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Throughout B will mean a (non-commutative) ring with identity ele-
ment 1 which has an automorphism o. By B[ X:p]. we denote the ring of all
polynomials 2;X?b; (b; € B) with an indeterminate X whose multiplication
is given by 86X = Xp(b) (b & B). Moreover, by B[X:p]., we denote the
subset of B[X;p] of all polynomials f= X?—Xa—b with fB[X:p] =
B[X:plf. If X*—Xa—b€< B[X:p], then o(b) = b. By B[X:0la we
denote the subset of B[X;p]. of all elements X?— Xa—b with p(a) = a.
Now, for f g€ B[X:ple, if the factor rings B[X;:pl/fB[X:e] and
B[X;p]/gB[X;p] are B-ring isomorphic then we write f~g Clearly the
relation ~ is an equivalence relation in B[X:plw. By BlX:olz, we
denote the set of equivalence classes of B[X;p]i with respect to the
relation ~. Moreover, for f€ B[X;pl», if the factor ring B[ X;p]/fB[X:e]
is separable (resp. Galois) over B then f will be called to be separable
(resp. Galois). As is well known, any Galois polynomial in B[X:e]: is
separable. By [6, Th. 1], any separable polynomial of B[X;e]: is contained
in B[X;0)i». For f=X?—Xa—b&< B[X;pl,, we denote a®+4b by 5(f),
which will be called the discriminant of f.

Now, in [1], K. Kitamura studied free quadratic (separable) extensions
of commutative rings and its isomorphism classes. Indeed, [1] is a study
on B[X;l)z and B[X:1] where B is commutative, and 1 = identity map.
In this case, it is obvious that f = X?+ X is Galois. In [ 2], K. Kishimoto
studied the sets B[ X:pl and B[X:pl in case B[X:p)i2) contains a Galois
polynomial f = X?—& (and hence 44 is inversible in B ([6, Th. 2])). In
[5], the present author studied the sets B[X:;oks and B[X:pla in case
Bl X:p]z contains a Galois polynomial f = X?— Xa—b (and hence a?+4b
is inversible in B). Moreover, in [1], [2] and [ 5], B[X;0)3 was consid-
ered as an abelian semigroup with identity element ( = the class of f) to
characterize the separable polynomials in B[X;e])w).

In this paper, we shall study the separable polynomials in B[X:0]w
and the structure of B[X;p]z in case B[X;p)we contains a separable poly-
nomial f whose discriminant is 7-regular, and we shall show that B[ X;0]3,
forms also an abelian semigroup with identity element ( = the class of f)
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under some composition such that for C &€ B[X;plz and g€ C, C is
inversible in this semigroup if and only if g is separable. Moreover, this
semigroup will be studied in various ways.

In what follows, we shall summerize the notations and terminologies
which will be used very often in the subsequent study. Throughout Z will
mean the center of B, and U(B) denotes the set of inversible elements in
B. Moreover, for any subset S of B and for ¢ = ¢ (with any integer
n = 0), we shall use the following conventions:

US)=UB)NS, S'={seS; a(s) =s},
0|S = the restriction of ¢ to S.
B(o) ={u € B: au = uo(a) for all « € B}.

Clearly, U(Z) coincides with the set of inversible elements in Z. By [5,
(2, xvii)] and [6, Th. 1], we see that if B[X:p], contains a separable poly-
nomial then e?|Z is identity. For any element a of B(p"), a is m-regular
if and only if there exists an element ¢ in B and an integer f{ = 0 such
that @' = a'*'c, which is equivalent to that a is right mregular. If a €
B(p") (resp. B(p")?) is m-regular then there exists an integer ¢ >0 and
an idempotent & of Z(resp. Z°) such that a‘B = ¢B. This idempotent
will be denoted by e(a) (cf. [7. p. 61]). For f = X?—Xa—b € B[X:0],
this is containd in B[X;e]: if and only if ¢ & B(p), b€ B(p?)?”, and
ba = bp(a) (cf. [6, p. 168]). When this is the case, we have 8(f) € B(p?)";
and whence if 8(f) is m-regular then e(8(f)) € Z°. Moreover, there holds
that B[ X;pla = {X?—Xa—b; a € B(p)*, b€ B(p?)?}. Now, let € be a
non-zero idempotent in Z°. Then &B = (eB)*, €B(p) = (eB)(pleB), and
eB(p)° = (eB)(p|leB)®. Moreover, we have an (eB)-ring isomorphism :
eB[X:p] — (eB)[Y;pleB] (Ye = Y) defined by &f(X) — f(Y). Hence,
we shall identify eB[X;p], ef(X), eB[X:pl., and eB[X:p)e with
(eB)Y;pleB), /(Y), (eB)[Y;0leBls, and (eB)[ Y;0leB)2) respectively, and
by eB[X;p] etc., we denote (eB)[Y:pleB] etc.. Moreover, we denote
(eB)[Y:pleBlz by eB[X;0le.

1. On separable polynomials in B[X;p]. First, we shall prove the
following

Lemma 1. Let2 be nilpotent, and assume that B[ X 0]z contains a sep-
arable polynomial X*—b. Then b U(B), B{p)= {0}, B(o?) = bZ,
B(0%)* = bZ*, and B[X;0]: = B[X;0la = {X?—v; v € B(0»)*}. Moreover,
Jor X?—v € B[X;pls. this is separable if and only if vE€ U(B).
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Proof. By [5, Lemma 2.3] and [6, Th. 1]. we have b€ U(B) and
z+p(z) =1 for some z€ Z. Now, since 2 is nilpotent, there exists an
integer # > 0 such that 27 =0. Then, for ¥ € B(p)., # = u(z+p0(2))" =
u(z+p(2))z+0(2))" ' =2zu(z+ p(2))" ' =272"u =0. If v€ U(B(p*)")
then X?—v is separable by [5, Lemma 2.3]. The other assertions will be
easily seen.

Lemma 2. Let x be a proper idempotent in Z*° such that £2" = 2" for
some integer n > 0. Let f be a polynomial in B[ X:p]» such that xf is Galois
kB[X;p] and (1—«k)f is separable in (1—k)B[X:p). Then 6(f) is n-regular
and e(8(f)) D «B.

Proof. We set € = e(8(f)). If e =1 then the assertion is trivial.
Hence we assume € #+ 1. By [6, Th. 2], we have ¥B = «8(f)B. Moreover,
f is separable, and so, f € B[X:pli2. We write here f= X2—Xa—b.
Then, by [5, Lemma 2.2 (2, xix)]. we have a = 8(f)ar = 8(f)**'ar”*! for
some » in B. Since x4" = 4" it follows that {1—&)6(f)"B =(1—«x)-
(ac+4"b™)B = (1—k)acB C (1—k)8(f)**' B, and whence 8(f)"B = x6(f)"B
+(1=k)0()*B = £8() "' B+(1—r)d(/)"'B = 8(f)"'B. Thus &(f) is
mregular, and eB = 6(f)*B D k6(f)"B = «B.

Next, we shall prove the following

Theorem 3. Let2 be m-regular. Iff € B[ X;p)2 is separable then 5(f)
is w-regular, and e(8(f)) = e(2) (that is, e(8(F))B D e(2)B).

Proof Let f=X?—Xa—b be a separable polynomial in B[X:p]..
If either 8(f) is nilpotent or inversible in B then 8(f) is m-regular. Hence
we assume that 8(f)B = B and &(f) is not nilpotent. Then, we have
e(2)+1 by [6, Th. 3]. First, we consider the case ¢(2)=0. Then
27 =0 for some integer » > 0. By [5, Lemma 2.2 (2, xix)], we have
a= 6(f)"ar = a®s for some r, sE B. Hence « is n-regular, and e(a) is
in Z°. Moreover, noting 8(f) = a®+4b, we see that e(a) is proper. Since
e(a)a is inversible in e(a)B, so is e(a)d8{(f) in e(a)B. Hence, it follows
from [6, Th. 2] that e(a)f is Galois in e(a)B[X;0]. Moreover, (1—e(a))f
is separable in (1—e(a))B[X;p]. Therefore, 8(f) is n-regular by Lemma
2. Next, we consider the case e(2)# 0. Then e(2)€ Z* ¢(2)B=2"B,
and e(2)2™ = 2™ for some integer m > 0. Noting that e(2)2 is inversible
in e(2)B, e(2)f is Galois in e(2)B[X:e] by [6, Th. 3]. Moreover,
(1—e(2))f is separable in (1—e(2))B[X:0]. Hence by Lemma 2, 8(f) is
mregular The last assertion e(8(f)) = e(2) follows immediately from
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the result of [5, Lemma 2.2 (2, xix)].
Now, we shall prove the following theorem which is one of our main
results.

Theorem 4. Assume that B[X:pla contains a separable polynomial f
whose discriminant is w-vegular. Set € = e(8(f)) and w=1—e. Then, w2
is nilpotent, wB(p)=1{0}, wB[X:;0]s=wB[X;pla ={w(X?—v); vE B (0®)"}.
Morveover, for g =X?—Xu—v < B[X:pls. the following conditions are
equivalent.

(a) g is separable.

(b) 6(g) is m-regular, e(6(g))= ¢, and wB = wvB.

(c) eB=¢e6(g)B, and wB = wuvB.

Proof. By the assumption, there exists an integer # >0 such that
eB = 6(f)"B. We set here f = X?—Xa—b. Then, by [5, Lemma 2.2 (2,
xix)], we have a = 8(Har = (8(f))*ar™ = ea and 4" = (8(f))"s = 4™ for
some 7, s&€ B. Hence wa=0, w4”=0, and in case v+ 0, of = w(X?*—b)
is separable in wB[X:p]. Therefore, it follows from Lemma 1 that
wB(p) = {0}, and wB[X:pl:={w(X?—v); vE€ B(p%)"}. If e=0 (je., w=1)
then 2 is nilpotent and e(8(%)) =0 for all #< B[X;p)2; whence (a), (b)
and (c) are equivalent by Lemma 1. [f e =1 then f is Galois in B[X;p];
whence (a), (b) and (c) are equivalent by [6, Th. 2]. Hence we assume
that ¢ is proper. Then, since &3(f) is inversible in B, f is Galois in
eB[X;e] by [6, Th. 2]. Now, let g = X?—Xu—v € B[X;p).. First, we
assume (a). Then, since eg is separable in eB[X;p], it follows from [6,
Th. 3] that eg is Galois in eB[X;p). Moreover, wg is separable in wB[X:0].
Hence by Lemma 2, 8(g) is nmregular, and e(8(g))B D eB = ¢(8{(f))B.
By a similar way, we have e(8(g))B D e(8(f))B. This implies e(8(g))=e.
Since wg = w(X?—v) is separable in wB[X;p]. it follows from Lemma 1
that wv is inversible in wB, that is, @B = wvB. Thus we obtain (b).
Next, we assume (b). Then B = e(8(g))B = 8{(g)™B for some integer
m >0. This shows that B = €6(g)B. Finally, we assume (c). Since
eB = e8(g)B, £8(g) is inversible in eB. Hence eg is Galois in eB[X:0]
by [6. Th. 2]. Moreover, since wv is inversible in @B, wg = w(X?—v) is
separable in wB[X:p] by Lemma 1. Therefore, g = eg+wg is separable,
completing the proof.

2. On B[X;plz. Throughout this section, we shall use the following
conventions :
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Kg>={g € B[X;pl: g ~ g} € B[X:pla (g € B[X:0l),
00 = plZ, Nola)= ap(a) for any ¢ € Z,
No(S) = {No(a) ; a = S} for any subset S of Z

If B[X:0)e contains a separable polynomial then o3 is identity, and hence
No(Z)YC Z?. Mereover, for g = X°—Xu—v, g1 = X*— Xu,—v: € B[ X:0]
and s € S, we write

gxs= X2— Xus— vs?

gx g = X%~ Xuwu — (vPv,+ vud+4ovv)
gos=X%—ys?

gogm=X?—uvn.

Now, by virtue of Lemma 1, [5. Lemma 2.10] and [3, Lemma 1.8], we
obtain the following

Lemma 5. Let 2 be nilpotent, and assume that B[ X:ple contains a
separable polynomial X?—b. Let g¢s=X*—v; and @ = X?—v; be in
B[ X:0lo (= {X?—v: vE bZ?}). Then, g1 ~ g if and only if v1=v2No(a)
Jor some a < U(Z).

Now, as in Lemma 5, let 2 be nilpotent, and f = X?— b separable in
B[X:p]. Then, by [5. Lemma 2.3], we see that X?—1 is separable in
Z[X:00). Hence by Lemma 1, we obtain that Z(oo) = {0}, Z[X:00 ]2 =
Z[X:00]i2y which coincides with the subset of Z[X;p0] of elements X?—z
(z€ Z*°): and for X?—z in Z[X;00)», this is separable if and only if
ze U(Z").

Moreover, if g1 ~ & in B[X;p)w@ and & ~ hz in Z[X;poliz) then, for
any g € B[X;plx and & € Z[X:po0lw). there holds the following

(1) gicgod™' ~ gegeb™ in Z[X;00]w.

(11) h[ﬂh ~ }Zzol’l in Z[X;po](z).

(iil) /g ~ heog in B[X:plw).

(iv) giegefob™ ~ gogefob™! in B[X:p]w2).

(v) gofofob'=g and hefofeob ! =h.

(vi) g is separable in B[X:plw if and only if gegofob™! ~ f which
is equivalent to that geg’ofob™! ~ f for some g’ € B[X:plz»

(vii) % is separable in Z[X:p00lw if and only if k<k ~ fof<b~! which
is equivalent to that seh” ~ fofeb~! for some #' € Z[X:00l.

By making use of the preceding remarks, we can prove the next
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Lemma 6. Let 2 be nilpotent and assume that B[ X;0)e contains a
separable polynomial f = X%2—b. Then, the set B[ X;pla (vesp. Z[X;p0la)
Sforms an abelian semigroup under the composition {g><{g>=<giogofb™1>
(resp. <h><ha> = <hioh2>) with identity element <f> (resp. {fofob~1>), and
the subset

Kg> € B[ X:pla; g is separable}
(resp. {<h> € Z[X:00l3) ; h is separable})

coincides with the set of all inversible elements in the semigroup B[X;plwe)
(resp. Z[ X:pol)) which is a group of exponent 2. Moreover

BlX:pla = Z[ X;00l@ (by <g> =<hef> o Kgofob™> = <hD)
which is isomorphic to the multiplicative semigroup Z°/No(U(Z)).

Now, by (B[X:pl®, of) (resp. (Z[X;00)@. °)), we denote the semi-
group B[X:p]G) (resp. Z[X;p0)>) with the composition as in the preceding
lemma. Moreover, if B[X:ola contains a Galois polynomial f then
B[X:pl (resp. Z[X;00)) forms an abelian semigroup with the composi-
tion <g1>(g2) = <g1 X &2 XfX 8(f)‘1> (resp. <h1><hz> =<y x ]22)), which will
be denoted by (B[X:0la), xf) (resp. (Z[X;00l. x)). Then (B[ X:pla, xf)
= (Z[X:00l@, x) (cf. [5. Ths. 2.16, 2.17]).

Let € be a proper idempotent in Z°, and w =1—e. Then, as is easily
seen, the map:

B[X;ple) — eB[X;pla X wB[X;plwe (direct product)
given by g— (&g, wg) is bijective. This induces a bijective map:
B[X;pla — eB[X;pla X wB[X;0la

where <g>— ({eg>, {wg>). Clearly, g is separable in B[X:p] if and only
if eg and wg are separable in eB[X:p] and wB[X;p] respectively. We
have also a bijective map:

Z[ X;p0lizy — €Z[X;00) X @Z[X;p0li

where <4 — (Keh), {wh>).

Let f=X?—Xa—b be a separable polynomial of B[X;o]iy whose
discriminant is 7-regular. We set € = e(8(f)) and w =1—e. Then &f is
a Galois polynomial in eB[X:p]w, @2 is nilpotent and wf = w(X?—b) is a
separable polynomial in wB[X;0le (Th. 4, [6, Th. 2]). Next, we consider

hy = ef x ef x (e8(f) 1+ wfowfe(wh)™!

where (ec)™! (resp. (wc)~!) denotes the inverse of ec (resp. wc) in the ring
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eB (resp. wB). Then, it is easy to see that #, & Z[ X:00)2) and 8(ks) =
e0(hs)+wd(hs) = e+4w. Hence 6(hs) is mregular in Z, and e(8(hy)) =
e = e(8(f)). Moreover, ehs is Galois in €Z[X;p0]. and wh, is separable
in wZ[X;po) ([5, Lemma 2.3, [6, Th. 2]). This implies that %, is separable
in Z[X;00].

Now, the following theorem is one of our main results which can be
proved by making use of the preceding remarks, Th. 4, Lemma 6, and
(5, Ths. 2.16, 2.17].

Theorem 7. Assume that B[ X;pli contains a separable polynomial f
whose discriminant is n-regular. Set € = e(8(f)) and w =1—¢e. Then the
set B[ X:p]@ (vesp. Z[ X:p0l@) forms an abelian semigroup under the compo-
sition

e iy = egi x e x &f x (e8(f)) ™' + wgio wgzo wfo(wb)™1>
(resp. Chidhy) = (ehy X eha+ Cl)hﬂ&)hg))
with identity element <f> (resp. <hs>), and the subset

(K&> € B[ X:pla : g is separable}
(resp. (K> € Z[ X002y h is separable})
coincides with the set of all inversible elements of B[ X;p)2) (resp. Z[ X;00)@)
which is a group of exponent 2. Moreover
B[ X0l = (eB[X;0)@, x&f) X(wB[X;ola). wf)
= (eZ[X;p0lz *x) X (@Z[X;p0)2), ©)
=~ (eZ[X;polzn *) X wZ?/wNU(Z)) = Z[X:00l
-where in case € =0 (vesp. w =0), the first (resp. second) factor is cutted.

Next, we shall prove the following theorem which contains the result
of K. Kishimoto [2, Th. 24].

Theorem 8. Let 2 be n-regular, and assume that B[ X:ple contains a
separable polynomial f. Then
(i) i e(8(f)) = e(2) then B[X;pla) = Z°/NAU(Z)).
(i) If.e(8(f) > e(2) then, for k = e(8(f))—e(2) and A =1—x,
B[ X0l = (kZ[ X2, x) X AZ*/ANLU(Z))
where Z[ X = Z[X:1)2), and in case A =0, the second factor is cutted:
moreover

Ul(«Z[X]z2. ) =(K(X?-X—-2P; z€ Z).
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Proof. We set e=e(0(f)). w=1—¢, £=¢e(2), k=¢e—§& A=E&+ow,
and f = X2— Xa—b. Now, let k0. Then, «2 is nilpotent and «6(f) is
inversible in «B, and whence xa is inversible in #B.. For «z €«Z, (kz)(xa)
= (k2)(kp(2)) = xo(2)(ka). This implies that pl«Z is identity. Therefore,
it follows that

(kB[ X;0]a, x kf) = (,Z(X:00), x) = (kZ[X]2, x).
Moreover, for h = f X?—Xr—s) € «Z[X]a.

<hy€ U(,Z[ X1z, x)) © k is separable
e SR e kU(Z) @ wr € xlU(2)
e ) =<(X?— X ~2)> for some z€ Z.

Next, let £+ 0. Then, £2 and &5(f) are inversible in £€B. As is easily
seen. we have

EZ[X:poly = (KE(X2—v)>; vE Z7).

Moreover, <&(X2—v)) =<&(X?—v')> in &Z[X:00l@ if and only if
Ev = Ev'No(a) for some o€ U(Z) (cf. [5, Lemma 2.10], [3, Lemma 1.8],
and (2, Lemma 2.1]). Clearly

CE(X2— i )DCE(X2—12)> = CE(X2—4v102)> = CE(X 2 —vi1v2)).
Hence, one will easily see
(EB[X;0la, x &) = (EZ[X;pola. x)=EZ*/ENU(Z))
(cf. [2, Th. 2.4]). Therefore, it follows from Th. 7 that

B[ X0l = (eB[X;p)a, xe&f) X (wB[X;p)a), wf)
= (kB[ X;pla, x«f) X (EB[X;pl@, x &) X (wB[X;plw, ~wf)
> (kZ[X]z. x) X EZ°/ENAU(Z)) X wZ°/wN(U(Z))
> (kZ[ X1z, x) X AZ*/ANL(U(Z)).

This completes the proof.

Now, in the preceding theorem, we shall assume that 2=0 and «+ 0.
Then,

(X2—X—2)) =<u(X?—X -2 in «Z[X]z
if and only if ¥z = k2’ + «(a*+a) for some a€ Z. Clearly
(X=X —2)x i(XP—X—2) = k(X=X — 21— 23).
Hence, it follows that
U(«Z[ X1z, x)) = (kZ,+)/da®+a; a€ Z} (cf. [1])
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Combining this with Th. 8 and [5 Lemma 2.2 (2, xix)], we obtain the
following

Corollary 9. Let 2 =0, and assume that B[ X;0)w contains a separable
polynomial f=X2—Xa—b. Then aB = a*B, e(a) = e(8(f)), and for
k=e(a) (A=1—«), there holds the following

U((B[X;ple) = (kZ,+)/ P+ a ; a€ Z} X AU(Z)*/ANLU(Z)).

where in case k=0 (resp. A=0), the first (vesp. second) factor is cutted.
(Cf. [8]).
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