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THEORY OF PSEUDO-RESOLVENTS

RyoTAarO SATO

1. Introduction. Let D denote the set of ‘all complex numbers A with
Re (1) > 0, and D, the set of all positive reals. Let J={(J;:A€ D) be a
pseudo-resolvent of bounded linear operators on L; of a o-finite measure
space. Thus i—J, =(v—A) JiJv for all A and v in D. Previously it was
proved (cf. [ 5]) that if J satisfies that

ALl <1 for all A€ D,
and also that for some constant M >1
lAJifle < M|fll» for all A€ D, and f € Ly N Lo,
then the following individual ergodic limits

hm Mif(w) and 11m Af(w)

/lED* AED-.-

exist almost everywhere, whenever f € L, with 1 < p < oo.

The purpose of this note is to examine the necessity of the above norm
conditions on J and to show, by examples, that these conditions can not
be weakened without failing to hold the individual ergodic theorem.

2. Preliminary lemmas.
= 0) is a sequence of nonnegative reals, then

n
%Z_! esup(l r)Eral

=0 O<r<l1

Lemma l. If (an:

1

and

lim sup—n—Z‘. a,éehmsup (1— r)Zra,

n—-+co

Proof. Putting
:% 20 (n=1) and ArI(l—V)i‘.or"ai <7<,
we see that
-1 -1
Arz(1-7) ngo ria; 2 (1—-7)r"! ’i?.:.) ai=n(l—r)r"1Cn
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On the other hand, for each » > 1

sup #(l—7)r*1 = n(l—[l—%])(l——};)”‘l >et;

0<r<l

therefore the lemma follows.

Lemma 2. If a(?) is a nonnegative Lebesgue measurable function on
the interval (0, ), then

—1 ® . “ —At
sup b/(: a(t) dt < e sup Aj; e *a(t) dt,
i —1 ? i Y
hmb*‘:s:&lp b fo a(t) dt < e hrﬁgup A£ e Ma(t) dt
and

i Lre .i Y
hril_?(l).lp bj; a(t) dt < e llrﬁiup ,1/(; e~*a(t) dt.

Proof. Since
) b
-2 —-Ab
AL e Ma(t) dt > Ae j; a(t) dt

b
= (i) e [ alt) ab,
and since for each 4 > 0

sup (A1b)e™? = 71,
A>0

the lemma follows immediately.
3. Counterexamples.

Example 1(cf. [7]). There exists a pseudo-resolvent J =(J,: A€ D) on
Li(0,1) such that
(i) forall A€ D,, ], >0 and |AJi, =1,
(ii) for some f € L.(0, 1) the limit
lim A/ /(o)
-0,
AED+
does not exist almost everywhere on the whole interval (0, 1).
To see this, let T be a positive isometry on L,(0,1) such that for some
n-1
0<fe Li(0, 1), lim sup % Z(}) Tif(w) = co almost everywhere on (0, 1)
n 1=
(cf. [1]). Then, since | 7|, =1, we may define
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JA=(A+1—T)-1=AL§ (1€ D).

(A+ 1)
Clearly, J = (Ji: A€ D) is a pseudo-resolvent on L;(0, 1) such that

Ji2 0 and A%, =1 for all A€ D..
Furthermore, by Lemma 1, we have

lim sup AJ; Alw) = o
L3
almost everywhere on (0, 1). On the other hand, by Fatou’s lemma, if we
set

Ww) = limligf Aif(w) forall we (0, 1)
AeD.

then 0 < A€ L,(0, 1). Therefore i(w) < % almost everywhere on (0, 1),
and this completes the proof.

Example 2. Given an € >0 there exists a pseude-resolvent J =(J:A€E D)
on L1 of a finite measure space such that
(i) forall A€ D,

=0, ALl =1 and 1A < 1+¢
(ii) for some f € L, the limit
lim AJy fw)
L3,
does not exist almost everywhere on a certain measuvable subset of positive
measure.

To see this, let S be an ergodic and invertible measure preserving
point transformation on the interval (0, 1] and define also Sg(w) = g(Sw)
for g€ L:(0,1]. Take 0<fe€ L,(0,1] such that flog*f € L,(0, 1].
Then, by [ 3] and Lemma 1, we see that

Sup. (1- 7)2 riSif(w) & Li(0, 1].

O<r<1

Thus, as in Derriennic and Lin [ 2], there exists a sub-o-field B of the
Lebesgue measurable subsets of (0, 1] such that the limit
lim (1—7) E rE[S'f | Bl(w)

does not exist almost everywhere on (0, 1], where E [- |8] stands for the
conditional expectation operator with respect to . 8. Define a positive
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linear operator’ 7 on L;(0, 14+ €] by
S(gloa)(w) fo0<w<l,

E[S(glon) | 3](0);1) ifl<w<l+e.

Te(w) = {

It is easily seen that 71 =1 and |77, =1+¢ (2 = 1). Thus if we set

_ a1l & T
h=0r1-Ty =3 By GeD)

then for all A€ D, we have
Ji20, A1 =1 and |AJi < 1+¢€;

furtherrnore, hlln% Al f(w) does not exist almost everywhere on (1, 1+¢].
ieD. i
Hence the proof is completed.

Example 3. Given an € >0 there exists a pseudo-resolvent J = (J;: A€ D)
on L, of a finite measure space such that
(i) forall A€ D,

20, ALl =1and |AJi <1+e,
(ii) for some f E L, the limit
lim A/ f(w)
A“E-’gf
does not exist almost everywhere on a certain measurable subset of positive
measure.
To see this, let (S::t=0) be the strongly continuous semigroup of
positive isometries on L;(0, 1] defined by
Sig(w) = glw+t) (g€ L0, 1], 0 € (0, 1)),

where o+t =w+t if w+¢<1and ott=w+t—nif n< o+t < n+l.
By [4], for some 0 < f < L,(0, 1] and some sequence (5,) of positive reals
with lim &, =0 we have

n

bn
sup 51;](; Sif(w) dt & L0, 1).

Thus, by Lemma 2 and the argument given in Example 2 (cf. also [4]),
there exists a strongly continuous semigroup I' = (7y:¢ = 0) of positive
linear operators on L;{0, 1+ ¢] such that for all ¢t >0

T =1 and | T, = 1+e¢,

and also such that the limit

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 23/iss2/17



Sato: Counterexamplesin the individual ergodic theory of

COUNTEREXAMPLES IN THE INDIVIDUAL ERGODIC THEORY 211

lim A fo " e T,f (w) dt

Ao

AeD+

does not exist almost everywhere on (1, 1+¢&]. For A€ D define
Jig = [D‘” e Tg dt (g€ Li(0, 1+¢)).

Obviously J; is a bounded linear operator on L,(0, 1+¢] satisfying /,7o =
Ji, and if A€ D, then J; =0 and |A/il; = 1+e. Thus, to complete the
proof it is now enough to check that J = (J;: A € D) is a pseudo-resolvent.
To this end, put M = ToL:(0, 1+¢]. Then M is a closed subspace of
L0, 1+¢], TTMC M for all ¢+ >0, and To=1 on M. Thus, by re-
stricting I' = (T,: ¢ = 0) to M and applying Corollary IX.4.1 and Theorem
VIL2.2 in [6], we see that /i—/J, = (v—A)/i J, on M. Hence for every
ge Ll(O, 1+€]

Lg—Jvg=LTeg—)vTog
=Ww-ALh LTog =Ww—-N] L. g

completing the proof.
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