Mathematical Journal of Okayama University

Volume 4, Issue 2 1954 Article 2
MARCH 1955

Note on compact manifolds with non-symmetric metric connections

Tominosuke Otsuki*

Copyright ©1954 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

NOTE ON COMPACT MANIFOLDS WITH NON-SYMMETRIC METRIC CONNECTIONS

TOMINOSUKE ÖTSUKI

Introduction. S. Bochner and K. Yano [3], [4]¹⁾ investigated grobal properties of compact manifolds with non-symmetric metric connections by means of pseudo-harmonic and pseudo-Killing tensor fields. The errors in [3], owing to the omission of torsion of the spaces, were corrected in [4]. T. Suguri [5] discussed also the spaces.

In this note, we shall give some remarks on spaces with nonsymmetric metric connections with regards to the torsions of the spaces.

§1. Let S_n be an *n*-dimensional manifold on which there is given a positive definite metric

$$ds^2 = g_{ij}dx^idx^j$$
 $(i, j = 1, 2, \dots, n)^2$

and a metric connection E_{ik}^{i} in local coordinates (x^{i}) .

From the assumption, we have

$$g_{ij|k} \equiv \frac{\partial g_{ij}}{\partial x^k} - g_{sj} E^s_{ik} - g_{is} E^s_{jk} = 0$$

where the solidus denotes covariant differentiation with respect to E_{ik}^i . From (1), we get

$$\frac{\partial \sqrt{g}}{\partial r^i} = \sqrt{g} E_{ki}^k.$$

Define the torsion tensor of S_n by

(3)
$$S_{ij}^{k} = \frac{1}{2} (E_{ij}^{k} - E_{ji}^{k}).$$

Now, for a scalar field φ on S_n , define an exterior form of degree n-1 by

$$Q = g^{ih}(\varphi_{|h} + 2\varphi S_{hk}^{k}) d\sigma_{i},$$

where

¹⁾ Numbers in brackets refer to the list of references at the end of the paper.

²⁾ The summation convention of tensor analysis is used throughout.

TOMINOSURE ÖTSUKI

104

$$d\sigma_i = (-1)^{i+1} \sqrt{g} dx^1 \wedge \cdots \wedge dx^{i-1} \wedge dx^{i+1} \wedge \cdots \wedge dx^n$$
.

We get by (1), (2), (3)

$$\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}} \left\{ \sqrt{g} g^{ih}(\varphi_{+h} + 2\varphi S_{hk}^{k}) \right\} \\
= E_{ri}^{r} g^{ih}(\varphi_{+h} + 2\varphi S_{hk}^{k}) \\
- (g^{rh} E_{ri}^{i} + g^{ir} E_{ri}^{h})(\varphi_{+h} + 2\varphi S_{hk}^{k}) \\
+ g^{ih} \left(\frac{\partial \varphi_{+h}}{\partial x^{i}} + 2\varphi_{+i}^{i} S_{hk}^{k} + 2\varphi \frac{\partial S_{hk}^{k}}{\partial x^{i}} \right) \\
= E_{ri}^{r} g^{ih}(\varphi_{+h} + 2\varphi S_{hk}^{k}) \\
- E_{ri}^{r} g^{ih}(\varphi_{+h} + 2\varphi S_{hk}^{k}) - g^{ir} E_{ri}^{h}(\varphi_{+h} + 2\varphi S_{hk}^{k}) \\
+ g^{ih}(\varphi_{+h+i} + E_{hi}^{k} \varphi_{+k} + 2\varphi_{+i}^{i} S_{hk}^{k} + 2\varphi S_{hk+i}^{k} + 2\varphi E_{hi}^{r} S_{rk}^{k}) \\
= \Delta \varphi + 2\varphi g^{ih}(S_{hk}^{k})_{i} - 2S_{hk}^{k} S_{ir}^{r},$$

where we put

$$\Delta \varphi = g^{ih} \varphi_{lilh}$$

Accordingly, let D be a bounded domain on S_n with a regular boundary, then we have the following formula

$$(5) \qquad \int_{\mathcal{D}} \Delta \varphi \, d\sigma = -2 \int_{\mathcal{D}} \varphi (S^{i_k}_{k|i} - 2S^{i_k}_{k} S_{i_r}) d\sigma + \int_{\partial \mathcal{D}} Q,$$

where

$$d\sigma = \sqrt{g} dx^1 \wedge \cdots \wedge dx^n$$
.

Especially, if S_n is compact, we have

(6)
$$\int_{S_n} d\varphi d\sigma = -2 \int_{S_n} \varphi \left(S_{k+i}^{i,k} - 2 S_k^{i,k} S_{ir}^r \right) d\sigma.$$

Theorem 1. On a compact space S_n with a non-symmetric metric connection, in order that for any scalar field φ , we have

$$\int_{S_n} \!\! \Delta\varphi \, d\sigma = 0,$$

it is necessary and sufficient that

(7)
$$S \equiv S_{k+1}^{i,k} - 2S_k^{i,k} S_{ir}^{r} = 0.$$

Let V_n be the Riemann space with line element

105

$$ds^2 = g_{ij}dx^i dx^j$$
.

Then we have easily the relation

(8)
$$E_{jk}^{i} = \{_{jk}^{i}\} + S_{jk}^{i} - S_{jk}^{i} - S_{kj}^{i},$$

where $\{i_{jk}\}$'s are the Christoffel symbolds made by g_{ij} . Accordingly, we get

$$S = S_{k+1}^{ik} - 2S_{k}^{ik}S_{ir}^{r}$$

= $S_{k+1}^{ik} + S_{k}^{ik}(S_{hi}^{i} - S_{hi}^{i} - S_{ih}^{i}) - 2S_{k}^{ik}S_{ir}^{r}$,

that is

$$S = S^{i_k},$$

where the comma denotes covariant differentiation of V_n .

For a given compact Riemann space with line element

$$ds^2 = g_{ij}dx^idx^j$$
,

if we have a tensor field on V_n , $S_{ij}^k = -S_{ji}^k \equiv 0$ such that every where $S \equiv S_i^k$, i = 0, then we can obtain a space S_n with a non-symmetric metric connection on which for any scalar field φ , we have

$$\int_{S_n} \! \Delta \varphi \, d\sigma = 0.$$

If S_{ijk} is skew-symmetric, S=0 always holds good. Let φ_i be a covariant vector field on V_n and put

$$S_{ij}^{k} = \delta_{i}^{k} \psi_{j} - \delta_{j}^{k} \psi_{i}.$$

Then we have

$$S_{ik}^{k} = -(n-1)\psi_{i},$$

 $S = -(n-1)\psi_{i,j}g^{ij}.$

Accordingly, in this case, (7) becomes

$$g^{ij}\psi_{i,j}=0,$$

that is, the differential form $\psi_i dx^i$ of degree 1 is co-exact. In other words, the n-1-cochain corresponding to $\psi_i dx^i$ is a cocycle. According to de Rahm's theorem, there exists always a vector field ψ_i such that $\psi_i \equiv 0$, $g^{ij}\psi_{i,j} = 0$.

TOMINOSUKE ÖTSUKI

Thus we see that for any compact Riemann space V_n , there exists a space S_n with a non-symmetric metric connection E_{ji}^k such that

$$S_{ik}^{k} = 0, \quad g^{ij}S_{ik}^{k}, = 0.$$

§2. Let

$$\varphi = \frac{1}{p!} \varphi_{l_1 \cdots l_p} dx^{i_1} \wedge \cdots \wedge dx^{i_p},$$

be an exterior differential form of degree p on a compact space S_n with a non-symmetric metric connection, where φ_{i_1,\ldots,i_p} are a skew-symmetric tensor field over S_n . We define a pseudo-exterior differentiation \hat{d} by

$$\hat{d}\varphi = \frac{1}{(p+1)!} \varphi_{i_1 \cdots i_{p+1}} dx^{i_1} \wedge \cdots \wedge dx^{i_{p+1}},$$

where

$$(13) \qquad \varphi_{i_1,\dots,i_{p+1}} = (-1)^p \left\{ \varphi_{i_1,\dots,i_p \mid i_{p+1}} - \sum_{s=1}^p \varphi_{i_1,\dots,i_{s-1}i_{p+1}i_{s+1},\dots,i_p \mid i_s} \right\}.$$

We define also a pseudo-codifferentiation $\hat{\delta}$ by

$$\hat{\delta}\varphi = \frac{-1}{(p-1)!} g^{jk} \varphi_{ji_1 \cdots i_{p-1}!k} dx^{i_1} \wedge \cdots \wedge dx^{i_{p-1}}.$$

According to S. Bochner [3], if

$$\hat{d}\varphi = 0.$$

$$\hat{\delta}\varphi = 0,$$

then we call φ pseudo-harmonic.

Now, we define a generalized Laplacian operator on S_n by

$$\hat{\Delta} = -(\hat{d}\hat{\delta} + \hat{\delta}\hat{d}).$$

For any differential form of degree p on S_n , we have

$$\begin{split} &(\hat{\mathcal{A}}\varphi)_{i_{1},\dots,i_{p}} = -(\hat{\mathcal{A}}\hat{\delta}\varphi)_{i_{1},\dots,i_{p}} - (\hat{\delta}\hat{\mathcal{A}}\varphi)_{i_{1},\dots,i_{p}} \\ &= -\sum_{s=1}^{p} (-1)^{s-1}(\hat{\delta}\varphi)_{i_{1},\dots,i_{s},\dots,i_{p}+i_{s}} + g^{jk}(\hat{\mathcal{A}}\varphi)_{ji_{1},\dots,i_{p}+k} \\ &= \sum_{s=1}^{p} (-1)^{s-1}g^{jk}\varphi_{ji_{1},\dots,i_{s},\dots,i_{p}+k+i_{s}} + g^{jk}\varphi_{i_{1},\dots,i_{p}+j+k} \\ &\quad + \sum_{s=1}^{p} (-1)^{s}g^{jk}\varphi_{ji_{1},\dots,i_{s},\dots,i_{p}+k+i_{s}} + g^{jk}\varphi_{i_{1},\dots,i_{p}+j+k} \\ &\quad = g^{jk}\varphi_{i_{1},\dots,i_{p}+j+k} + \sum_{s=1}^{p}g^{jk}(\varphi_{i_{1},\dots,i_{s-1}},\dots,i_{p}+k+i_{s}} - \varphi_{i_{1},\dots,i_{s-1}},\dots,i_{p}+i_{s}+k), \end{split}$$

106

where \hat{i}_i denotes the omission of the index i_i .

Let

$$E_{jk}^i = rac{\partial E_{jk}^i}{\partial x^k} - rac{\partial E_{jk}^i}{\partial x^h} - E_{jk}^r E_{rh}^i + E_{jh}^r E_{rk}^i,$$
 $E_{jk} = E_{jk}^h.$

be the components of the curvature tensor, Ricci tensor of S_n respectively. Then, by means of a well known formula, we can write the above equation as follows.

$$(\hat{\Delta}\varphi)_{i_{1},\dots,i_{p}} = g^{jk}\varphi_{i_{1},\dots,i_{p}+j+k} + \sum_{s=1}^{p} g^{jk} (E_{j}^{h}_{ki_{s}}\varphi_{i_{1},\dots,i_{s-1}h},\dots,i_{p} + \sum_{t < s} E_{i_{t}}^{h}_{ki_{s}}\varphi_{i_{1},\dots,i_{t-1}h},\dots,i_{s-1}j,\dots,i_{p} + \sum_{s < t} E_{i_{t}}^{h}_{ki_{s}}\varphi_{i_{1},\dots,i_{s-1}j},\dots,i_{p} - 2S_{ki_{s}}^{h}\varphi_{i_{1},\dots,i_{s-1}j},\dots,i_{p+h}) = g^{jk}\varphi_{j_{1},\dots,i_{p}+j+k} + \sum_{s=1}^{p} E_{i_{s}}^{h}\varphi_{i_{1},\dots,i_{s-1}h},\dots,i_{p} + \sum_{s < t} (E_{i_{s}i_{t}}^{h} - E_{i_{t}i_{s}}^{h})\varphi_{i_{1},\dots,i_{s-1}h},\dots,i_{p} + 2\sum_{s=1}^{p} S_{i_{s}}^{jh}\varphi_{i_{1},\dots,i_{s-1}j},\dots,i_{p+h}.$$

Accordingly, for a pseudo-harmonic tensor field φ , we have

(19)
$$g^{jk}\varphi_{i_{1},\dots,i_{p}|j|k} + \sum_{s=1}^{p} E^{h}_{i_{s}}\varphi_{i_{1},\dots,i_{s-1}h},\dots,i_{p} \\ + \sum_{s<\ell} (E^{h}_{i_{s}i_{\ell}}^{k} - E^{h}_{i_{\ell}i_{s}}^{k}) \varphi_{i_{1},\dots,i_{s-1}h},\dots,i_{\ell-1}k,\dots,i_{p} \\ + 2\sum_{s=1}^{p} S_{i_{s}}^{hk}\varphi_{i_{1},\dots,i_{s-1}h},\dots,i_{p}|k} = 0.$$

If S_n is a compact space such that $S_{ik}^{\ k} = 0$, especially a compact Riemann space, in order that φ be pseudo-harmonic, it is necessary and sufficient that (19) hold good for φ [4].

In the following, we shall investigate the same problem without any restriction for S_{i}^{k} .

For any two exterior differential forms φ , ψ of degree p and a bounded domain D with a regular boundary, we define an *inner* product of φ and ψ on D by

(20)
$$(\varphi, \psi)_D = \frac{1}{p!} \int_D \varphi^{i_1 \cdots i_p} \psi_{i_1 \cdots i_p} d\sigma.$$

TOMINOSUKE ÖTSUKI

108

If S_n is compact and $D = S_n$, we simply write

$$(\varphi, \psi)_{S_n} = (\varphi, \psi).$$

Let φ and ψ be exterior differential forms of degree p-1 and p respectively. Define a differential form of degree 1 by

$$(21) \qquad \varphi \supseteq \psi = \frac{1}{(p-1)!} \varphi^{i_1 \cdots i_{p-1}} \psi_{i_1 \cdots i_{p-1}} dx^i.$$

We call $\varphi \perp \psi$ the *left inner product* of φ and ψ , and we define analogously $\varphi \perp \psi$ for φ and ψ of degrees p and $q(p \leq q)$.

Then, we have

$$\begin{split} \frac{(\partial\sqrt{g}(\varphi_{\downarrow}\psi)^{i})}{\sqrt{g}\partial x^{i}} &= (\varphi_{\downarrow}\psi)^{i}_{\downarrow i} - 2S_{ik}{}^{k}(\varphi_{\downarrow}\psi)^{i} \\ &= \frac{1}{(p-1)!}(\varphi_{i_{1}\cdots\cdots i_{p-1}+i}\psi^{ii_{1}\cdots\cdots i_{p-1}} + \varphi_{i_{1}\cdots\cdots i_{p-1}}\psi^{ii_{1}\cdots\cdots i_{p-1}+i} \\ &\quad - 2S_{ik}{}^{k}(\varphi_{\downarrow}\psi)^{i} \\ &= \frac{1}{p!}(\hat{d}\varphi)_{i_{1}\cdots\cdots i_{p}}\psi^{i_{1}\cdots\cdots i_{p}} - \frac{1}{(p-1)!}\varphi_{i_{1}\cdots\cdots i_{p-1}}(\hat{\delta}\psi)^{i_{1}\cdots\cdots i_{p-1}} \\ &\quad - 2S_{ik}{}^{k}(\varphi_{\downarrow}\psi)^{i} \,. \end{split}$$

Hence we have

$$(\hat{d}\varphi, \, \psi)_D - (\varphi, \, \hat{\delta}\psi)_D = 2 \int_D S^{ik}_{} (\varphi \, \lrcorner \, \psi)_i d\sigma + \int_{\partial D} (\varphi \, \lrcorner \, \psi)^i d\sigma_i.$$

Using a differential form π of degree 1 defined by

$$\pi = S_{i,k} dx^{i}.$$

we obtain the following formula

$$(23) \qquad (\hat{d}\varphi, \, \psi)_D - (\varphi, \, \hat{\delta}\psi)_D \, = \, 2(\pi, \, \varphi \, \underline{\hspace{1cm}} \psi)_D \, + \, \int_{\partial D} (\varphi \, \underline{\hspace{1cm}} \psi)^i d\,\sigma_i$$

For any exterior differential form φ of degree p, we obtain from (23)

$$(\hat{d}\varphi, \ \hat{d}\varphi)_D - (\varphi, \ \hat{\delta}\hat{d}\varphi)_D = 2(\pi, \ \varphi \ _] \hat{d}\varphi)_D + \int_{\partial D} (\varphi \ _] \hat{d}\varphi)^i d\sigma_i$$

$$(\hat{d}\hat{\delta}\varphi, \ \varphi)_D - (\hat{\delta}\varphi, \ \hat{\delta}\varphi)_D = 2(\pi, \ \hat{\delta}\varphi \ _] \varphi)_D + \int_{\partial D} (\hat{\delta}\varphi \ _] \varphi)^i d\sigma_i.$$

Hence we have the formula

$$(\hat{d}\varphi, \,\hat{d}\varphi)_D + (\hat{\delta}\varphi, \,\hat{\delta}\varphi)_D + (\varphi, \,\hat{\Delta}\varphi)_D$$

$$= 2(\pi, \,\varphi \, \underline{\ } \, \hat{d}\varphi - \hat{\delta}\varphi \, \underline{\ } \, \varphi)_D + \int_{\partial D} (\varphi \, \underline{\ } \, \hat{d}\varphi - \hat{\delta}\varphi \, \underline{\ } \, \varphi)^{\epsilon} d\sigma_{\epsilon}.$$

Let S_n be compact, putting $D = S_n$ we get

$$(24) \qquad (\hat{d}\varphi, \,\hat{d}\varphi) + (\hat{\delta}\varphi, \,\hat{\delta}\varphi) + (\varphi. \,\hat{\Delta}\varphi) = 2(\pi, \,\varphi \, \underline{\hspace{1em}} \hat{d}\varphi - \hat{\delta}\varphi \, \underline{\hspace{1em}} \varphi).$$

From (24), we see that on a compact S_n , the system of equations

$$\hat{\Delta}\varphi = 0,$$

(25)
$$(\pi, \varphi \underline{\hspace{1em}}] \hat{d}\varphi - \hat{\delta}\varphi \underline{\hspace{1em}}] \varphi) = 0$$

is equivalent to the one

$$\hat{d}\varphi = 0,$$

$$\hat{\delta}\varphi = 0.$$

Thus we have a conclusion.

Theorem 2. On a compact space S_n with a non-symmetric metric connection, in order that a exterior differential form φ be pseudoharmonic, it is sufficient that

(26)
$$\hat{\Delta}\varphi = 0,$$

$$S_{ik}(\varphi \perp | \hat{d}\varphi - \hat{\delta}\varphi \perp | \varphi)^i = 0.$$

§3. In this section, we shall deduce some grobal results from (23), (24) on a compact space S_n .

Let S_n be compact and φ be any exterior differential form of degree p. By (12), (14), (21) we have

Hence we have

$$2(\pi, \varphi \rfloor \hat{d}\varphi - \hat{\delta}\varphi \rfloor \varphi) = (\pi, \hat{d}(\varphi \rfloor \varphi)) + \frac{2}{(p-1)!} \int_{\varphi_{i_1} \dots i_{p-1} \downarrow j} \varphi_{ii_1 \dots i_{p-1}} S^{ik}_k d\sigma$$

TOMINOSUKE ÖTSUKI

110

$$-\frac{2}{(p-1)!} \int \varphi^{ji_1 \cdots i_{p-1}} \varphi_{ii_1 \cdots i_{p-1}!} {}_{j} S^{ik}{}_{k} d\sigma$$

$$= (\pi, \hat{d}(\varphi \perp \varphi)) + 2(-1)^{p} (\hat{\delta} \varphi, \pi \perp \varphi)$$

$$-\frac{2}{(p-1)!} \int \varphi^{ji_1 \cdots i_{p-1}} (\varphi_{ii_1 \cdots i_{p-1}} S^{ik}{}_{k})_{+j} d\sigma$$

$$+ \frac{2}{(p-1)!} \int \varphi^{ji_1 \cdots i_{p-1}} \varphi_{ii_1 \cdots i_{p-1}} S^{ik}{}_{k+j} d\sigma$$

$$= (\pi, \hat{d}(\varphi \perp \varphi)) + 2(-1)^{p} (\hat{\delta} \varphi, \pi \perp \varphi)$$

$$+ 2(-1)^{p} (\varphi, \hat{d}(\pi \perp \varphi)) + \frac{2}{(p-1)!} \int \varphi^{ji_1 \cdots i_{p-1}} \varphi_{ii_1 \cdots i_{p-1}} S^{ik}{}_{k+j} d\sigma.$$

By virtue of (7), (23), the last side of the equation above is written as

$$= (\hat{\delta} \pi, \varphi) + 2(\pi, (\varphi) \pi)$$

$$+ 2(-1)^{p} \{ (\hat{\delta} \varphi, \pi) + (\varphi, d(\pi) \varphi) \}$$

$$+ \frac{2}{(p-1)!} \int \varphi^{ji_{1} \dots i_{p-1}} \varphi_{ii_{1} \dots i_{p-1}} S^{ik}_{k+j} d\sigma$$

$$= -(S, \varphi) + 4(-1)^{p} \{ (\hat{\delta} \varphi, \pi) + (\pi, (\pi) \varphi)) \}$$

$$+ \frac{2}{(p-1)!} \int \varphi^{ji_{1} \dots i_{p-1}} \varphi_{ii_{1} \dots i_{p-1}} S^{ik}_{k+j} d\sigma ,$$

that is

$$\begin{split} & 2(\pi, \varphi \underline{\hspace{0.3cm}} \hat{d}\varphi - \hat{\delta} \varphi \underline{\hspace{0.3cm}} \varphi) \\ & = -(S, \varphi \underline{\hspace{0.3cm}} \varphi) + 4(-1)^{p} (\hat{\delta} \varphi, \pi \underline{\hspace{0.3cm}} \varphi) \\ & + \frac{2}{(p-1)!} \int \varphi^{jl_{1} \cdots l_{p-1}} \varphi_{il_{1} \cdots l_{p-1}} S^{lk}_{k+j} d\sigma \\ & + \frac{(-1)^{p} 4}{(p-1)!} \int S_{ik}^{k} S^{jh}_{h} \varphi_{l_{1} \cdots l_{p-1}} \varphi^{il_{1} \cdots l_{p-1}} d\sigma. \end{split}$$

Define a symmetric tensor of order 2 by

(27)
$$S_{ij} = \frac{1}{2} (S_{ik}^{k}|_{j} + S_{jk}^{k}|_{i}) - 2S_{ik}^{k} S_{jk}^{h}.$$

Then, we have easily

$$(28) S = \mathbf{g}^{ij} S_{ij}.$$

Making use of S_{ij} , we obtain a formula on a compact S_n as

NOTE ON COMPACT MANIFOLDS WITH NON-SYMMETRIC

(29)
$$(\hat{d}\varphi, \hat{d}\varphi) + (\hat{\delta}\varphi, \hat{\delta}\varphi) + (\varphi, \hat{\Delta}\varphi) \\ = -(S, \varphi \perp \varphi) + (-1)^{p} 4(\hat{\delta}\varphi, \pi \perp \varphi) \\ + \frac{2}{(p-1)!} \int S_{ij} \varphi^{it_{1} \cdots t_{p-1}} \varphi^{j}_{i_{1} \cdots i_{p-1}} d\sigma.$$

Accordingly we obtain from (29) the theorem.

Theorem 3. On any compact space S_n with a non-symmetric metric connection, for any pseudo-harmonic field φ , we have

$$(30) \qquad \frac{1}{p!} \int S\varphi^{i_1\cdots i_p}\varphi_{i_1\cdots i_p} d\sigma = \frac{2}{(p-1)!} \int S_{ij}\varphi^{ii_1\cdots i_{p-1}}\varphi^{j}_{i_1\cdots i_{p-1}} d\sigma.$$

Define a symmetric tensor of order 2 by

(31)
$$L_{ij} = S_{ij} - \frac{1}{2p} g_{ij} S$$

$$= \frac{1}{2} (S_{ik}^{k}|_{j} - S_{ik}^{k}|_{i}) - 2S_{ik}^{k} S_{jh}^{h} - \frac{1}{2p} g_{ij} (S_{k}^{hk}|_{k} - 2S_{k}^{hk} S_{hr}^{r}).$$

Then (30) is written as

$$\int_{S_n} L_{ij} \varphi^{ii_1 \cdots i_{p-1}} \varphi^{j}_{i_1 \cdots i_{p-1}} d\sigma = 0.$$

Since we have

$$L = g^{ij}L_{ij} = \left(1 - \frac{n}{2p}\right)S,$$

if $n \neq 2p$ and L_{ij} is positive definite or negative definite, then there exists no pseudo-harmonic field of degree p on S_n . If L_{ij} is positive semi-definite or negative semi-definite, then any pseudo-harmonic field φ of degree p must satisfy

(32)
$$L_{ij}\varphi^{ii_1\cdots i_{p-1}}\varphi^{j}_{i_1\cdots i_{p-1}} = 0.$$

In the theory of Bochner and Yano [3], [4], the argument in the existence of pseudo-harmonic tensor fields holds good for the spaces such that S=0. But, for the spaces S_n such that $S \neq 0$, in order to perform the anologous argument to the case S=0, we can also make use of the tensor L_{ij} .

§4. Nextly, we shall investigate the same problem for pseudo-Killing tensor fields. According to Bochner and Yano [4], we call a skew-symmetric tensor φ_{i_1,\dots,i_p} pseudo-Killing if

Tominosuke ÖTSUKI

(33)
$$\varphi_{i_1,\dots,i_{p+1},j} = -\varphi_{i_1,\dots,i_{s-1},j} = -\varphi_{i_1,\dots,i_{p+1},j}, \qquad s = 1,\dots, p.$$

Let φ_{i_1,\dots,i_p} be a pseudo-Killing tensor field of degree p on S_n , then for the exterior differential form of degree p

$$\varphi = \frac{1}{p!} \varphi_{i_1 \cdots i_p} dx^{i_1} \wedge \cdots \wedge dx^{i_p},$$

we have clearly from (33)

$$\hat{\delta}\varphi = 0$$
.

Accordingly we have

112

$$\begin{split} (\hat{\varDelta}\varphi)_{i_1,\dots,i_p} &= -(\hat{\delta}\,\hat{d}\varphi)_{i_1,\dots,i_p} \\ &= g^{jk} \Big\{ \varphi_{i_1,\dots,i_p+j} - \sum_{s=1}^p \varphi_{i_1,\dots,i_{s-1},j,\dots,i_p+i_s} \Big\}_{+k} \\ &= (p+1)g^{jk} \varphi_{i_1,\dots,i_p+j+k} \,. \end{split}$$

Define a *linear operator* K defined for any exterior differential form ψ of degree p by

$$(K\psi)_{i_{1},\dots,i_{p}} = g^{jk}\psi_{i_{1},\dots,i_{p}|j|k} - \frac{1}{p}\sum_{s}E^{h}_{i_{s}}\psi_{i_{1},\dots,i_{s-1},h,\dots,i_{p}}$$

$$-\frac{1}{p}\sum_{s< t}(E^{h}_{i_{s}i_{t}}^{j} - E^{h}_{i_{t}i_{s}}^{j})\psi_{i_{1},\dots,i_{s-1},h,\dots,i_{t-1},j,\dots,i_{p}}$$

$$-\frac{2}{p}\sum_{s}S_{i_{s}}^{jh}\psi_{i_{1},\dots,i_{s-1},j,\dots,i_{p}|h}.$$

Then, for a pseudo-Killing tensor φ of degree p, we have by (18) and the equation above

$$K\varphi = 0.$$

By means of (29) and (34), for any field φ on compact space S_n , we have

$$(\hat{d}\varphi,\hat{d}\phi) + (\hat{\delta}\varphi,\hat{\delta}\varphi) - p(\varphi,K\varphi) + \frac{(p+1)}{p!} \int g^{jk} \varphi_{i_1,\dots,i_{p+j+k}} \varphi^{i_1,\dots,i_{p}} d\sigma$$

$$= (-1)^p 4(\hat{\delta}\varphi,\pi \perp \varphi) + \frac{2}{(p-1)!} \int L_i^j \varphi^{ii_1,\dots,i_{p-1}} \varphi_{ji_1,\dots,i_{p-1}} d\sigma.$$

The left hand side of the above equation is written as

$$\begin{split} (\hat{d}\varphi, \ \hat{d}\varphi) + (\hat{\delta}\varphi, \ \hat{\delta}\varphi) - p(\varphi, \ K\varphi) \\ + \frac{p+1}{2 \cdot p!} \int \left\{ \hat{d} \left(\varphi_{i_1 \dots i_p} \varphi^{i_1 \dots i_p} \right) - 2 \varphi_{i_1 \dots i_p \mid j} \varphi^{i_1 \dots i_1 \mid j} \right\} d\sigma. \end{split}$$

Hence we have by (6) an equation

$$\begin{split} &(\hat{d}\varphi,\,\hat{d}\varphi)+(\hat{\delta}\varphi,\,\hat{\delta}\varphi)-p(\varphi,\,K\varphi)-\frac{p+1}{p!}\int\varphi_{i_1,\ldots,i_{p+1}}\varphi^{i_1,\ldots,i_{p+1}}d\sigma\\ &=(-1)^p4(\hat{\delta}\varphi,\,\pi\mathrel{\square}\varphi)+\frac{2}{(p-1)!}\int M_i{}^j\varphi^{ii_1,\ldots,i_{p-1}}\varphi_{ji_1,\ldots,i_{p-1}}d\sigma. \end{split}$$

where we put

(35)
$$M_{ij} = L_{ij} + \frac{p+1}{2p} S g_{ij} = S_{ij} + \frac{1}{2} S g_{ij}.$$

Since we have

$$\begin{split} &(\hat{d}\varphi)_{i_1,\dots,i_p,j}(\hat{d}\varphi)^{i_1,\dots,i_p,j} - (p+1)^2\varphi_{i_1,\dots,i_p+j}\varphi^{i_1,\dots,i_p+j}\\ &= (\varphi_{i_1,\dots,i_p+j} - \sum_{s=1}^p \varphi_{i_1,\dots,i_{s-1}j,\dots,i_p+s}) \left(\varphi^{i_1,\dots,i_p+j} - \sum_{t=1}^p \varphi^{i_1,\dots,i_{t-1}j,\dots,i_p+s}\right)\\ &- (p+1)^2\varphi_{i_1,\dots,i_p+j}\varphi^{i_1,\dots,i_p+j}\\ &= -\frac{p(p+1)}{2} \left(\varphi_{i_1,\dots,i_{p-1}i+j} + \varphi_{i_1,\dots,i_{p-1}j+i}\right) \left(\varphi^{i_1,\dots,i_{p-1}i+j} + \varphi^{i_1,\dots,i_{p-1}j+i}\right), \end{split}$$

we obtain the relation

$$\begin{split} &(\hat{d}\varphi,\,\hat{d}\varphi) - \frac{p+1}{p\,!} \int \varphi_{i_1,\dots,i_{p+1}} \varphi^{i_1,\dots,i_{p+1}} d\sigma \\ &= -\frac{1}{2\cdot (p-1)\,!} \int (\varphi_{i_1,\dots,i_{p-1},i+j} + \varphi_{i_1,\dots,i_{p-1},j+i}) \\ &\qquad \qquad (\varphi^{i_1,\dots,i_{p-1},i+j} + \varphi^{i_1,\dots,i_{p-1},j+i}) d\sigma. \end{split}$$

Thus we obtain a formula from the last equation

$$(\hat{\delta}\varphi, \hat{\delta}\varphi) - p(\varphi, K\varphi)$$

$$-\frac{1}{2\cdot (p-1)!} \int (\varphi_{i_{1}\cdots\cdots i_{p-1}j+k} + \varphi_{i_{1}\cdots\cdots i_{p-1}k+j})$$

$$(\varphi^{i_{1}\cdots\cdots i_{p-1}j+k} + \varphi^{i_{1}\cdots\cdots i_{p-1}k+j}) d\sigma$$

$$= (-1)^{n} 4(\hat{\delta}\varphi, \pi \underline{\hspace{0.5cm}}\varphi)$$

$$+ \frac{2}{(p-1)!} \int M_{j}^{k} \varphi^{ji_{1}\cdots\cdots i_{p-1}} \varphi_{ki_{1}\cdots\cdots i_{p-1}} d\sigma.$$

If φ is pseudo-Killing, we have from (36)

$$\int M_j^k \varphi^{ji_1 \cdots i_{p-1}} \varphi_{ki_1 \cdots i_{p-1}} d\sigma = 0$$

since (33), $\hat{\delta}\varphi = 0$ and $K\varphi = 0$.

TOMINOSUKE ŌTSUKI

Thus, we obtain the following theorem.

Theorem 4. On a compact space S_n with a non-symmetric metric connection, for any pseudo-Killing tensor field φ_{i_1,\dots,i_n} , we have

(37)
$$\int M_j^k \varphi^{j i_1 \cdots i_{p-1}} \varphi_{k i_1 \cdots i_p} d\sigma = 0.$$

On the equivalent conditions (Bochner and Yano [4], Theorem 14), we obtain easily from (36) the following theorem.

Theorem 5. On a compact space S_n with a non-symmetric metric connection, in order that a skew-symmetric tensor field φ_{i_1,\dots,i_p} be pseudo-Killing, it is necessary and sufficient that

$$\hat{\delta}\varphi = 0$$
, $K\varphi = 0$

and (37) hold good.

114

REFERENCES

- [1] S. Bochner, Vector fields and Ricci curvature. Bulletin of the Amer. Math. Soc., Vol. 52, 1946, pp. 776-797.
- [2] ———, Curvature and Betti numbers, Annals of Math., Vol. 49, 1948, pp. 379 390.
- 3] ———, Curvature and Betti numbers II. Annals of Math., Vol. 50, 1949, pp. 77 93.
- 4] S. Bochner and K. Yano, Tensor-fields in non-symmetric connections. Annals of Math., Vol. 56, 1952, pp. 504-519.
- 5] T. Suguri, On pseudo-harmonic tensor fields. Memoirs of Fac. of Sci., Kyūshū Univ., Ser. A, Vol VII, No. 2, pp. 61 – 68.
- 6] E. Hopf, Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung von elliptischen Typus. Preuss. Akad. Viss. Sitzungsber., 19 (1927), pp. 149 – 152.
- 7] K. KODAIRA, Harmonic fields in Riemannian manifolds. Annals of Math., Vol. 50, 1949, pp. 587-665.
- 8] S. S. Chern, Lecture note on differential geometry I, 1952.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received November 10, 1954)

http://escholarship.lib.okayama-u.ac.jp/mjou/vol4/iss2/2

12