, are one to one operators on R, let fER and J,f=0 for some
J€D. Then we have
f=Ef= lim tJ,f=0,
{ = co

tED,

because the resolvent equation implies that J\f=0 if and only if J,f=0
for all v€D. Thus we may apply Theorem VIII 4. 1 in [5] to infer that

Jhi=(i—A)'on R (A€ D)

for some closed linear operator 4 with dense domain in R. Since [[£/,]; <1
for all t € D.., it then follows from the Hille-Yosida theorem ([5], p. 248)
that there exists a strongly continuous one-parameter semigroup J=(S,:
t > 0) of linear operators on R, with S,=1I (the identity operator) and
11S.l; < 1 (on R) for all £ > 0, such that A is the infinitisimal generator of
J. Since |t].flle < M| fil.for allt=D, and all f=EL,(Q, X)NL.(0Q,
X), it also follows that

1S.flle <Ml flle (#=0andfERNL(L X))
Define T,=S,E (#=0). Then it is easily seen that I'=(T,: t>0) is a
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strongly continuous one-parameter semigroup of linear operators on L,(2, X)
such that ||7}]; <1 for all ¢t > 0, strong-lim 7.=7,, and for every /ED

t—>
and every fEL,(2, X)
I f=IEf= S:e"" S.Ef dt = S:e"“ T.f dt.

Since [|T.fll. < MIEf]l. < M?|f|l. for all £=0 and all fEL,(L, X)
NL.(2, X), the proof is completed.

Corollary 1. (a) For every 1<p <<oo and every fe L2, X), 2 L.f
converges in L,norm as |A| —> oo, when 1 is restricted to be in D(K).

(b) For every 1<<p <<oo and every fEL,(2, X), ) J.f converges in
L,-norm as |i| —> 0, when i is restricted to be in D(K).

Proof. Since the proof of Lemma 2 implies that 7, =strong-lim 7, on
t—>0

L,(2, X) and hence also on each L,(£, X) with 1< p <ec, we have

tim [} -\ 7.5 dt—To i, =0
b—>D b [

for every 1< p <o and every f&L,(#2, X). Thus by Theorem 1, (a)

follows. Similarly, (b) follows from Theorem 2, since the reflexivity of

L,(2, X), 1<<p < oo, implies (see e. g. [3]) that if 1<p <<oo and f&

L,(%, X) then the averages

1 13
L msa

converge in L,norm as b —> oo,

Corollary 2. For every 1 << p <<oo and every f= L ,(R, X) there exists
an X-valued function g(a, w), defined on DX L and strongly measurable with
respect to the product of the Lebesgue measure on D and u, such that for
each fixed A& D, g(i, w) as a function of w belongs to the equivalence class of
Jif, and also such that for each fixed o €L, g(1, w) as a function of 1 is
continuous on D,

Proof. By an approximation argument it is known that there exists
an X-valued function T, f(w), defined on (0, o) X £ and strongly measurable
with respect to the product of the Lebesgue measure on (0, o0) and p, such
that for each fixed >0, T,f(w) as a function of « belongs to the equiva-
lence class of T, f=L,(£, X). Then we see that there exists a g-null set
N(f), dependent on f but independent of ;& D, such that if w&N(f) then
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the X-valued function { —> ¢ T, f(w) is Bochner integrable with respect
to the Lebesgue measure on the interval (0, o), and the integral So e MT, flw)

dt as a function of « belongs to the eguivelence class of g:e‘“Tl fat=Jf

for every 2. D. Let us put

20 w>={5:”7"f<w> @t (wEN(S))

0 otherwise.

It is clear that g satisfies the required properties.

In what follows, g(2, w) will be denoted by J.f (w). Now we are in a
position to prove the main theorem in this paper.

Theorem 3. For every 1< p << oo and every fE L,(Q, X) the following

limits
lim 7 ]Af(m) and }111‘1 Ao f(w)
s e

exist almost everywhere on 2.

Proof. By Theorems 1 and 2, it suffices to notice that the limits

b b
lim %So T.f@)dt and lim 2 Sn T, F(w) dt

b—>0

exist almost everywhere on £, and the almost everywhere existence of these
limits follows from [3]. Thus the proof is completed.

4, An extension of Theorem 3. In this section we shall prove that
Theorem 3 holds for functions f in L,(2, X )+ L..(2, X ) such that

| f| dp<<oo for all > 0.
{r1>n

Following Fava [2], the class of such functions f will be denoted by
Ry(#, X). Itis known that Ry (£, X) is a linear manifold of L,(2, X)+
L.(2, X) including ]SU< L, (2, X). A linear operator T on L,(2, X) such

oo

that |71, <1 and ||Tf |« < M|l f il for all fEL,(£, X)NL.(Q, X) may
be extended to a linear operator on Ry (£, X) as follows. Let f< Ry(%, X),
and choose f,., n=1,2, ---, in L,(2, X) so that

lim f.(w)=f(w) almost everywhere on
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and

n Ligw“fn—fm “w = 0~
Then lim [|Tf,—Tfnll~=0, and hence the limit
g(w) =lim Tf,.(w)

exists almost everywhere on &£. It is a routine matter to see that g& Ry(2,
X), and thus if we set g= Tf then T is well-defined on Ry (£, X) and linear.
Next let I'=(T,: ¢t = 0) be as in Lemma 2. Put

T f(w)=lim T, fu(w)

and
Inflw) = S e ™T, flw)ydt (A€ D).

From the preceding section and the above argument we observe that for
each fixed i€ D, /,f(w) as a function of » belongs to the equivalence class
of LfER(2, X). Here we may assume without loss of generality that for
each fixed w= 8, /rf(w) as a function of 2 is continuous on D. It then
follows from [3] together with an easy approximation argument that for
every f€ Ry(£, X) the limits

b

exist almost everywhere on £. (In fact, if fE R,(¥, X), we can choose
REL(Q, X), n=1,2, -, so that lim lf—falle=0. Then we have

hm—S T.f(w)dt and lim 1§ T f (w) di

[ 1p) at = 2] 1) @t < M2 1.0

almost everywhere on & for all #>0 (cf. Lemma 2), and further the limits
lim = 5 E T, folw) dt and hm —i—g T. fo(w) dt exist almost everywhere on 2.
b—>D

Hence for almost all wE.(J we have

I%m sup]%g T f(w) dt— 1 g T.f(w)dt]|=0
H—>0

and
lim Sup[——g T f(w) dt—L g T, f(w) dt| =O.

b4 —>ca

This establishes the desired conclusion.) Thus we may apply Theorems 1
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and 2 to obtain the following extension of Theorem 3.

Theorem 4. For every f& Ry(2, X) the ergodic limits
lim 2 /if(w) and lim i Nflw)
[Af—>0c0 [Al—0

AED(K) AeED(k)

exist almost everywhere on L.
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