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RINGS FOR WHICH THE CONVERSE OF
SCHUR’S LEMMA HOLDS

Yasuyuki HIRANO and Jae Keor PARK*

By Schur’s lemma, if M is an irreducible right module over a ring R,
then the endomorphism ring Endx(M) is a division ring. However the con-
verse assertion is not true in general. In this paper, we consider when the
converse assertion is true.

In § 1 we give some results concerning modules. Let R be a semiprime
ring, and e a nonzero idempotent of R. Then it is well known that eR is
irreducible if and only if Endg(eR) (= eRe) is a division ring. This result
was generalized by R. Ware [10]. He proved that a projective right module
P over a semiprime ring R is irreducible if and only if Endx(P) is a divi-
sion ring. In this case, P is isomorphic to a (non-nilpotent) minimal right
ideal of R. As the main result of this section, we prove that a right module
M over a ring R is isomorphic to a non-nilpotent minimal right ideal of R if
and only if Endx(M) is a division ring and the annihilator of the trace ideal
of M in R is zero. As a corollary of this result, we extend the above result
of Ware. We prove that a torsionless module M over a semiprime ring R is
irreducible if and only if Endz(M) is a division ring.

In §2 we study rings over which a given right module is irreducible
whenever its endomorphism ring is a division ring. For simplifying our nota-
tions, we denote this property by (CS) which may be regarded as a converse
of Schur’'s lemma. We show that this property is Morita invariant. Obvi-
ously a semisimple Artinian ring has the property (CS). More generally we
show that a von Neumann regular ring with primitive factor rings Artinian
has (CS). Hence a von Neumann regular P.I. ring has (CS). However, in
general, a von Neumann regular ring need not have this property. In fact,
we show that the endomorphism ring Fndp(V) of a vector space V of a divi-
sion ring D has the property (CS) if and only if V is finite dimensional. It
seems to be very difficult to determine the class of rings with (CS), even the
class of P.I. rings with (CS). However we show that a P.I. ring with (CS)
is necessarily n-regular. Using this result, we give a characterization of
an Azumaya algebra with (CS). Actually for an Azumaya algebra, having
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the property (CS) is equivalent to the z-regularity.

§1. Some results on modules. Let R be a ring, M a right R-module
and M* = Homy(M, R). Then the subset t(M) of R consisting of the elements
of the form 2J; fi(m;) where the f; are from M* and the m; are from M,
forms a two-sided ideal of R, called the trace ideal of M. And Anny(t(M))
denotes the set {m € M | mt(M) = 0}.

We begin this section with the following :

Theorem 1. Let R be a ring, and M a right R-module. Then the fol-
lowing statements are equivalent :
(1) M is isomorphic to a non-nilpotent minimal right ideal of R.

(2) Endy(M) is a division ring and Anny(¢(M)) = 0.

Proof. (1) = (2). By Schur's lemma Endz(M) is a division ring.
Since M is isomorphic to a minimal right ideal of R, t(M) is the sum of all
minimal right ideals of R which are isomorphic to M. By hypothesis {(M)?
=+ 0, and hence Mt(M) # 0. Since t(M) is an ideal of R, Anny,(#(M)) is an
R-submodule of M. Since M is irreducible and Mt(M) #= 0, we conclude
that A’n’l’lu(t(M)) = 0.

(2)=>(1). Let m be a nonzero element of M. Then mi(M) =+ 0 by hy-
pothesis, and so there exist f € M* and x € M such that mf(x) #+ 0. Then
mf is a nonzero element of the division ring Ende(M), and hence mf is an
automorphism of M. Therefore mR DO mf(M) = M. This implies that M is
irreducible.

Let I be a minimal right ideal of R which is isomorphic to M. Clearly,
if I* =0, then MI = 0. Since t(M) is the sum of all minimal right ideals
which are isomorphic to M and since Mt(M) + 0 by hypothesis, we conclude
that there exists a non-nilpotent minimal right ideal which is isomorphic to

M.

Let R be a ring. A right R-module M is called semiprime if, for each
nonzero element m of M, there exists f € M* such that mf(m) =+ 0.
As an immediate consequence of Theorem 1, we obtain the following :

Corollary 2. Let R be a ring, and M a semiprime right R-module.
Then M is irreducible if and only if Endx(M) is a division ring.

A module M over a ring R is called torsionless if M is embedded in a
direct product of copies of R. As was mentioned in [11, p.555], torsionless
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modules over semiprime rings are semiprime. Hence we can improve [8,
Corollary 4.4] as follows.

Corollary 3. Let R be a semiprime ring, and M a torsionless right R-
module. Then M is irreducible if and only if Endx(M) is a division ring.

A Frobenius algebra with a symmetric associative nondegenerate bi-
linear form is called a symmetric algebra. Let G be a finite group and let K
be an arbitrary field. Then the group algebra KG is a symmetric K-algebra.

Proposition 4. Let R be a symmeiric algebra over a field K, and M an
injective (or equivalently projective) right R-module. Then M is irreducible
if and only if Endx(M) is a division ring.

Proof. By [10, Proposition 4.3] we may assume that M = eR for some
primitive idempotent e of R. Let J denote the Jacobson radical of R, and
7(J) the right annihilator of J. By [4, Proposition 9.12], eR/eJ is isomor-
phic to the unique minimal submodule 7(J)e of eR. Let ¢ denote the compos-
ite map of the natural epimorphism eR — eR/eJ with an isomorphism eR/eJ
— 7(J)e. Then @is a nonzero endomorphism of eR. By hypothesis ¢ is an
automorphism of eR, and hence we conclude that eR equals to its socle.
Therefore eR is irreducible.

In case R is a commutative ring, we have the following:

Proposition 5. Let R be a commutaiive ring and lei M be either a
finitely generated module or a projective module. Then M is irreducible if
and only if Endy(M) is a division ring.

Proof. Suppose that Endx(M) is a division ring. If M is projective,
then M is cyelic by [10, Proposition 4.3]. So, in either case, M is finitely
generated. Then we can easily see that every element of D = Endx(M) is
integral over R. Since D is a division ring, R = R/Annz(M) must be a
field. where Annz(M) denotes the annihilator of M in R. Since Endz(M) is
a division ring, M must be indecomposable, and hence M is a one-dimension-
al vector space over R. Therefore M is an irreducible R-module.

The following example shows that Proposition 5 does not remain true
for P.I. rings.
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Example 6. Let F be a field and consider the subring

(%)

of the ring M,(F) of all 2 X2 matrices over F. Then

_ FF)
M“(oo

is a right ideal of R generated by the idempotent
2
00
and so M is a cyclic projective right R-module. Clearly M is not irreduc-
ible, but Endg(M) is isomorphic to the field F.

§ 2. Rings for which the converse of Schur’s lemma holds. A ring R
is said to have the property (CS) if a given right R-module M is irreducible
whenever Endy(M) is a division ring.

We start this section with the following :

Proposition 7. The property (CS) is Morita invariant.

Proof. Assume that a ring R has the property (CS) and a ring S is
Morita equivalent to R. Then we have two functors F : Mod-R — Mod-S and
G : Mod-S —» Mod-R with FG=1 and GF = 1.

Now to prove that S also has the property (CS), suppose that M is a
right S-module with Ends(M) a division ring. Then Ends(M) is isomor-
phic to Endi(G(M)) by [1, Proposition 21.2]. Since R has the property
(CS), G(M) is irreducible and hence M, which is isomorphic to FG(M), is

also an irreducible right S-module.
In relation with property (CS), we consider the following condition :

(*) Every nonsingular uniform right R-module is irreducible.

Lemma 8. If R has the property (CS), then every factor ring of R sai-
isfies (*).

Proof. Since every factor ring of R has (CS), it suffices to prove that
R satisfies the condition (*). Let M be a nonsingular uniform right R-mod-
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ule, and M denote the injective envelope of M. Then M is a nonsingular in-
jective indecomposable right R-module. By [1, Lemma 25.4], S = EndR(M)
is a local ring. By [1, Proposition 18.20], an element f of S is in the
Jacobson radical J(S) of S if and only if Ker(f) is essential in M. So, if
f € J(S), then the singular module M/Ker(f) is isomorphic to a submodule
of M. But this implies f = 0, because M is nonsingular. This implies
J(S)= 0, and hence the local ring S is a division ring. By virtue of the
property (CS), we conclude that M and hence M is irreducible.

We show that quasi- Frobenius rings satisfy (*).

Example 9. Let R be a quasi-Frobenius ring, and M a nonsingular
uniform right R-module. Then the socle Soc(M) of M is nonsingular and
hence projective. Since R is quasi-Frobenius, every projective module is
injective. Thus Soc(M) is injective, and so Soc(M) is a direct summand of
M. But, since M is uniform, M must coincide with its socle Soc(M), so
that M is irreducible.

The ring R in Example 6 is a right nonsingular finite uniform dimen-
sional ring, but R does not satisfy (*). We show that a right nonsingular
finite uniform dimensional ring with (*) must be a semisimple Artinian ring.
To show this, we need the following :

Lemma 10. Let R be a ring. Then the following statements are equiv-
alent :

(1) R satisfies the condition (*).

(2) Every nonsingular uniform right R-module is injective.

Proof. (1) = (2). Let M be a nonsingular uniform right R-module
and let M denote the injective envelope of M. Then M is also nonsingular
and uniform, and hence M is irreducible by (*). Thus we obtain M = M.

(2) = (1). Let M be a nonsingular uniform right R-module, and N a
nonzero submodule of M. Then N is also nonsingular and uniform, and hence
N is injective by (2). Then N is a direct summand of M, and so N =M
because M is uniform. This proves that M is irreducible.

Proposition 11. The following statemenis are equivalent :

(1) R isa semisimple Artinian ring.
(2) R is a semiprime right Goldie ring with (*).
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(3) R isa right nonsingular finite uniform dimensional ring with (*).

Proof. 1t suffices to prove only (3) =>(1). So suppose that R is a
right nonsingular finite uniform dimensional ring with (*). Then R contains
an essential right ideal I which is a finite direct sum of uniform right ideals,
say [a(A € A). Since R is right nonsingular, each I, is also nonsingular
(and uniform). Then by (*) and Lemma 10, each I, is irreducible and in-
jective. Then I = @D,e,l, is also injective. Since [ is essential in R, we
conclude that = R. Therefore R is the direct sum of the minimal right
ideals I,.

Of course, there are non-semisimple rings with (CS).

Proposition 12. Suppose that the Jacobson radical J(R) of a ring R
is a nil ideal generaied by ceniral elements and that R/J(R) is semisimple
Artinian. Then R has the property (CS).

Proof. Let M be a right R-module with Endi(M) a division ring.
Consider the factor ring R of R by the annihilator Anns(M) of M in R. It
is easy to see that R also satisfies the hypotheses on R. The center Z(R)
of R can be naturally considered as a subring of Endz(M), and so Z(R) is a
domain. Then we can easily see that R is a simple Artinian ring. Clearly
this implies that M is an irreducible right R-module.

A ring R is called mregular if for each a in R, there exists a positive
integer n depending on a and an element x in R such that a” = a™xa™.

By virtue of Proposition 11, we get a necessary condition for a P.L.
ring to have the property (CS).

Proposition 13. A P.I. ring with property (CS) is mregular.

Proof. Let R be a P.I. ring with (CS). Then, for each prime ideal
P of R, R/P is a prime Goldie ring by Posner’s theorem [9, Theorem 7.3.2].
Since R/P also has the property (CS), R/P is a simple Artinian ring by
Proposition 11. Therefore R is a-regular by Fisher and Snider [7, Theo-
rem 2.3].

The ring R in Example 6 is a n-regular P.I. ring, but R does not have
the property (CS). Moreover the ring R in [8, Example 1.19] is a r-regu-
lar semiprime P.I. ring, however R does not have the property (CS).

With help of Proposition 13, we can completely characterize Azumaya
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algebras with property (CS).

Theorem 14. Let R be an Azumaya algebra. Then the following staie-
ments are equivalent :

(1) R has the properiy (CS).

(2) R is mregular.

(3) The center Z(R) of R is mregular.

Proof. (1) => (2). Since an Azumaya algebra is a P.l. ring, R is
m-regular by Proposition 13.

(2) = (3). Let a be an element of Z(R). Then there exists a positive
integer n and an element x in R such that «" = a"xa". Since a is in Z(R),
a” is strongly regular in the sence of [3]. Then by [3. Lemma 1]. there ex-
ists an element z in Z(R) such that a*"z = a". This proves that Z(R) is
7-regular,

(3)=(1). Let M be a right R-module with Endx(M) a division ring.
Consider the factor ring R of R by the annihilator ideal of M in R. By [5,
Proposition 2.1.11], R is an Azumaya algebra and the center Z(R) of R is
the natural homomorphic image of Z(R) in R. Hence Z(R) is also z-regu-
lar. By the way, Z(R) can be naturally considered as a subring of the divi-
sion ring End:(M). Hence Z(R) must be a field. Hence R is indecompos-
able as a ring. By [5, Theorem 2.2.5], we conclude that R is a simple
Artinian ring. This implies that M is irreducible.

Corollary 15. Let R be a semiprime ring which is finitely generated as
a module over ils center. Then the following statements are equivalent :

(1) R has the property (CS).

(2) R is avon Neumann regular ring.

(3) The center Z(R) of R is a von Neumann regular ring.

Proof. (1) =>(3). By Proposition 13 R is r-regular. Hence, by the
proof of (2) =>(3) of Theorem 14, we know that the center Z(R) of R is
also m-regular. Since Z(R) has no nonzero nilpotent elements, Z(R) is
von Neumann regular.

(3)=>(2). If Z(R) is von Neumann regular, then R is von Neumann
regular by Armendariz [2, Theorem 1].

(2)=(1). If R is von Neumann regular, then R is an Azumaya alge-
bra by Armendariz [2, Theorom 2]. Then R has the property (CS) by The-

orem 14.
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By Corollary 15, it may be suspected that von Neumann regular rings
have the property (CS). Unfortunately, the following example shows that
there is a von Neumann regular ring R with a non-irreducible cyclic right
R-module M whose endomorphism ring Endp(M) is a field.

Example 16. Let I be a field and let A be the set of countable mat-
rices over F of the form

where a € F and C, is an arbitrary nXn matrix over F and = is allowed to
be any integer. Obviously the center Z(A) of A is (isomorphic to) the field
F. Now consider the enveloping algebra R = A &;A” of A over F. For
each x in R, there is a positive integer N such that x is in B&B%®, where

B=1{lo '-_a Cv € MAF) anda € F

Now we may observe that B is isomorphic to the ring M{(F)@ F. Hence
the F-subalgebra B@:B® of R is a unit von Neumann regular ring, and so
there exists an invertible element y in B&rB®, hence in R such that x =
xyx. So R is a unit von Neumann regular ring. In this situation, we can say
more about R. Indeed, as a right R-module, A is a cyclic module generated
by the identity element 1 of A, but A is not irreducible, because A is not a
simple ring. However Endi(A) = Z(A) = F, so that R does not have the
property (CS).

Another typical example of a von Neumann regular ring is the endomor-
phism ring End,(V) of a vector space V over a division ring D. Now we
shall prove

Proposition 17. Let V be a left vector space over a division ring D.
Then the following statements are equivalent :

(1) Endu,(V) has the property (CS).

(2) Endy(V) satisfies the condition (*).

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 33/iss1/12



Hirano and Park: Rings for which the converse of Schur's lemma holds

RINGS FOR WHICH THE CONVERSE OF SCHUR'S LEMMA HOLDS 129

(3) V is finite dimensional over D.

Proof. The implication (1) => (2) follows from Lemma 8, and (3) =>
(1) is clear.

(2) =(3). Let us set R = Endy(V) and observe that V is irreduc-
ible as a right R-module. Also we have a primitive idempotent e in R such
that eR is isomorphic to V. It is well known that R is von Neumann regular,
and hence R is right nonsingular. Thus V is a nonsingular uniform right R-
module. By Lemma 10, V is an injective right R-module. Then V must be
finite dimensional over D by [6, Proposition 19.46].

Deposite of Example 16 and Proposition 17, some class of von Neumann
regular rings still enjoy the property (CS).

Theorem 18. A von Neumann regular ring with primitive factor rings
Artinian has the property (CS).

Proof. Let R be a von Neumann regular ring whose primitive factor
rings are Artinian. Assume that M is aa right R-module with Endx(M) a
division ring. To prove that M is irreducible, without loss of generality we
may assume that M is a faithful right R-module. By observing that the cen-
ter Z(R) of R can be embedded as a subring in the ring Endz{(M) in the
natural way, we know that Z(R) is an integral domain. Now for R, if R is
not a simple ring, then R would have a non-trivial central idempotent by 8,
Theorem 6.6]. But this is contradictory to the fact that Z(R) is an integral
domain. So R is a simple Artinian ring by assumption. By this fact, M is
an irreducible right R-module.

By Kaplansky’s theorem [9, Theorem 6.3.1]. every primitive factor
ring of a P.I. ring is Artinian. Hence we have the following :

Corollary 19. A von Neumann regular P.I. ring has the property (CS).

Using Corollary 19 together with Proposition 13, we obtain another
corollary.

Corollary 20. For a reduced P.I. ring R, the following statements are
equivalent :

(1) R has the property (CS).
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(2) R is a von Neuman regular ring.

Proof. By Corollary 19, ( 2) implies (1). Now assume that the reduc-
ed P.1. ring R has the property (CS). Then by Proposition 13 and its proof,
every prime factor ring of R is a simple Artinian ring. Since R is reduced,
R is von Neumann regular by Fisher and Snider [7, Corollary 1.4].

As mentioned in the proof of Corollary 20, every prime P.I. ring with
property (CS) is a simple Artinian ring. Comparing this fact with results
in Corollaries 19 and 20, the following question might be interesting.

Question 21. Is a semiprime P.I. ring with property (CS) von Neu-
mann regular ?

In the light of Proposition 17 and Theorem 18, we also have the follow-
ing question.

Question 22, Let R be a von Neumann regular ring with (CS). Is
every primitive factor ring of R Artinian ?
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