Mathematical Journal of Okayama University

Volume 14, Issue 2

1969

Article 9

DECEMBER 1970

On q-regular injective structures in mod-R

Atsushi Nakajima*

Copyright © 1969 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

ON q-REGULAR INJECTIVE STRUCTURES IN mod-R

ATSUSHI NAKAJIMA*

Let R be a ring with identity and F an "idempotent topologizing" of right ideals. Then Bourbaki [1] (see also, Gabriel [2]) has shown that there exists a left exact functor $F: \mathcal{M}_{od} \cdot R \ni M \mapsto F(M) \in \mathcal{M}_{od} \cdot R$. F(M) is called a generalized localization of M by F, which is nothing but a rational completion in the sense of [3]. On the other hand, given a torsion radical, Maranda [3] has defined a quotient ring and module by a special regular injective structure determined by the torsion radical.

In this note, we shall define a *q-regular injective structure* and show that in a commutative ring every localization determines uniquely a q-regular injective structure with functorial description.

The auther wish to express his best thanks to Prof. Y. Miyashita for his kind advice.

Let r be a radical functor of the category of all right R-modules $\mathcal{A}lod - R$. We shall define the following classes of right R-modules:

 $\mathcal{S} = \{A : \text{ right ideal of } R | r(R/A) = R/A \}.$

 $\widetilde{\mathfrak{D}}_r = \{M \in \mathcal{M}_{ed} \cdot R \mid M \text{ is injective with respect to the canonical inclusion of right ideals in } \mathscr{S}_r \text{ in } R\},$

$$\mathfrak{Q}_r = \{ M \in \mathcal{A} | M \in \widetilde{Q}_r \text{ and } r(M) = 0 \},$$

$$\mathfrak{A}_r = \{ M \in \mathcal{A} | r(M) = 0 \}.$$

Definition 1. Let $\mathfrak{B}(\mathfrak{S}, \mathfrak{Q})$ be a regular injective structure and r a radical functor. We shall say that $\mathfrak{B}(\mathfrak{S}, \mathfrak{Q})$ is defined by r if \mathfrak{Q} is a subclass of \mathfrak{A}_r .

For a regular injective structure $\mathfrak{V}(\mathfrak{S},\mathfrak{Q})$ of \mathcal{Alad} -R, let $Cat(\mathfrak{Q})$ be the full subcategory of \mathcal{Alad} -R with object class \mathfrak{Q} . Then we have a functor

$$G: \mathcal{A}lod \cdot R \longrightarrow Cat(\mathfrak{Q})$$

and a natural transformation

$$\kappa: I_{Mod - R} \longrightarrow G$$

such that the R-homomorphism $\kappa_M: M \longrightarrow G(M)$ is in \mathfrak{S} for all $M \in \mathcal{A}lod \cdot R$.

^{*} Yukawa Fellow of Osaka University in 1970.

 (G, κ) will be called a functorial description of $\mathfrak{B}(\mathfrak{S}, \mathfrak{Q})$ following [3; p. 107].

In [3], Maranda proved the following:

Theorem ([3; Th. 6.2]). If r is a torsion radical of \mathcal{M}_{od} -R, then \mathfrak{D}_r is the class of injectives of the coarsest regular injective structure $\mathfrak{V}_r(\mathfrak{S}_r,\mathfrak{D}_r)$ of \mathcal{M}_{od} -R defined by the radical r.

From this fact, if $\mathfrak{V}(\mathfrak{S},\mathfrak{Q})$ is a regular injective structure defined by a torsion radical r, \mathfrak{Q} contains \mathfrak{Q}_r .

Definition 2. A regular injective structure $\mathfrak{V}(\mathfrak{S}, \mathfrak{Q})$ is called a *q-regular injective structure* defined by a torsion radical t if $\widetilde{\mathfrak{Q}}_t \supseteq \mathfrak{Q} \supseteq \mathfrak{Q}_t$ and has a functorial description (G_t, κ) . Two q-regular injective structures $\mathfrak{V}_t(\mathfrak{S}_t, \mathfrak{Q}_t)$ and $\mathfrak{V}_t'(\mathfrak{S}_t', \mathfrak{Q}_t')$ defined by t are *equivalent* if there is a natural equivalence $\eta: G_t \longrightarrow G_t'$ such that $\eta_{M^KM} = \kappa_M'$ for all $M \in \mathcal{M}_{od} - R$, where (G_t, κ) and (G_t', κ') are functorial descriptions of $\mathfrak{V}_t(\mathfrak{S}_t, \mathfrak{Q}_t)$ and $\mathfrak{V}_t'(\mathfrak{S}_t', \mathfrak{Q}_t')$ respectively.

Throughout the following we consider a q-regular injective structure $\mathfrak{V}(\mathfrak{S},\mathfrak{D})$ with functorial description (G_i,κ) defined by a torsion radical t. Here $G_i(R)$ has a ring structure and $M(M \in \mathfrak{D})$ has a right $G_i(R)$ -module structure [3; p. 113-114].

Now let t be a torsion radical. Then \mathcal{S}_t satisfies the condition G1-G4 in [3; p.119]. Therefore \mathcal{S}_t is an idempotent topologizing. For any right R-module M, the generalized localization $F_t(M)$ of M by \mathcal{S}_t is constructed as follows: Let A, B be in \mathcal{S}_t such that $A \subseteq B$. For any $M \in \mathcal{M}_{el} \cdot R$, the canonical injection $j: A \longrightarrow B$ defines a homomorphism of commutative groups

$$u_{A,B} = \operatorname{Hom}_{\mathbb{R}}(j, 1_M) : \operatorname{Hom}_{\mathbb{R}}(B, M) \longrightarrow \operatorname{Hom}_{\mathbb{R}}(A, M).$$

Since \mathcal{S}_t is an ordered set with respect to the inclusion \supseteq , the $u_{A,B}$ define an inductive system of commutative groups, hence we define

$$M_{(F)} = \lim_{\longrightarrow} \operatorname{Hom}_{\mathbb{R}}(A, M).$$

Let $h: M \longrightarrow M_{(F)}$ be the canonical homomorphism. We consider the canonical homomorphism

$$j_M: M \longrightarrow M/h^{-1}(0) \longrightarrow (M/h^{-1}(0))_{(F)},$$

and set $F_i(M) = (M/h^{-1}(0))_{(F)}$. Then $j^i : I_{Mod \cdot R} \longrightarrow F_i$ is a natural transformation. Note that $h^{-1}(0) = \{m \in M \mid (0 : m)_r \in \mathcal{S}_i\}$, where $(0 : m)_r \in \mathcal{S}_i$

is the right annihilator of m. Hence $h^{-1}(0)$ is the torsion submodule t(M) of M with respect to t.

Lemma. Let M be a right R-module. Then $F_t(M)$ is contained in Q_t .

Proof. For any $A \in \mathcal{S}_t$, let $i_A: A \longrightarrow R$ be the canonical injection and $f: A \longrightarrow F_t(M)$ be any homomorphism in \mathcal{M}_{od} -R. Then we have $F_t(A) = F_t(R)$ [1; p. 160] and $F_t(M) = F_t(F_t(M))$ [1; p. 161]. Since $j_R^t i_A = j_A^t$, we have the following commutative diagram

$$0 \longrightarrow A \xrightarrow{i_A} R \xrightarrow{j_R^i} F_i(R) = F_i(A)$$

$$f \downarrow \qquad \qquad F_i(M) = F_i(F_i(M))$$

Hence we have $F_i(M) \in \widetilde{\mathfrak{Q}}_i$, and so $F_i(M)$ is in \mathfrak{Q}_i [1; p. 160].

Proposition 1. There is a natural transformation

$$\chi: G_{\iota} \longrightarrow F_{\iota}$$

Proof. Let M be any R-module. By the above lemma, there is a unique homomorphism $\mathcal{X}_{\mathcal{H}}: G_{\iota}(M) \longrightarrow F_{\iota}(M)$ in \mathscr{M}_{od} -R such that $\mathcal{X}_{\mathcal{H}}\kappa_{\mathcal{H}} = j_{\mathcal{M}}^{\iota}$. We must show that \mathcal{X} is a natural transformation. For any $f: M \longrightarrow N$ in \mathscr{N}_{od} -R, we have

$$F_t(f)\chi_{MKM} = F_t(f)j_M^t = j_N^t f, \quad \chi_N G_t(f)\kappa_M = \chi_{NKN} f = j_N^t f.$$

Then by the uniqueness, we obtain $F_t(f)X_M = X_N G_t(f)$. This shows that X is a natural transformation.

Proposition 2. Let $i_A: A \longrightarrow R$ be the canonical inclusion, where $A \in \mathcal{S}_i$. If $G_i(i_A)$ is an epimorphism for all $A \in \mathcal{S}_i$, then there exists a natural transformation

$$\theta_M: M_{(F)} \longrightarrow G_l(M),$$

where M∈ Mod -R.

Proof. Let $A \in \mathcal{S}_i$, $M \in \mathcal{M}_{od} - R$, and $\alpha : A \longrightarrow M$. Then there is a homomorphism $x_A : R \longrightarrow G_i(A)$ such that $\kappa_A = x_A i_A$.

Now let us consider the following diagram:

Atsushi NAKAJIMA

Then there exists a unique homomorphism

$$\varphi_a: G_\iota(R) \longrightarrow G_\iota(M)$$

such that $G_i(\alpha)x_A = \varphi_{\alpha}k_R$. Thus we have

$$G_i(\alpha)_{\kappa_A} = G_i(\alpha) x_A i_A = \varphi_a \kappa_B i_A = \varphi_a G_i(i_A) \kappa_A$$

and so $G_{\iota}(\alpha) = \varphi_{\alpha} G_{\iota}(i_{A})$. Since $G_{\iota}(i_{A})$ is an epimorphism, φ_{α} is uniquely determined by α . Hence we have a homomorphism

$$\phi_A$$
: $\operatorname{Hom}_R(A, M) \ni \alpha \longmapsto \varphi_{\alpha} \kappa_R \in \operatorname{Hom}_R(R, G_t(M))$.

On the other hand, for the canonical inclusion $j: A \longrightarrow B(A, B \in \mathcal{S}_i)$, and for any $\beta: B \longrightarrow M$, we have

$$G_{t}(\beta)G_{t}(j)\kappa_{A} = G_{t}(\beta j)\kappa_{A} = \varphi_{\beta j}G_{t}(i_{A})\kappa_{A}$$
$$= G_{t}(\beta)\kappa_{B}j = \varphi_{B}G_{t}(i_{A})\kappa_{A},$$

whence it follows $\varphi_{\beta j} = \varphi_{\beta}$. From this fact, we can obtain a unique homomorphism $\theta_M: M_{(F)} \longrightarrow G_{\ell}(M)$ such that the diagram

is commutative. Similarly, for any $f: M \longrightarrow N$ in $M_{(r)} \longrightarrow G_t(N)$ such that the diagram

is commutative. Therefore θ is a natural transformation.

Corollary 1. Let M be a right R-module. If t(M)=0, or if $M_{(F)}=F_t(M)$, then

$$\theta_M: M_{(F)} \longrightarrow G_t(M)$$

is an isomorphism.

Proof. If t(M)=0, then $M_{(F)}=F_t(M)$. Therefore, if we identify M and $\operatorname{Hom}_R(R,M)$, then we have $\theta_M j_M^t = \kappa_M$. By the uniqueness and Proposition 1, it is easy to see that $\theta_M X_M = 1_{G_t(M)}$ and $X_M \theta_M = 1_{M(F)}$.

Corollary 2. Let $i_A: A \longrightarrow R$ be the canonical inclusion $(A \subseteq \mathcal{S}_t)$. Suppose $G_t(i_A)$ is an epimorphism for all $A \subseteq \mathcal{S}_t$.

- (1) If $M_{(F)} = F_t(M)$ for all M, then X_R : $G_t(R) \longrightarrow F_t(R)$ is a unique ring isomorphism such that $X_R \kappa_R = j_R'$, and hence the functor G_t and F_t are naturally equivalent.
- (2) If $G_t(M) = G_t(M/t(M))$ for all M, then $X : G_t \longrightarrow F_t$ is a natural equivalence.
- *Proof.* (1): By [3; Th. 5.3], it is clear that \mathcal{X}_R is a unique ring isomorphism such that $\mathcal{X}_{RK_R} = j'_R$. Therefore $G_t(M)$ is a right $F_t(R)$ -module for all $M \in \mathcal{M}_{od}$ -R. The latter statement is clear by Proposition 2 and Corollary 1.
- (2): Since $t(\overline{M})=0$, where $\overline{M}=M/t(M)$, we have an isomorphism $G_t(\overline{M})\cong F_t(\overline{M})$ by Corollary 1, and $G_t(M)=G_t(\overline{M})$ and $F_t(M)=F_t(\overline{M})$. Hence \mathcal{X}_M is an isomorphism.

Theorem. Let M be any module in \mathcal{M}_{od} -R. Suppose $G_{\iota}(i_{A})$ is an epimorphism for all $A \in \mathcal{S}_{\iota}$. If $M_{(F)} = F_{\iota}(M)$, or if $G_{\iota}(M/\iota(M))$, then $\mathfrak{V}_{\iota}(\mathfrak{S}_{\iota}, \mathfrak{Q}_{\iota})$ is the only q-regular injective structure defined by ι up to equivalence. In particular, $\{G_{\iota}(M) | M \in \mathcal{M}_{od} - R\} = \mathfrak{Q}_{\iota} = \{F_{\iota}(M) | M \in \mathcal{M}_{od} - R\}$.

Finally, we consider the commutative case:

R: a commutative ring with identity,

S: a multiplicatively closed subset of R,

 $S(M) = \{ m \in M \mid ms = 0 \text{ for some } s \in S \}, \text{ for any } M \in \mathcal{M}_{od} - R.$

Then S(*) is a torsion radical of \mathcal{M}_{old} -R. Therefore, we can define \mathcal{S}_s , $\widetilde{\mathfrak{D}}_s$, \mathfrak{D}_s , \mathfrak{A}_s . In this case, $F_t(M)$ is the localization $S^{-1}M$ and $F_t(M) = M_{(F)}$

ATSUSHI NAKAJIMA

[1; p. 162] and $j_M^S = i_M^S$; $M \ni m \mapsto m/s \in S^{-1}M$ for all $M \in \mathcal{M}_{od} \cdot R$. Therefore, in a commutative ring, q-regular injective structure cited above is characterized by the functorial description (G_S, κ) .

REFERENCES

[1] N. BOURBAKI: Algèbre commutative, chap. I-II. Hermann, 1962.

144

- [2] P. Gabriel: Des catégories abéliennes. Bull. Scc. Math. 90 (1962), 323-448.
- [3] J.-M. MARANDA: Injective structures. Trans. Amer. Math. Scc. 110 (1964) 98-135.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received June 12, 1970)

http://escholarship.lib.okayama-u.ac.jp/mjou/vol14/iss2/9

6