Mathematical Journal of Okayama
University

Volume 23, Issue 1 1981 Article 7
JUNE 1981

Some commutativity theorems for n-torsion
free rings

Evagelos Psomopoulos* Hisao Tominaga!

Adil Yaqub?

*University of Thessaloniki
fOkayama University
University of California

Copyright (©)1981 by the authors. Mathematical Journal of Okayama University is produced by
The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou



Psomopoulos et al.: Some commutativity theorems for n-torsion free rings

Math., J. Okayama Univ. 23 (1981), 37—39

SOME COMMUTATIVITY THEOREMS FOR
n-TORSION FREE RINGS

EVAGELOS PSOMOPOULOS, HisA0O TOMINAGA
and ApIL YAQUB

Throughout the present note, R will represent an associative ring
(with or without 1), and N the set of all nilpotent elements in R. Given
a, b= R, we set [a, b] = ab — ba, and write a + ab (resp. @ + ba)
formally as a(l + &) (resp. (1 + b)a). If thereisa & such that &+ & +
bY =b+ b +bb=0, we write a+ betab+bab as (1+b)"'a(1+5). Fol-
lowing [3], aring R is called s-unital if for each x in R, tERxNxR
As stated in [3], if R is an s-unifal ring, then for any finite subset F of
R, there exists an element ¢ in R such that ex = xe = x for all x in
F. Such an element ¢ will be called a pseudo-identity of F.

Our objective is to prove the following theorems.

Theorem 1. Let n be a fixed positive integer, and let R be an s-unital
ring. Suppose that every commutator [x, y] in R is ntorsion free and
Hx@ + w)}" — 2*A + w),x] =0 forall uSN and x= R. If, further,
R satisfies the polynomial identity [x", y"] =0, then R is commutative.

Theorem 2. Let m=n>1 be fixed integers with mn > 1, and let
R be an s-unital ring. Suppose that every commutator [x, y] in R is
nl-torsion free. If, further, R satisfies the polynomial identity [x™, y]—

[x, y"] =0, then R is commutative.

In preparation for the proofs of our theorems, we first recall the
following lemmas.

Lemma 1 ([1, Lemma 1]). Let m, n be fixed positive integers.

(1) I [e, [a,b]l]1=0 then [a", b] =na"'[a, b], where a, b = R.

(2) Let e be a pseudo-identity of {a, b} T R. If a"b =0=(a+ e)"b
then b = 0.

(3) If R satisfies the polynomial identity [x", y"] =0, then the
commutator ideal D(R) of R is contained in N.

Lemma 2 ([1, Lemma 2]). Let m, n be fixed positive integers, and
let R be an s-unital ring in which every commutator is n-torsion free.
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(1) If nax"[x, @]l =0 forall x= R, then [x, a] = O.
(2) If R satisfies the polynomial identity [x* y] =0, then R is
commutative.

Lemma 3. Let n be a fixed positive integer, and let R be an s-unital
ring in which every commutator is n<orsion free. If R safisfies the
polynomial identity [x", v*] =0, then [u, x*]1 =0 and [u, v] =0 for
all u, v= N and x < R.

Proof. The first assertion is proved in the proof of [1, Theorem 1].
Then, repeating the same argument, we can prove also the latter.

We are now in a positibn to prove Theorem 1.

Proof of Theorem 1. Let u = N and x & R. Then, by Lemma 3,
we obtain [1 + #, {(1 + #)x}*] = 0. Hence, by hypothesis,

O0=x{1+u)ax}"—x(L+u) {@+u)x} "A+u)= {1+ u)) "x—x{x(L+u)}"
=[{x(l+w)}"x] = QA+ a)", x] = 2"[A + ), x].

Then, since every pseudo-identity of {x, #} is that of {x, [(1+w)", x]},
Lemma 1 (2) shows that [(1 + «)*, x] =0 for all x= R. Moreover, by
Lemma 1 (3), [1+4u, x] =[%, x] EN, and hence by Lemma 3 we see that
[1+4, [1+u, 2]1=0. Now, by Lemma 1 (1), #(1+%)""[u, x]=[A1+u), x]
=0, whence it follows [«#, x] = 0. We have thus shown that N is
contained in the center Z of R.

To complete the proof, let %, y& R Since [x, yYJENZ Z by
Lemma 1 (3) and the above, there holds nx""![x, "] = 0 (Lemma 1 (1)).
Hence, by Lemma 2 (1), [x, ¥"] =0. Now, R is commutative by
Lemma 2 (2).

It was shown in [1] that in an s-unital ring in which every commutator
is 5 (n — 1)-torsion free (» >1), the identity (xy)" = x™" implies the
identity [«", ¥*] = 0. In view of this, we obtain Theorem 2 in [1] as a
corollary to Theorem 1.

Finally, we shall prove Theorem 2.

Proof of Theorem 2. 1If n =1, then m > 1 and, by hypothesis, we
see that R satisfies the identity [x —x™, y] =0. Hence, by a well known
theorem of Herstein [2], R is commutative. So, henceforth we may
assume #>1. Let x, vy & R. By hypothesis, [, y] = [x, »*]. Re-
placing ¥ by ky, where k is an arbitrary positive integer, we get
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k*[x,y"] = k{2™, y], and hence
(*) (" — B)x,5"] = 0.

We show [x, y"]=0. Suppose not. Then the additive order of [x, y"]
is obviously a positive integer g (> 1). Since [x, y*] is »n!-torsions free
by hypothesis, we see that (¢, n!) =1. Let p (> n) be a prime factor
of g, and q =pd. Since p(p*' —1) [x, y"] =0 by (*), ¢ = pd divides
p(p™'—1), andso (p, d) =1. Asis well known, every ring is a sub-
direct sum of subdirectly irreducible rings. There exists therefore a
homomorphism f of R onto a subdirectly irreducible ring R’ such that
the order of f([x,y™]) is pd’ with adivisor @’ of d. If d'>1, then
L= R |pr=0} and I = {¥ € R'| d'7 = 0} are non-zero ideals
of the subdirectly irreducible ring R’, and hence I{ N I; %+ 0. But, on
the other hand, (p,d’) =1 implies Ii N I; = 0. This contradiction
shows that d'=1. Hence, by (*), & — k=0 (mod p) for & =0, 1, --,
n(<<p). But this is impossible. This contradiction proves that [x,y"]=0
forall x, y = R. Hence, R is commutative again by Lemma 2 (2).
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