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NOTE ON COMPACT MANIFOLDS WITH NON-SYMMETRIC
METRIC CONNECTIONS

Towminosuke OTSUKI

Introduction. S. Bochner and K. Yano [3], [4]” investigated grobal
properties of compact manifolds with non-symmetric metric connec-
tions by means of pseudo-harmonic and pseudo-Killing tensor fields.
The errors in [3], owing to the omission of torsion of the spaces,
were corrected in [4]. T. Suguri [5] discussed also the spaces.

In this note, we shall give some remarks on spaces with non-
symmetric metric connections with regards to the torsions of the
spaces.

§1. Let S, be an n-dimensional manifold on which there is given
a positive definite metric

ds* = g,dx'dx’ Gj=12 - » 1)

and a metric connection Ej, in local coordinates (xf).
From the assumption, we have

0
(1) i = a—i%—gs_;E&. —&g:E% =0

where the solidus denotes covariant differentiation with respect to
Ej.. From (1), we get

61/ -
(2) £ - g Ei.

axt
Define the torsion tensor of S, by

(3) Stj":%— 5 — E5.

Now, for a scalar field ¢ on S,, define an exterior form of
degree n—1 by

(4) 2 = g™Men+ 208Su"doy,

where

1) -Numbers in bracketis refer to the list of references at the end of the paper.
2) The summation convention of tensor analysis is used throughout.
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do, = (—=1)"*'V g dx' A\ eee-c- AdXI A DX e Adx.
We get by (1), 2), 3)

1
ara ax‘
= ELg™en + 2055
—(@™EL + g EN (@, + 2085,

+g‘h( 0910 1 20,85 + 20 as” )

{V'g g™, + 208}

= ELg™pin + 205"

— ELg™ (@, + 2055 — g EN(e ), + 2085

+ 8@ ni + Efe + 201,808 + 208505 + 20 B S,
= d¢ + 208"(Su"1 — 25u°Sy7),

where we put
de = g"‘(om,..

Accordingly, let D be a bounded domain on S, with a regular
boundary, then we have the followingformula

where
= 1/? dxt A <o A dxt.

Especially, if S, is compact, we have

(6) S dods = —2g (4 — 285, do.
Sn
Theorem 1. On a compact space S, with a non-symmetric metric
connection, in order that for any scalar field ¢, we have

SS dods = 0,

”

it is necessary and sufficient that
(7) S = S% — 28%S,” = 0.

Let V, be the Riemann spacé with line element
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ds* = g,dx‘dx’.

Then we have easily the relation

(8) e = {%} + St — S' — Sy,
where {{}’s are the Christoffel symbolds made by g;;. Accordingly,
we get
S = 8- 2548,
= S‘kk.i + Snkk (Smi - S‘M - Sim) - zsikk {rr!
that is

S = Stl.:k.t ’

where the comma denotes covariant differentiation of V.
For a given compact Riemann space with line element

ds® = g,dx‘dx’,

if we have a tensor field on V,, S, = —S;*==0 such that every
where S=S%*, =0, then we can obtain a space S, with a non-sym-
metric metric connection on which for any scalar field ¢, we have

SS dods = 0.

n

If S, is skew-symmetric, S =0 always holds good.
Let ¢, be a covariant vector field on V, and put

(10) Su’c = 3?‘1’1 — 3’;‘:”":-
Then we have

S“ck = "—(n - 1)‘ll'l’

S = —(@m—-1Dy,,8".
Accordingly, in this case, (7) becomes
(11) g, = 0,

that is, the differential form +~dx' of degree 1 is co-exact. In other
words, the n— l-cochain corresponding to +,dx' is a cocycle. Ac-
cording to de Rahm’s theorem, there exists always a vector field
such that v, ==0, g¥y,,; = O.
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Thus we see that for any compact Riemann space V,, there exists
a space S, with a non-symmeltric metric connection Ej, such that

Sy = 0, &YSu5; = 0.
§2. Let

be an exterior differential form of degree p on a compact space S,
with a non-symmetric metric connection, where @yy.q, ATE 2 skew-
symmetric tensor field over S,. We define a pseudo-exterior differ-
entiation d by

(12) d(o = —(p—_i]_.]—_)—'—‘/’ll..,... ;p“dx’l FANELITES N dxtoss,
where

.

i —_ » — \
(13) ‘/’{l ...... 1’,_” = ( 1) {("zl iy 14 %1 ¢tl 5‘:—159‘_1(“’] 'p 1 5‘} .

p+1 =1
We define also a pseudo-codifferentiation & by

'{14) é(’ = (p:_]iJ'gjkq’j;l......iﬂ_llkdx‘l FANERTRER A dxis-1,

According to S. Bochner [3], if

a5
(16)

then we cali ¢ pseudo-harmonic.
Now, we define a generalized Laplacian operator on S, by

17) 4 = —(dé +3d).

‘o=01

S Qo

¢:01

For any differential form of degree p on S,, we have

» A cr §
= - E (_1):_1(8 (")11....‘.23 N + g""(d?)ﬁl ..... i1k
t=1 ;

»

r
— ( __1\5—1 ik N Sk
2 { 1) g (0_;31 oo LK L -+ g ¢1L ...... t,hd 1%

8=1

1)
+ 32:31 (—1)sg'"‘¢_-'{1 ..... - IAE:

] ol's
Jk 2 Jk
= g (0.-1......1111“1: + sglg (¢zl ..... by Gt LKL, T Py runene fg_y dervee {plis]k)’
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where 7, denotes the omission of the index i,.

Let
o Ej 1E}, r v
E,',m = F;] x’: - 3x‘;’f - EikEr‘n + E;n E;.,
EJL- = Ejhm'

be the components of the curvature tensor, Ricci tensor of S, re-
spectively. Then, by means of a well known formula, we can write
the above equation as follows.

(499);1-—--- L, = gjk(";lnm-zp 1J1&

85—

(18) . + Z (E hi"tj — h‘tisj ) [4 iy

<t

» .
i
+ 2 2——‘ S[{{“(P;l IS Fo s lne

S=]

Accordingly, for a pseudo-harmonic tensor field ¢, we have

R
g"‘(o,l......jp“” + M ENY Py
§=1
(19) + 2 (Eneszf - Eh{ i k)(pil ...... ¢

5<t ts

P - .
+ ZES;;‘.‘QD}I ...... is—-l"‘ ...... Iplk = 0.

§=1 .

If S, is a compact space such that S,*= 0, especially a compact
Riemann space, in order that ¢ be pseudo-harmonic, it is necessary and
sufficient that (19) hold good for ¢ [4].

- In the following, we shall investigate the same probiem without
any restriction for S,f.

For any two exterior differential forms ¢, y» of degree p and a
bounded domain D with a regular boundary, we define an inner
product of ¢ and - on D by

(20) (‘r”-' Y)p = 3T [2e] P\b‘;l ...... i do.
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If S, is compact and D = S,, we simply write
(o, Vs, = (o, ¥).
Let ¢ and +» be exterior differential forms of degree p—1 and p

respectively. Define a differential form of degree 1 by

1
(21) (4 _]"!" = m@il ‘1"”!/'“1......1 dxt.
We call ¢ _|y the left inner product of ¢ and +, and we -define
analogously ¢ _ ]y for ¢ and +» of degrees p and g(p < g).

Then, we have

-1

0V g (¢ ]9

.‘/? xt = (¢ ¥ — 2S5 e )
= (p__]_‘,m(¢‘l ...... “p_lll‘i"i“m"""'l + (0‘1------‘},_,"1’"{1 ...... ""IH
— 28, (e 1)
_ 1 (d‘ gy et 1 N7 AV TN
= W— ¢)51 ......tp\," p ~ -(—p—_—l)—lwﬁ ......(p_‘( 111‘) »
— 25,° (o 1 ‘1")‘ .

Hence we have

o, o — 0, Sy = 2| 5% Sndo + |, 0 1rda.
Using a differential form = of degree 1 defined by
(22) = = S,*dx',
we obtain the following formula
@) e, ¥ — (o B0 = 2m 0 s + |0 1 wrde

For any exterior differential form ¢ of degree p, we obtain from
(23) :

de, de)p — (o, sde), = 2(, ¢_]¢f¢)p + SaD(w__Iﬁ(a)‘d«n
e, 01y — B0, 805 = 2r, S0 Lo, + | Bo _torda..

Hence we have the formula
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(do, de)p + B0, 0)p + (0, do),
= 2(n, ¢ _de — b0 ey + SaD(fP _Jde — 8¢ _le)do,.
Let S, be compact, putting D = S, we get
@4) (e, do) + (6o, 80) + (. do) = 2z, ¢ _de — b0 _l¢).

From (24), we see that on a compact S,, the system of equations

(19) do = 0,

(25) (= ¢ _lde — 8¢ o) = 0
is equivalent to the one

(15) de = 0,

(16) so = 0.

Thus we have a conclusion.

Theorem 2. On a compact space S, with a non-symmetric metric
connection, in order that a exterior differential form ¢ be pseudo-
harmonic, it is sufficient that

A

A(o=0,

(26) .
we _Jde —6¢ o)t = 0.

§3. In this section, we shall deduce some grobal results from
(23), (24) on a compact space S,.

Let S, be compact and ¢ be any exterior differential form of
degree p. By (12), (14), (21) we have

@ _lde —do_te)

. 1 gy o ‘p( _ i" (_1)8—1¢ R
— p! ¢ 9011 ...... £, 1) e Bt

.......

Hence we have
2, ¢ _lde — 380 _Jo) = (x, dle _1e))

+ (j)Tzlﬁ S Mt 3Pty o ‘p—LSitk da
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__ 2
(p—1)!

= (7, dle _|¢)) + 2(=1)"@Ge¢, n_!¢)
__ 2
(p-D1!

S ¢'"'l ‘ﬂ-!¢u ...... fp_1 1y S“‘k dﬂ

S (p'”l 1P_L(¢ﬁl ot ikk) | _,dﬂ'

n—1
+ ﬁﬂ@"l P1Qy s, Sy 3d0
= (n, dle __0}) +2(=1)"@e, n_l0)

+ 2(=1)%(e, d(= _1 o)) + S%,, ;do.

Pl
ity vty

PR
@®»-1!
By virtue of (7), 23), the last side of the equation above is written
as
= @m ¢ _lo) + 2, (¢ _lo)n)
+2(=1)*{6e, = _| o) + (¢, d(z _| o)}

+ (p__z-i‘ﬁg“’”' """ ‘p—1¢nl"'-~: S%,,do

= —(S, ¢ _lo)+ 4= {(do, n _1¢) + (m (& _| @) o}

S P

-1

that is

2(m, ¢_lcf¢—5<o_,‘¢)»
= =S, ¢_lo) + 4(=1)*@Be, = _lo)

+ (1—)—_2‘T)! S o mmiﬁ"‘!¢(11 ..... 1p_lSllk|Jd0'
_1\»
N ((1) i)1)4| SSm"SJ"ML ~~~~~ @1 d

Define a symmetric tensor of order 2 by
@7) Su = 5 (Sufis + Sify) — 25458,
Then, we have easily

(28) S = g¥vs,.

Making use of S;;, we obtain a formula on a compact S, as
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(de, do) + @o, 80) + (o, dg)

29) = —(S, ¢_1o) + (—1)°4(60, = _{0)
+ 5—2—1)_! S Syt 1@ ... iy do.

Accordingly we obtain from (29) the theorem.
Theorem 3. On any compact space S, with a non-symmetric
metric connection, for any pseudo-harmonic field ¢, we have

(30 % [ sor-0,..p do = ﬁg St~ do.
Define a symmetric tensor of order 2 by

Ly =8,— %gus

(31) 1 k k k ‘ r 1 hk hk

S ‘z—(Slk 1j = Silé li,) - 2Su¢ th -_— gg‘j(s e — 28 A:Sl"‘r).
Then (30) is written as
(30,) SS L;J(D“lwmi?'lquil ...... (p_‘do' = 0.

Since Wé have
— T . n
L = F4 L,; = (1 — —2 )S,

if nx2p and L, is positive definite or negative definite, then there
exists no pseudo-harmonic field of degree p on S,. If L, is positive
semi-definite or negative semi-definite, then any pseudo-harmonic field
¢ of degree p must satisfy

(32) LUW“‘ ""“‘3’—‘9"’11......5 = 0.

-1

In the theory of Bochner and Yano [3], [4], the argument in the
existence of pseudo-harmonic tensor fields holds good for the spaces
such that S = 0. But, for the spaces S, such that S0, in order
to perform the anologous argument to the case S =0, we can also
make use of the tensor L.

§4. Nextly, we shall investigate the same problem for pseudo-
Killing tensor fields. According to Bochner and Yano [4], we call a
skew-symmetric tensor ¢, ... " pseudo- Killing if
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(33) (73, i) = — @ SRR s = ,......,p

1 g bgay Sy

Let Py, be a pseudo-Killing tensor field of degree p on S,, then
for the extenor differential form of degree p

¢ = E]:T%‘ ...... s dxt N e A dxi»,
we have clearly from (33)
bo =.0
Accordingly we have
@ yorms, = — (30, s

— gk - :
= g {(Ptl------tplj %{q)‘l """ ‘s-—lj'"""n”s} ke
= @ +1D&" 0t 151

Define a linear operator K defined for any exterior differential form
1 of degree p by

(K'\I")(J oty = gjk\["il ...... {p[ Jle —
(34 -
235,y ety gty

Then, for a pseudo-Killing tensor ¢ of degree p, we have by (18)
and the equation above

K¢ = 0.

By means of (29) and (34), for any field ¢ on compact space S,,
we have

(&w’ Cib)) + ((§¢’ é(p) - P(‘P: K(P) + (pp-!-' 1) SgJL(o‘ ______ i 1‘”,‘(0 [ iy dﬂ
P 2
= (=1r4Gen o) + 5= i

The left hand side of the above equation is written as

»-1

(do, do) + (S0, 80) — plo, Ko)

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 4/iss2/2

10



Otsuki: Note on compact manifolds with non-symmetric metric connections

NOTE ON COMPACT MANIFOLDS WITH NON-SYMMETRIC 113

Hence we have by (6) an equation

(de, do) + B0, 80) — ple, Ko) — p+1 S

= (=1)’4@@¢, = o) + = 1) ey S M/ homry oy Ao

where we put

(35) M, = L, + %Sg,, =S, + %Sgi,.

Since we have

(ﬁltp){l ...... " j(dqo)l """ — D+ 1Yey @
= (@ s ,,—Z.lqo, ...... toy et 1o) (@il g §¢‘1 Lo dmmiplity
il V20 o R iyt
- P(?;;B(%l ...... tyoi i1 T Py 5”_1“1) (P to-1t gl iy I,

15
= 2 (I) 1)' S ((Pz ...... i, 119 + ¢i1"""‘y—1”‘)
(q)‘l"""‘za—l”j + ‘Ptl"""ip—lj“)do'.
Thus we obtain a formula from the last equation

@G, 8¢) — ple, Ko)

1
m‘g(% ...... ‘p—x-“’“"i“”t, ...... e w1

-t
(36) (@l 1k gty
= (=460, = _ @)

+ (p _2.']_)1 S Mjk¢ji - ""“Pﬁ .t do.

p-1

181 dg

If ¢ is pseudo-Killing, we have from (36)

since (33), ¢ = 0 and K¢ = 0.
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Thus, we obtain the following theorem.
Theorem 4. On a compact space S, with a non-symmetric metric
connection, for any pseudo-Killing tensor fleld Pt s WO have

(37) [ Mromtiaipy . do = 0.

On the equivalent conditions (Bochner and Yano [4], Theorem 14),
we obtain easily from (36) the following theorem.

Theorem 5. On a compact space S, with a non-symmetric metric
connection, in order that a skew-symmelric tensor field . be
pseudo-Killing, it is necessary and sufficient that

bp =0, Ko =0
and (37) hold good.
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