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1.

K,-GROUPS OF THE STUNTED REAL
PROJECTIVE SPACES

Introd

MICHIKAZU FUJII and TERUKO YASUI

uction

The purpose of this note is to calculate the I?‘o-groups of the stunted
real projective spaces. Our results are tabled as follows, where RP(n) is
the n-dimensional real projective space and (¢) is the cyclic group of order

t.
1) K&+YRP@Am+k)/RP(4m—1)) (k= 0)
N 0 -1 -2 —3 —4 |—5| 6 | -7
8r
r=0|(o0) (2) @) 0 (o) ofo 0
30 {(o0)+(2%) | (2)+(2) 2)+(2)+(2) (2) (c0)+(2) | 0|0 0
8r+1
r=0](c0)+(2) 2)+(2) (2 () (o) oo (o0)
7360 [ (o) 4 (207 +1) | (2)+(2) (2)+(2) (o0) ()4 27 [ 0|0 |(o0)
8r+2|(c0)+(27+2) | (2)+(2) (2)+(2) ] (e0)+(27) | 0 {(2) |(2)
87+3|(c0)+(2742) | (0} +(2)+(2) [ (2)+(2) 0 (00)+(24)  |(0)|(2)+(2)(2)+(2)
8r+4|(00)+(27+3) | (2)4+(2) (2)+(2) 0 (s0)+(2r+1)1 0 [ (20 | (@
8745 |(c0)+(207+3) | (2)+(2) (2)+(2) () (0)+(27+2)] 0 | 0 |(o0)
8746 | (c0)+(247+3) | (2)+(2) (2)+(2)+(2) 2) (o0)+(2ir+3)] 0 [ O )
8r+71(°°)+(2"+3) (20)+(2)4(2) | (2)+(2)+(2)+(2) | (2)+(2) | (e0)+(2%7+3) [(o0)| O ]
(2) K& *Y(RP(4m+1+k)/RP(4m)) (k=0
N 0 | -1 -2 -3 —4 -5 -6 7
8r
r=0| (2) (2 0 (o) 0 ] 0 (o0)
30| (2r+1) | (2) (2) (o0) (2+r) 0 0 (o)
8r+1| @+ | (2) ) 0 (2+) 0 2 )
8r+2| (27+2) | (e0)+(2) | (2) 0 (2+) (e0) | (2)+(2) | (2)+(2)
8r+3| (@7+3) | (2 ) 0 (24r+1) 0 2 2
8r+4| 2v+3) | (2 (2) (o0) (24r+2) 0 0 {o0)
8r+5| (2v+y) | (2) (2)+(2) (2) (24r+3) 0 0 0
8r4+6| (203 | (00)4+(2) | (2+(2)+(2) | 20+(2) | (2#~3) | (o) | O 0
8+7{ 27+ | (2) 2)+(2) ) (247+3) 0 0 0
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(3) K&YRP(Am+2+k)/RP(4m+1)) (k=0

SN0 4 —2 -3 | -4 | =5 -6 -7
8r

r=0| (2) 0 (c0) 0 0 (e0) (2)
r3g0| (2ir+1) 0 (o0) 0 (247) 0 (00)+(2) (2)
8r+1

r=0| (2) (c0) | (o0) 0 0 (o) | (o0)+(2) (2)+(2)
30| (247+1) (e0) | (o) 0 (2¢) () | (e0)+(2)+(2) | (2)+(2)
8r+42| (21r+2) 0 (co0) 0 (24r+1) 0 (o0)4(2) (2)
8r+3| (2v+3) 0 (c0) (o) (2¢r+2) 0 (=) (o)
8r+4! (207+2) 0 (o0)+(2) (2 (24r+93) 0 |() 0
!8r+5‘ @r+1) | (00) | ()@@ | @+@) | @7+ | (o) | (o0) 0
8r+6| (217+3) 0 (e0)+(2) (2) (247+4) 0 () 0
8r+T| (29+4) 0 (o) (o0) (247+1) 0 (o) (c0)

(4) RSYRP(4m+3+k)/RP(4m+2)) (k=0)

N 0 ] -1 —2 -3 —4 -5 —6 -7
8r

r=0| © (o0) 0 0 0 (o) 2) (2)
r30| @7 () | 0 0 (24) (00)4(2) | (2)+(@)+©2) | @+2)
8r+1

r=0[ (2 0 0 0 2 @) (4) (2)
rag0| (2ir+1) 0 0 0 (29r+1) | (2) (2)+(2) (2)
8r4-2| (24r+1) 0 0 (o0) @+ | (@) (2 (o)
8r4-3| (24r+1) 0 (2) (2) (2#+3) | (2) (2) 0
8r+4| @2+ | (e0) | (2)4(2) | (2+(@2) | @7+ | (e0)+(2) | (2) 0
8r+5| (24r+3) 0 (2) (2) 27+ | (2) (2) 0
8r+46| (2t+3) 0 0 (o) 2¢+1) | (2) ) (o)
8r+T| (2¢r+4) 0 0 0 (2¢7+4) | (2) (2)+(2) (2)

2. Proof of the table (1)

Let £ be the canonical line bundle over RP(k) and 6" be the trivial
n-dimensional vector bundle over RP(k). Then the Thom space T(mE,+0")
and the n-fold suspension S*(RP(m+k)/RP(m—1)) of the stunted projec-
tive space are homeomorphic (cf. [4, Chap. 15]).

According to [2, §12], there is the K,theory Thom isomorphism
71 K3(X)=K3(T(£)) for 8n-dimensional vector bundle ¢ over X which
admits a reduction to Spin(8z). Moreover, it is well known that ¢ has a
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spin-reduction if and only if its first and second Stiefel-Whitney classes
vanish : w,(£) = ws(£) =0.

Since wJQ_Ek) = w,(l&,) =0 iff /=0 (mod 4), we have an isomorphism
K5 (RP(k)) = K4(T(4mE, + 0*™)). Hence, we have the following

Proposition (2. 1).
K& *™(RP(4m + k)| R P(4m — 1)) == K’ (R P(k)).
By Proposition (2. 1) and [3, Theorem 1], we obtain the table (1).

3. KS(RP(n+k)/RP(n)), K;RP(n+k)/RP(n)) ns3 (mod 4)
From [1, Theorem 7. 4], we have
(3.1) KS(RP(n+E)] RP(n)) = Zysrm,

where ¢(n-+k, n) is the number of the integers s such that n<<s<n+k
and s=0,1,2 or 4 (mod 8).

Since #2=3(mod 4), by [3, Theorem 1], we obtain the following short
exact sequence

0—> K3 (RP(n+FE)/RP(n)) — K5'(RP(n+Fk)) —> K5*(RP(n))—>0.
Hence, we have

(3.2) K3 (RP(n+E)] RP(n))== Z ptn+r.m,

where ¢ (n-+k, n) is the number of the integers s such that n<<s<n-+#k
and s=0, 4,5 or 6 (mod 8).

From (3.1) and (3.2), we obtain the parts of i=0 and —4 in the
tables (2), (3) and (4).

4. KYRP(4m+1+k)/RP(4m)), KY{RP(4m-+3+k)/RP(4m+2))
(k : odd)

By [5, Corollary to Theorem 3.8], we have the parts of %:odd in
the tables (2) and (4) except for the groups

(4.1) K ~*RP(4m + 87 + 6)/ R P(4m)),
(4.2) KR P(4m + 8¢ + 8)/ R P(4m)),
(4.3) K5 *(RP(4m + 87 + 4)] RP(4m + 2)),
(4.4) K& +Y(R P(4m + 87 + 10)/ RP(4m + 2)),
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and it is also known that these are groups of order 4.

4.1, Let X=RP(4m +8r+6)/RP(4m) and A = RP(4m + 87 + 6)/
RP(4m — 1), and consider the exact sequence of the triple

0= K&%(S*™) —> K5 X) —> K5 A).
By Proposition (2. 1) we have
K9 A =K;RP®Br +6)) = Zy+ Z,+ Z,.
Therefore, we have K X)) = Z,+ 2,
4.2. Similarly to the proof of 4.1, we have K, Y RP(4m+ 8r +
8)/RP(4m)) = Z, + Z,.

4.3. Let X=RP(4m+8r+4)/RP(4m+2) and A=RP(4dm+8r+4)/
RP(4m+3), and consider the exact sequence of the triple
Z,= Kir+(sm) — K§(4) — K5 (X).
If »250, by Proposition (2. 1) we have
K5 (A)=K;'(RP(8Y)) = Z,+ Z, + Z..
Therefore, K§*YX)=Z,+ Z,.
If »r=0, we have I??,”‘*’(X) =Z, by [5, Theorem 3.2].

4.4 Similarly to the proof of 4.3 in the case of =0, we have
K4m+2( R P(4m + 87 + 10)/ RP(dm + 2)) = Z,+ Z..

5. Some lemmas

Lemma (5.1). The following homomorphisms which are induced
Srom the inclusioni: RP () CRP(n+1+k)

i K5 (RP(n+1+FE) — K5(RP (n)) (n=2),
iv: K;*(RP(n+1+k)—> K3 (RP(n)) (n=2)

are non-zero.

Proof. Consider the exact sequence of the pair

K3(RP(8r+6)/RP(2))—> K3 (R P(8r+6))—> (R P(2)).

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 16/iss1/6
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By §4, K5 (RP(8r+6)/RP(2))=0 and by [3, Theorem 1], two groups
K3 (RP(8r+6)) and K3 (RP(2) are Z,. Therefore, we obtain the isomor-
phism 7.

In the same way as the above, we have the isomorphism #; : REZ(RP

(87 +4)) —> K3¥(RP(2)). The rest of the proof is immediate from the
isomorphisms i; and 7.

Moreover, in virtue of the proof of [3, Theorem 1,i)], we have the
following

Lemma (5.2). The following exact sequence
0—> K35'(S%"%) —> K5{(RP(4s+3)) —=» K5(RP(45+2)) —> 0
splits.
6. KiRP(4m-+1+k)/RP(4m)) (k : even)

6.1. =0 (mod 8). If k=0, the results are obvious, because
RP(4m + 1)/ RP(4m)~S*"*', Therefore, let us assume % to be non-zero.
Consider the exact seqence

K5 (RP(4m+1+B) > K RP(4m)) —> K3 (RP(4m—+1+E)/ R P(4m)
— K3(RP(4m+1+E) K3 (R P(4m)).

By Lemma (5.1), ¢, and i, are non-zero, and —I?a‘(RP(4m))=Zz, T(a‘(RP
dm + 1+ k) =2Z,, Ko (RP(4m)) =2, (m: odd) or Z,+ Z,(m: even)
and K;(RP(4m+1+F))=Z, Hence, We have

(m: odd),

K5'(RP(4m-+1+ k)/RP(4m)) = { 0 ( )
s m: even).

By [3, Theorem 1],
i 1 K5 (RP(4m+1+k)) —> K& (R P(4m))

is zero homomorphism. Therefore, considering the exact sequence of the
pair, we can easily oktain the rest of this case.

6.2. k=2 (mod 8). Consider the exact sequence
K3 RP(m+1+F) —> K3 R P(dm)) —> K3 RP(4m+1+ k)] R P(4m))
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~ 3 o~
— > K5 (RP(4m-+1+k))—> K5 R P(4m)).
By Lemma (5. 1), ¢, and {, are non-zero homomorphisms. Moreover,
i(Z)=0 for Kz{(RP(4m+1+k))=Z +Z, by Lemma (5. 2). Hence, we have

Z+Z, (m: even),

I}EI(RP(4m + 1 + k)/RP(4m)) = { Z (m: odd)

Considering the exact sequence of the pair, we have the rest of this
case.

6.3. k=4 (mod 8). Similar to the proof of 6. 1.

6.4. k=06 (mod 8). Consider the exact sequence of the pair. In this
case, the following homomorphisms
i1 K3"(RP(4m+1-+k) —> Ks(RP(4m)) for m : odd,
i1 Ky (RP(Am~+1+k)—> K~ (RP(4m))
are zero by [3, Theorem 1]. And the image of the homomorphism
i: KsRP(4m+ 1+ k) —> K;(RP(4m))  for m: even
is Z, by Lemma (5.1). Then we can easily obtain the results except for

I?S“"(RP(4m+1+k)/ RP(4m)) and it is also known that this is the group
of order 8.
Next, consider the exact sequence

0=K&Y(S™)—> K5 (R P(4m~+1-+Fk)] R P(4m))—>
K5 YRP(4m+1+ k)] RP(4dm—1)).

By Proposition (2. 1), we have
K RP(4m~+1+E)|RP(4m—1)) =Ko RP(k+1)=Z1+Zs+ Zo+ Zo.

Therefore, we have K RP(4m+1+E)/RPAm))=2Z,+Z,+Z..
This completes the table (2).
7. K\(RP(4m+3+k)]RP(4m+2)) (k : even)

In the same way as §6, we have the rest parts of the table (4) except

for K§*RP(4m + 5)/RP(4m + 2))=0 or Z; On the other hand the
consideration of the E terms of the spectral sequence of K,-theory for
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RP(4m+5)/RP(4m+2) leads that K5 RP(4m+5)/RP(4m+2)) has at

least two elements. Hence, we have K& RP(4m+5)/RP(4m+2))=Z,.
This completes the table (4).

8. Ky(RP(4m+2+k)/RP(4m+1))

8.1. k=0 (mod 8). If k=0, since RP(4m+2)/RP(4m+1)==S""*?,
the results are obvious. Therefore, let us assume % to be non-zero.

In case of m =0, cosidering the exact sequence of the pair, we
have the results except for K§**RP(4m+2+k)/RP4m+1))=Z+Z, or
Z. Consider the exact sequence of the triple (RP(8¢+4m+2), RP(4m—+2),
RP(4m-+1)), then we have K{*RP(4m+2+k)/RP(dm+1))=Z+2Z,.

In case of m=0, considering the exact sequence of the pair, we have

the results except for Ks°(RP(k+2)/RP(1)) and K;RP(k+2)/RP(1)),
and it is also known that these are Z or Z+ Z,. Consider the exact

sequence of the triple (R P(8¢+2), RP(2), RP(1)), then we have K; YRP(k+
2)/RP(1)=Z+2Z, and K;RP(k+2)/RP(1)) = Z.

8.2. k=1 (mod 8). Considering the exact sequence of the pair, we
have the results except for R‘,"‘”(RP(4m + 2+ k)/RP(4m + 1)) and

K;(RP(k+2)/RP(1)), and it is also known that the ranks of these groups
are 1. Consider the exact sequence of the triple (RP(4m+2+k), RP(4m
+2), RP(4m-+1)), then we have

Z+Z,+2, if k1,

K™ (RP(Am+2+k)/RP(4m + 1)) = {Z+Z ¢ b1

and
K:(RP(k+2)/RP(1))=Z.
8.3. k=3 (mod 8). Noticing that the following homomorphisms
i1 K (RP(4m +2+k)) — K" (RP(4m+1))
i+ K" (RP(4m +2+k)) —> K& (RP(4m+1))
are zero by [3, Theorem 1], we can easily obtain the results.

8.4. The rest is similar to the above. This completes the table (3).
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