Mathematical Journal of Okayama University

Volume 16, Issue 1

1973

Article 6

SEPTEMBER 1973

K0-groups of the stunted real projective spaces

Michikazu Fujii*

Teruko Yasui[†]

Copyright ©1973 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

[†]Yamaguchi University

K_o-GROUPS OF THE STUNTED REAL PROJECTIVE SPACES

MICHIKAZU FUJII and TERUKO YASUI

1. Introduction

The purpose of this note is to calculate the \widetilde{K}_o^i -groups of the stunted real projective spaces. Our results are tabled as follows, where RP(n) is the *n*-dimensional real projective space and (t) is the cyclic group of order t.

(1)	$\tilde{K}_{0}^{4m+4}(RP(4m+k)/RP(4m-1))$	$(k \ge 0)$
(1)	Ko (KI(4/1/TK)/KI(4/1/TL))	(<i>K</i> <= 0)

k	0	-1	-2	-3	-4	-5	-6	-7
8 <i>r</i>			1					
r =0	(∞)	(2)	(2)	0	(∞)	0	0	0
<i>r</i> +0	(∞)+(2 ⁴ r)	(2)+(2)	(2)+(2)+(2)	(2)	$(\infty)+(2^{4r})$	0	0	0
8r+1							i	
r=0	(∞)+(2)	(2)+(2)	(2)	(∞)	(∞)	0	0	(∞)
<i>r</i> +0	$(\infty)+(2^{4r+1})$	(2)+(2)	(2)+(2)	(∞)	$(\infty)+(2^{4r})$	0	0	(∞)
8r+2	$(\infty)+(2^{4r+2})$	(2)+(2)	(2)+(2)	0	$(\infty)+(2^{4r})$	0	(2)	(2)
8r+3	(∞)+(2 ⁴⁷⁺²)	$(\infty)+(2)+(2)$	(2)+(2)	0	$(\infty)+(2^{4r})$	(∞)	(2)+(2)	(2)+(2)
8r + 4	$(\infty)+(2^{4r+3})$	(2)+(2)	(2)+(2)	0	$(\infty)+(2^{4r+1})$	0	(2)	(2)
8r+5	(∞)+(2 ⁴⁷⁺³)	(2)+(2)	(2)+(2)	(∞)	$(\infty)+(2^{4r+2})$	0	0	(∞)
8r+6	$(\infty)+(2^{4r+3})$	(2)+(2)	(2)+(2)+(2)	(2)	$(\infty)+(2^{4r+3})$	0	0	0
8r + 7	(∞)+(24r+3)	$(\infty)+(2)+(2)$	(2)+(2)+(2)+(2)	(2)+(2)	$(\infty)+(2^{4r+3})$	(∞)	0	0

(2)	K_0^{4m}	$\Gamma(RP(4m+1+k)/RP(4))$	(m)) $(k \ge 0)$
-----	------------	----------------------------	---------------------

k	0	-1	-2	-3	−4	-5	-6	-7
8 <i>r</i>								
r=0	(2)	(2)	0	(∞)	0	0	0	(∞)
<i>r</i> \ 0	(2^{4r+1})	(2)	(2)	(∞)	(24r)	0	0	(∞)
8r+1	(2^{4r+2})	(2)	(2)	0	(24r)	0	(2)	(2)
8r+2	(2^{4r+2})	(∞)+(2)	(2)	0	(24r)	(∞)	(2)+(2)	(2)+(2)
8r+3	(2^{4r+3})	(2)	(2)	0	(2^{4r+1})	0	(2)	(2)
8r+4	(2^{4r+3})	(2)	(2)	(∞)	(24^{r+2})	0	0	(∞)
8r+5	(2^{4r+3})	(2)	(2)+(2)	(2)	(2^{4r+3})	0	0	0
8r+6	(2^{4r+3})	(∞)+(2)	(2)+(2)+(2)	(2)+(2)	(2^{4r+3})	(∞)	0	0
8r+7	(2^{4r+4})	(2)	(2)+(2)	(2)	(2^{4r+3})	0	0	0

M. FUJII and T. YASUI

(3) $\widetilde{K}_{O}^{4m+i}(RP(4m+2+k)/RP(4m+1))$ $(k \ge 0)$

k	0	-1	-2	-3	-4	-5	-6	-7
8 <i>r</i>								
r=0	(2)	0	(∞)	0	0	0	(∞)	(2)
r ≒ 0	(2^{4r+1})	0	(∞)	0	(2 ⁴⁷)	0	(∞)+(2)	(2)
8r+1								
r=0	(2)	(∞)	(∞)	0	0	(∞)	(∞)+(2)	(2)+(2)
r ≒ 0	(2^{4r+1})	(∞)	(∞)	0	(24r)	(∞)	(∞)+(2)+(2)	(2)+(2)
8r+2	(2^{4r+2})	0	(∞)	0	(2^{4r+1})	0	(∞)+(2)	(2)
8r+3	(2^{4r+2})	0	(∞)	(∞)	(2^{4r+2})	0	(∞)	(∞)
8r+4	(2^{4r+2})	0	(∞)+(2)	(2)	(24r+3)	0	(∞)	0
8r+5	(2^{4r+2})	(∞)	(∞)+(2)+(2)	(2)+(2)	(24r+3)	(∞)	(∞)	0
8r+6	(2^{4r+3})	0	(∞)+(2)	(2)	(247+4)	0	(∞)	0
8r+7	(2^{4r+4})	0	(∞)	(∞)	(2 ^{4r+4})	0	(∞)	(∞)

(4) $\tilde{K}_0^{4m+4}(RP(4m+3+k)/RP(4m+2))$ $(k \ge 0)$

k	0	-1	-2	-3	-4	-5	-6	-7
8r								
r=0	0	(∞)	0	0	0	(∞)	(2)	(2)
r <u></u> +0	(2^{4r})	(∞)	0	0	(2^{4r})	(∞)+(2)	(2)+(2)+(2)	(2)+(2)
8r+1								
r=0	(2)	0	0	0	(2)	(2)	(4)	(2)
r ≒ 0	(2^{4r+1})	0	0	0	(2^{4r+1})	(2)	(2)+(2)	(2)
8r+2	(2^{4r+1})	0	0	(∞)	(2^{4r+2})	(2)	(2)	(∞)
8r+3	(2^{4r+1})	0	(2)	(2)	(24r+3)	(2)	(2)	0
8r+4	(2^{4r+1})	(∞)	(2)+(2)	(2)+(2)	(2^{4r+3})	(∞)+(2)	(2)	0
8r+5	(2^{4r+2})	0	(2)	(2)	(2 ^{4r+4})	(2)	(2)	0
8r+6	(2^{4r+3})	0	0	(∞)	(2 ⁴ "+4)	(2)	(2)	(∞)
8r+7	(2^{4r+4})	0	0	0	(2 ⁴ r+4)	(2)	(2)+(2)	(2)

2. Proof of the table (1)

Let ξ_k be the canonical line bundle over RP(k) and θ^n be the trivial n-dimensional vector bundle over RP(k). Then the Thom space $T(m\xi_k+\theta^n)$ and the n-fold suspension $S^n(RP(m+k)/RP(m-1))$ of the stunted projective space are homeomorphic (cf. [4, Chap. 15]).

According to $[2, \S 12]$, there is the K_o -theory Thom isomorphism $\Psi: K_o^{-i}(X) \cong \widetilde{K}_o^{-i}(T(\zeta))$ for 8*n*-dimensional vector bundle ζ over X which admits a reduction to Spin(8n). Moreover, it is well known that ζ has a

48

49

spin-reduction if and only if its first and second Stiefel-Whitney classes vanish: $w_1(\zeta) = w_2(\zeta) = 0$.

Since $w_1(l\xi_k) = w_2(l\xi_k) = 0$ iff $l \equiv 0 \pmod{4}$, we have an isomorphism $K_0^i(RP(k)) \cong \widetilde{K}_0^i(T(4m\xi_k + \theta^{im}))$. Hence, we have the following

Proposition (2.1).

$$\widetilde{K}_o^{i-4m}(RP(4m+k)/RP(4m-1)) \cong K_o^i(RP(k)).$$

By Proposition (2.1) and [3, Theorem 1], we obtain the table (1).

3.
$$\widetilde{K}_0^0(RP(n+k)/RP(n))$$
, $\widetilde{K}_0^{-1}(RP(n+k)/RP(n))$ $n \not\equiv 3 \pmod{4}$

From [1, Theorem 7.4], we have

$$\widetilde{K}_o^0(RP(n+k)/RP(n)) = Z_2^{\varphi(n+k,n)},$$

where $\varphi(n+k, n)$ is the number of the integers s such that $n < s \le n+k$ and $s \equiv 0, 1, 2$ or 4 (mod 8).

Since $n \cong 3 \pmod{4}$, by [3, Theorem 1], we obtain the following short exact sequence

 $0 \longrightarrow \widetilde{K}_o^{-4}(RP(n+k)/RP(n)) \longrightarrow \widetilde{K}_o^{-4}(RP(n+k)) \longrightarrow \widetilde{K}_o^{-4}(RP(n)) \longrightarrow 0.$ Hence, we have

$$(3.2) \widetilde{K}_0^{-4}(RP(n+k)/RP(n)) \cong Z_2^{\psi(n+k,n)},$$

where $\psi(n+k, n)$ is the number of the integers s such that $n < s \le n+k$ and $s \equiv 0, 4, 5$ or 6 (mod 8).

From (3.1) and (3.2), we obtain the parts of i = 0 and -4 in the tables (2), (3) and (4).

4.
$$\widetilde{K}_o^i(RP(4m+1+k)/RP(4m))$$
, $\widetilde{K}_o^i(RP(4m+3+k)/RP(4m+2))$ (k: odd)

By [5, Corollary to Theorem 3.8], we have the parts of k: odd in the tables (2) and (4) except for the groups

(4.1)
$$\widetilde{K}_0^{4m-2}(RP(4m+8r+6)/RP(4m)),$$

(4.2)
$$\widetilde{K}_{0}^{4m-2}(RP(4m+8r+8)/RP(4m)),$$

(4.3)
$$\widetilde{K}_{o}^{4m+2}(RP(4m+8r+4)/RP(4m+2)),$$

(4.4)
$$\widetilde{K}_{o}^{4m+2}(RP(4m+8r+10)/RP(4m+2)),$$

50

and it is also known that these are groups of order 4.

4.1. Let X = RP(4m + 8r + 6)/RP(4m) and A = RP(4m + 8r + 6)/RP(4m - 1), and consider the exact sequence of the triple

$$0 = \widetilde{K}_{o}^{4m-3}(S^{4m}) \longrightarrow \widetilde{K}_{o}^{4m-2}(X) \longrightarrow \widetilde{K}_{o}^{4m-2}(A).$$

By Proposition (2.1) we have

$$\widetilde{K}_0^{4m-2}(A) \cong K_0^{-2}(RP(8r+6)) = Z_2 + Z_3 + Z_3.$$

Therefore, we have $\widetilde{K}_o^{4m-2}(X) = Z_2 + Z_2$.

4.2. Similarly to the proof of 4.1, we have $\widetilde{K}_0^{4m-2}(RP(4m+8r+8)/RP(4m))=Z_2+Z_2$.

4.3. Let X=RP(4m+8r+4)/RP(4m+2) and A=RP(4m+8r+4)/RP(4m+3), and consider the exact sequence of the triple

$$Z_2 = \widetilde{K}_0^{4m+1}(S^{4m+3}) \longrightarrow \widetilde{K}_0^{4m+2}(A) \longrightarrow \widetilde{K}_0^{4m+2}(X).$$

If $r \neq 0$, by Proposition (2.1) we have

$$\widetilde{K_o^{4m+2}}(A) \cong K_o^{-2}(RP(8r)) = Z_2 + Z_2 + Z_2.$$

Therefore, $\widetilde{K}_{0}^{4m+2}(X) = Z_2 + Z_2$.

If r=0, we have $\widetilde{K}_0^{4m+2}(X)=Z_4$ by [5, Theorem 3.2].

4.4 Similarly to the proof of 4.3 in the case of $r \neq 0$, we have $K_0^{4m+2}(RP(4m+8r+10)/RP(4m+2)) = Z_2 + Z_2$.

5. Some lemmas

Lemma (5.1). The following homomorphisms which are induced from the inclusion $i: RP(n) \subset RP(n+1+k)$

$$i_1: \widetilde{K}_0^{-1}(RP(n+1+k)) \longrightarrow \widetilde{K}_0^{-1}(RP(n))$$
 $(n \ge 2),$

 $i_2: \tilde{K}_0^{-2}(RP(n+1+k)) \longrightarrow \tilde{K}_0^{-2}(RP(n)) \qquad (n \ge 2)$

are non-zero.

Proof. Consider the exact sequence of the pair

$$\widetilde{K}_{\overline{o}}^{-1}(RP(8r+6)/RP(2)) \longrightarrow \widetilde{K}_{\overline{o}}^{-1}(RP(8r+6)) \stackrel{i'_1}{\longrightarrow} \widetilde{K}_{\overline{o}}^{-1}(RP(2)).$$

By §4, $\widetilde{K}_o^{-1}(RP(8r+6)/RP(2)) = 0$ and by [3, Theorem 1], two groups $\widetilde{K}_o^{-1}(RP(8r+6))$ and $\widetilde{K}_o^{-1}(RP(2))$ are Z_2 . Therefore, we obtain the isomorphism i_1 .

In the same way as the above, we have the isomorphism $i'_2: \widetilde{K}_o^{-2}(RP(8r+4)) \longrightarrow \widetilde{K}_o^{-2}(RP(2))$. The rest of the proof is immediate from the isomorphisms i'_1 and i'_2 .

Moreover, in virtue of the proof of [3, Theorem 1, i)], we have the following

Lemma (5.2). The following exact sequence

$$0 \longrightarrow \widetilde{K}_o^{-1}(S^{4s+3}) \longrightarrow \widetilde{K}_o^{-1}(RP(4s+3)) \xrightarrow{i_1} \widetilde{K}_o^{-1}(RP(4s+2)) \longrightarrow 0$$
 splits.

6.
$$\widetilde{K}_o(RP(4m+1+k)/RP(4m))$$
 (k: even)

6. 1. $k \equiv 0 \pmod{8}$. If k = 0, the results are obvious, because $RP(4m+1)/RP(4m) \approx S^{4m+1}$. Therefore, let us assume k to be non-zero. Consider the exact sequence

$$\widetilde{K}_{o}^{-2}(RP(4m+1+k)) \xrightarrow{i_{2}} \widetilde{K}^{-2}(RP(4m)) \longrightarrow \widetilde{K}_{o}^{-1}(RP(4m+1+k)/RP(4m))$$
$$\longrightarrow K_{o}^{-1}(RP(4m+1+k)) \xrightarrow{i_{1}} \widetilde{K}_{o}^{-1}(RP(4m)).$$

By Lemma (5.1), i_1 and i_2 are non-zero, and $\widetilde{K}_o^{-1}(RP(4m)) = Z_2$, $\widetilde{K}_o^{-1}(RP(4m)) = Z_2$ (m: odd) or $Z_2 + Z_2$ (m: even) and $\widetilde{K}_o^{-2}(RP(4m+1+k)) = Z_2$. Hence, we have

$$\widetilde{K}_{o}^{-1}(RP(4m+1+k)/RP(4m)) = \left\{ egin{array}{ll} 0 & (m: \text{ odd)}, \\ Z_{2} & (m: \text{ even)}. \end{array} \right.$$

By [3, Theorem 1],

$$i': \widetilde{K}_o^{4m-3}(RP(4m+1+k)) \longrightarrow \widetilde{K}_o^{4m-3}(RP(4m))$$

is zero homomorphism. Therefore, considering the exact sequence of the pair, we can easily obtain the rest of this case.

6.2.
$$k \equiv 2 \pmod{8}$$
. Consider the exact sequence

$$\widetilde{K}_o^{-2}(RP(4m+1+k)) \xrightarrow{i_2} \widetilde{K}_o^{-2}(RP(4m)) \longrightarrow \widetilde{K}_o^{-1}(RP(4m+1+k)/RP(4m))$$

52

$$\longrightarrow \widetilde{K}_o^{-1}(RP(4m+1+k)) \xrightarrow{i_1} \widetilde{K}_o^{-1}(RP(4m)).$$

By Lemma (5. 1), i_1 and i_2 are non-zero homomorphisms. Moreover, $i_1(Z)=0$ for $\widetilde{K}_0^{-1}(RP(4m+1+k))=Z+Z_2$ by Lemma (5. 2). Hence, we have

$$\widetilde{K}_{0}^{-1}(RP(4m+1+k)/RP(4m)) = \left\{ egin{array}{ll} Z + Z_{2} & (m : {
m even}), \\ Z & (m : {
m odd}). \end{array}
ight.$$

Considering the exact sequence of the pair, we have the rest of this case.

- 6.3. $k \equiv 4 \pmod{8}$. Similar to the proof of 6.1.
- 6.4. $k \equiv 6 \pmod{8}$. Consider the exact sequence of the pair. In this case, the following homomorphisms

$$i: \widetilde{K}_{o}^{-6}(RP(4m+1+k)) \longrightarrow \widetilde{K}_{o}^{-6}(RP(4m))$$
 for $m:$ odd,
 $i: \widetilde{K}_{o}^{4m-3}(RP(4m+1+k)) \longrightarrow \widetilde{K}_{o}^{4m-3}(RP(4m))$

are zero by [3, Theorem 1]. And the image of the homomorphism

 $i_2: \widetilde{K}_0^{-2}(RP(4m+1+k)) \longrightarrow \widetilde{K}_0^{-2}(RP(4m))$ for m: even is Z_2 by Lemma (5.1). Then we can easily obtain the results except for $\widetilde{K}_0^{4m-2}(RP(4m+1+k)/RP(4m))$ and it is also known that this is the group of order 8.

Next, consider the exact sequence

$$0 = \widetilde{K}_{0}^{4m-3}(S^{4m}) \longrightarrow \widetilde{K}_{0}^{4m-2}(RP(4m+1+k)/RP(4m)) \longrightarrow \widetilde{K}_{0}^{4m-2}(RP(4m+1+k)/RP(4m-1)).$$

By Proposition (2.1), we have

$$\widetilde{K}_{0}^{4m-2}(RP(4m+1+k)/RP(4m-1)) = K_{0}^{-2}(RP(k+1)) = Z_{2} + Z_{2} + Z_{2} + Z_{2}$$

Therefore, we have $\widetilde{K}_o^{4m-2}(RP(4m+1+k)/RP(4m))=Z_2+Z_2+Z_2$. This completes the table (2).

7.
$$\widetilde{K}_0^i(RP(4m+3+k)/RP(4m+2))$$
 (k: even)

In the same way as §6, we have the rest parts of the table (4) except for $\widetilde{K}_0^{4n+2}(RP(4m+5)/RP(4m+2))=0$ or Z_2 . On the other hand the consideration of the E_2 -terms of the spectral sequence of K_0 -theory for

RP(4m+5)/RP(4m+2) leads that $\widetilde{K}_0^{4m+2}(RP(4m+5)/RP(4m+2))$ has at least two elements. Hence, we have $\widetilde{K}_0^{4m+2}(RP(4m+5)/RP(4m+2))=Z_2$. This completes the table (4).

8.
$$\widetilde{K}_{o}^{i}(RP(4m+2+k)/RP(4m+1))$$

8.1. $k \equiv 0 \pmod{8}$. If k = 0, since $RP(4m+2)/RP(4m+1) \approx S^{4m+2}$, the results are obvious. Therefore, let us assume k to be non-zero.

In case of $m \neq 0$, cosidering the exact sequence of the pair, we have the results except for $\widetilde{K}_0^{4m+2}(RP(4m+2+k)/RP(4m+1)) = Z+Z_2$ or Z. Consider the exact sequence of the triple (RP(8t+4m+2), RP(4m+2), RP(4m+1)), then we have $\widetilde{K}_0^{4m+2}(RP(4m+2+k)/RP(4m+1)) = Z+Z_2$.

In case of m=0, considering the exact sequence of the pair, we have the results except for $\widetilde{K}_o^{-6}(RP(k+2)/RP(1))$ and $\widetilde{K}_o^{-2}(RP(k+2)/RP(1))$, and it is also known that these are Z or $Z+Z_2$. Consider the exact sequence of the triple (RP(8t+2), RP(2), RP(1)), then we have $\widetilde{K}_o^{-6}(RP(k+2)/RP(1)) = Z+Z_2$ and $\widetilde{K}_o^{-2}(RP(k+2)/RP(1)) = Z$.

8.2. $k \equiv 1 \pmod{8}$. Considering the exact sequence of the pair, we have the results except for $\widetilde{K}_{b}^{4m+2}(RP(4m+2+k)/RP(4m+1))$ and $\widetilde{K}_{b}^{-2}(RP(k+2)/RP(1))$, and it is also known that the ranks of these groups are 1. Consider the exact sequence of the triple (RP(4m+2+k), RP(4m+2), RP(4m+1)), then we have

$$\widetilde{K}_{o}^{4m+2}(RP(4m+2+k)/RP(4m+1)) = \begin{cases} Z + Z_{2} + Z_{2} & \text{if } k \neq 1, \\ Z + Z_{2} & \text{if } k = 1, \end{cases}$$

and

$$\widetilde{K}_{o}^{-2}(RP(k+2)/RP(1))=Z.$$

8.3. $k \equiv 3 \pmod{8}$. Noticing that the following homomorphisms

$$i: \widetilde{K}_{o}^{4m-3}(RP(4m+2+k)) \longrightarrow \widetilde{K}_{o}^{4m-3}(RP(4m+1))$$
$$i: \widetilde{K}_{o}^{4m+1}(RP(4m+2+k)) \longrightarrow \widetilde{K}_{o}^{4m+1}(RP(4m+1))$$

are zero by [3, Theorem 1], we can easily obtain the results.

8.4. The rest is similar to the above. This completes the table (3).

M. FUJII and T. YASUI

REFERENCES

- [1] J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-622.
- [2] M.F. ATIYAH, R. Bott and A. Sapiro: Clifford modules, Topology 3 (1964), 3-38.
- [3] M. Fujii; Ko-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.
- [4] D. HUSEMOLLER: Fiber Bundles, McGraw-Hill, 1966.
- [5] H. Toda: Order of the identity class of a suspension space, Ann. of Math. 78 (1963) 300-325.

OKAYAMA UNIVERSITY YAMAGUCHI UNIVERSITY

(Received August 21, 1972)

54