Mathematical Journal of Okayama University

Volume 47, Issue 1

Connective Coverings of a Few Cell Complexes

Kohhei Yamaguchi*

*University of Electro-Communications

Copyright © 2005 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Connective Coverings of a Few Cell Complexes

Kohhei Yamaguchi

Abstract

We shall determine the 2-connective coverings of a few cell complexes of the form $S^{2} \cup f \mathrm{e}^{n}$ for $\mathrm{n} \geq 4$ and $0 \neq \mathrm{f} \in \pi_{n-1}\left(\mathrm{~S}^{2}\right)$.

KEYWORDS: CW complexes, Hopf map, characteristic map.

Math. J. Okayama Univ. 47 (2005), 133-139

CONNECTIVE COVERINGS OF A FEW CELL COMPLEXES

Kohнei YAMAGUCHI

Abstract

We shall determine the 2 -connective coverings of a few cell complexes of the form $S^{2} \cup_{f} e^{n}$ for $n \geq 4$ and $0 \neq f \in \pi_{n-1}\left(S^{2}\right)$.

1. Introduction.

The principal motivation of this paper comes from the work due to J. Wu [7], who showed that the 2-connective covering of $L_{m}=S^{2} \cup_{m \eta_{2}} e^{4}$ is homotopy equivalent to $\mathrm{P}^{4}(m) \vee S^{5}$, where $\eta_{2} \in \pi_{3}\left(S^{2}\right)$ is the Hopf map map and $\mathrm{P}^{k+1}(m)$ denotes the Moore space of type $(k, \mathbb{Z} / m)$ given by $\mathrm{P}^{k+1}(m)=$ $S^{k} \cup_{m \iota_{k}} e^{k+1}$. We would like to generalize his result for all 2-cell complexes X of the form $X=S^{2} \cup_{f} e^{n}\left(n \geq 4,0 \neq f \in \pi_{n-1}\left(S^{2}\right)\right)$. Since the induced homomorphism $\eta_{2 *}: \pi_{k}\left(S^{3}\right) \stackrel{\cong}{\leftrightarrows} \pi_{k}\left(S^{2}\right)$ is an isomorphism for any $k \geq 2$, there is a unique element $g \in \pi_{n-1}\left(S^{3}\right)$ such that $\eta_{2} \circ g=f$. Then the main purpose of this note is to show the following result.

Theorem 1.1. Let $n \geq 4$ be an integer and let $X_{\tilde{\sim}}$ be a 2-cell complex of the form $X=S^{2} \cup_{f} e^{n} \quad\left(0 \neq f \in \pi_{n-1}\left(S^{2}\right)\right)$. Then if \tilde{X} denotes the 2 -connective covering of X, there is a homotopy equivalence

$$
\begin{equation*}
\tilde{X} \simeq S^{3} \cup_{g} e^{n} \vee S^{n+1} \tag{1.1}
\end{equation*}
$$

where the map $g \in \pi_{n-1}\left(S^{3}\right)$ satisfies the condition $\eta_{2} \circ g=f$.
Corollary 1.2. Under the same assumptions as Theorem 1.1, we have:
(1) If $X=S^{2} \cup_{m \eta_{2}} e^{4}$, $\tilde{X} \simeq \mathrm{P}^{4}(m) \vee S^{5}$.
(2) If $X=S^{2} \cup_{\eta_{2}^{2}} e^{5}$, $\tilde{X} \simeq S^{3} \cup_{\eta_{3}} e^{5} \vee S^{6}$.
(3) If $X=S^{2} \cup_{\eta_{2}^{3}} e^{6}$, $\tilde{X} \simeq S^{3} \cup_{\eta_{3}^{2}} e^{6} \vee S^{7}$.
(4) If $X=S^{2} \cup_{\eta_{2} \circ \omega} e^{7}$, $\tilde{X} \simeq S^{3} \cup_{\omega} e^{7} \vee S^{8}$, where $\omega \in \pi_{6}\left(S^{3}\right) \cong \mathbb{Z} / 12$ denotes Blackers-Massey element.

Remark. (1) Let $q: S^{2} \cup_{f} e^{n} \rightarrow S^{n}$ be the pinch map and F_{f} be its homotopy fiber. It is known that the $(n+2)$-skeleton of F_{f} is homotopy equivalent to $S^{2} \vee S^{n+1}([2])$. This fact may be closely related to the statement of

[^0]Theorem 1.1 although we cannot explain it clearly. It is also known that $\left[f_{1}, f_{2}\right]=0$ for any $f_{1} \in \pi_{k}\left(S^{2}\right), f_{2} \in \pi_{l}\left(S^{2}\right)$ if $(k, l) \neq(2,2)([3])$, and this fact is a crucial point for our proof of Theorem 1.1.
(2) This result will be used for studying the problem of homotopy type classifications of m-twisted complex projective spaces in [5]. In fact, if we use this result, we can extend the dimension that James excision isomorphism holds (cf. [4]) and it may be useful for computing higher homotopy groups $\pi_{*}\left(S^{2} \cup_{f} e^{n}\right)$ without using Gray's method [2].

2. The case $n \geq 5$.

Let $n \geq 4$ be an integer and consider the space $X=S^{2} \cup_{f} e^{n}(0 \neq f \in$ $\left.\pi_{n-1}\left(S^{2}\right)\right)$. Let $\iota_{f} \in\left[X, \mathbb{C} P^{\infty}\right] \cong H^{2}(X, \mathbb{Z}) \cong \mathbb{Z}$ be the map which represents the generator and let \tilde{X} be the homotopy fiber of the map ι_{f}. It is easy to see that \tilde{X} is a 2 -connective covering of X and there is a fibration sequence

$$
\begin{equation*}
S^{1} \rightarrow \tilde{X} \xrightarrow{\varphi} X \tag{2.1}
\end{equation*}
$$

First, we treat the case $n \geq 5$. (The case $n=4$ will be considered in the next section.) If we consider the Serre spectral sequence associated to (2.1), we have

$$
H^{k}(\tilde{X}, \mathbb{Z}) \cong \begin{cases}\mathbb{Z} & \text { if } k=0,3, n, n+1 \\ 0 & \text { otherwise }\end{cases}
$$

and we obtain a homotopy equivalence

$$
\begin{equation*}
\tilde{X} \simeq S^{3} \cup_{g} e^{n} \cup_{\theta} e^{n+1}=K \cup_{\theta} e^{n+1} \quad\left(g \in \pi_{n-1}\left(S^{3}\right), \theta \in \pi_{n}(K)\right) \tag{2.2}
\end{equation*}
$$

where we write $K=S^{3} \cup_{g} e^{n}$. In this case, without loss of generalities, we may identify $\tilde{X}=S^{3} \cup_{g} e^{n} \cup_{\theta} e^{n+1}=K \cup_{\theta} e^{n+1}$ and we may also suppose that φ is a cellular map. Then because $\varphi(K) \subset X$, there is a commutative diagram

where $j: K=S^{3} \cup_{g} e^{n} \rightarrow \tilde{X}$ denotes the inclusion. Furthermore, since the 3 -skeleton of X is $S^{2}, \varphi\left(S^{3}\right) \subset S^{2}$. Hence, the map φ_{1} also defines the map $\bar{\varphi}:\left(K, S^{3}\right) \rightarrow\left(X, S^{2}\right)$.

Lemma 2.1. $\varphi_{1_{*}}: \pi_{n}(K) \rightarrow \pi_{n}(X)$ is a surjective homomorphism.

Proof. Since $n \geq 5,\left(\tilde{X}, S^{3}\right)$ and $\left(X, S^{2}\right)$ are at least 4-connected. Hence, if we consider the commutative diagram

$$
\begin{array}{rll}
\pi_{3}\left(S^{3}\right) & \cong & \pi_{3}(\tilde{X}) \\
\left(\varphi \mid S^{3}\right)_{*} \downarrow & & \varphi_{*} \downarrow \cong \\
\pi_{3}\left(S^{2}\right) & \cong & \pi_{3}(X)
\end{array}
$$

we have that $\left(\varphi \mid S^{3}\right)_{*}: \pi_{3}\left(S^{3}\right) \stackrel{\cong}{\rightrightarrows} \pi_{3}\left(S^{2}\right)$ is an isomorphism. Hence, without loss of generalities, we may assume that

$$
\begin{equation*}
\varphi \mid S^{3}=\eta_{2} \quad(\text { up to homotopy equivalence }) \tag{2.3}
\end{equation*}
$$

Consider the commutative diagram

$$
\begin{array}{cl}
\pi_{n}(K) \xrightarrow{j_{*}} & \pi_{n}(\tilde{X}) \longrightarrow 0 \\
\| & \varphi_{*} \mid \cong \\
\pi_{n}(K) \xrightarrow{\varphi_{1_{*}}} & \pi_{n}(X)
\end{array}
$$

where the upper horizontal sequence is exact. Since j_{*} is surjective, $\varphi_{1_{*}}$: $\pi_{n}(K) \rightarrow \pi_{n}(X)$ is also surjective.

Lemma 2.2. The attaching map g satisfies the condition $\eta_{2} \circ g=f$.
Proof. Consider the commutative diagram

$$
\begin{array}{ccc}
\pi_{n}(K) \longrightarrow \pi_{n}\left(K, S^{3}\right) \longrightarrow \pi_{n-1}\left(S^{3}\right) \longrightarrow & \pi_{n-1}(K) \longrightarrow \eta_{2 *} \mid \cong & \varphi_{1_{*}^{\prime}} \mid \cong \\
\varphi_{1 *} \downarrow \\
\bar{\varphi}_{*} \downarrow & \pi_{n}\left(X, S^{2}\right) \longrightarrow \pi_{n-1}\left(S^{2}\right) \longrightarrow \pi_{n-1}(X) \longrightarrow 0
\end{array}
$$

where horizontal sequences are exact.
By the dimensional reason, $\varphi_{1 *}^{\prime}$ is bijective. Then because $\varphi_{1 *}$ is surjective, the Five Lemma indicates that $\bar{\varphi}_{*}: \pi_{n}\left(K, S^{3}\right) \rightarrow \pi_{n}\left(X, S^{2}\right)$ is surjecive. However, because $\pi_{n}\left(K, S^{3}\right) \cong \mathbb{Z} \cong \pi_{n}\left(X, S^{2}\right)$, in fact,
(2.4) $\bar{\varphi}_{*}: \pi_{n}\left(K, S^{3}\right) \xrightarrow{\cong} \pi_{n}\left(X, S^{2}\right)$ is bijective.

Let $\bar{g} \in \pi_{n}\left(K, S^{3}\right) \cong \mathbb{Z}$ (resp. $\left.\bar{f} \in \pi_{n}\left(X, S^{2}\right)\right)$ denote the characteristic maps of the top cells e^{n} of K (resp. of X), and consider the commutative diagram

$$
\begin{array}{clc}
\mathbb{Z} \cdot \bar{g}=\pi_{n}\left(K, S^{3}\right) & \xrightarrow{\partial_{n}^{\prime}} & \pi_{n-1}\left(S^{3}\right) \\
\bar{\varphi}_{*} \downarrow \cong & & \eta_{2_{*}} \downarrow \cong \tag{2.5}\\
\mathbb{Z} \cdot \bar{f}= & \pi_{n}\left(X, S^{2}\right) & \xrightarrow{\partial_{n}} \\
& \pi_{n-1}\left(S^{2}\right)
\end{array}
$$

Since $\bar{\varphi}_{*}$ is bijective, $\bar{\varphi}_{*}(\bar{g})= \pm \bar{f}$. Hence,

$$
\eta_{2} \circ g=\eta_{2_{*}}(g)=\eta_{2_{*}} \circ \partial_{n}^{\prime}(\bar{g})=\partial_{n} \circ \bar{\varphi}_{*}\left((\bar{g})=\partial_{n}(\pm \bar{f})= \pm f .\right.
$$

Because there is a homotopy equivalence $S^{3} \cup_{g} e^{n} \simeq S^{3} \cup_{-g} e^{n}$, we may assume $\eta_{2} \circ g=f$ and this completes the proof.

Since $0 \neq f \in \pi_{n-1}\left(S^{2}\right)$ and $n \geq 5$, the order of f is finite. Let $m \geq 2$ be the order of the map $f \in \pi_{n-1}\left(S^{2}\right)$. Since $\eta_{2} \circ g=f$, the order of g is also m. If we consider the homotopy exact sequences of the pairs (K, S^{3}) and (X, S^{2}), we have isomorphisms

$$
\begin{equation*}
\text { Ker } \partial_{n}^{\prime}=\langle m \cdot \bar{g}\rangle \cong \mathbb{Z}, \quad \text { Ker } \partial_{n}=\langle m \cdot \bar{f}\rangle \cong \mathbb{Z}, \tag{2.6}
\end{equation*}
$$

where $\partial_{n}^{\prime}: \pi_{n}\left(K, S^{3}\right) \rightarrow \pi_{n-1}\left(S^{3}\right)$ and $\partial_{n}: \pi_{n}\left(X, S^{2}\right) \rightarrow \pi_{n-1}\left(S^{2}\right)$ denote the corresponding boundary operators.

Lemma 2.3. $\varphi_{1_{*}}: \pi_{n}(K) \stackrel{\cong}{\rightrightarrows} \pi_{n}(X)$ is an isomorphism.
Proof. Since $\varphi_{1 *}$ is surjective (by Lemma 2.1), it suffices to show that there is an isomorphism $\pi_{n}(K) \cong \pi_{n}(X)$ as abelian groups. If we consider the homotopy exact sequence $\pi_{n}\left(S^{3}\right) \xrightarrow{i_{*}^{\prime}} \pi_{n}(K) \rightarrow \operatorname{Ker} \partial_{n}^{\prime} \rightarrow 0$, we have an isomorphism $\pi_{n}(K) \cong \mathbb{Z} \oplus i_{*}^{\prime}\left(\pi_{n}\left(S^{3}\right)\right)$, where $i^{\prime}: S^{3} \rightarrow K$ denotes the inclusion. Similarly, if we denote by $i: S^{2} \rightarrow X$ the inclusion, we have an isomorphism $\pi_{n}(X) \cong \mathbb{Z} \oplus i_{*}\left(\pi_{n}\left(S^{2}\right)\right)$. Hence, it is sufficient to show that there is an isomorphism

$$
\begin{equation*}
i_{*}^{\prime}\left(\pi_{n}\left(S^{3}\right)\right) \cong i_{*}\left(\pi_{n}\left(S^{3}\right)\right) . \tag{2.7}
\end{equation*}
$$

Consider the commutative diagram

$$
\begin{array}{ccc}
\pi_{n+1}\left(K, S^{3}\right) \xrightarrow{\partial_{n+1}^{\prime}} & \pi_{n}\left(S^{3}\right) \xrightarrow{i_{*}^{\prime}} & \pi_{n}(K) \\
\bar{\varphi}_{*} \downarrow & \eta_{2 *} \downarrow \cong & \varphi_{1 *} \downarrow \\
\pi_{n+1}\left(X, S^{2}\right) \xrightarrow{\partial_{n+1}} & \pi_{n}\left(S^{2}\right) \xrightarrow{i_{*}} & \pi_{n}(X)
\end{array}
$$

where horizontal sequences are exact. Then we have isomorphisms

$$
\left\{\begin{array}{l}
i_{*}^{\prime}\left(\pi_{n}\left(S^{3}\right)\right) \cong \pi_{n}\left(S^{3}\right) / \partial_{n+1}^{\prime}\left(\pi_{n+1}\left(K, S^{3}\right)\right), \tag{2.8}\\
i_{*}\left(\pi_{n}\left(S^{2}\right)\right) \cong \pi_{n}\left(S^{2}\right) / \partial_{n+1}\left(\pi_{n+1}\left(X, S^{2}\right)\right) .
\end{array}\right.
$$

It follows from the James's isomorphism [4] that we have the isomorphisms

$$
\left\{\begin{array}{l}
\pi_{n+1}\left(K, S^{3}\right)=\bar{g}_{*} \pi_{n+1}\left(D^{n}, S^{n-1}\right)=\mathbb{Z} / 2 \cdot \bar{g} \circ \eta, \\
\pi_{n+1}\left(X, S^{2}\right)=\mathbb{Z} \cdot\left[\bar{f}, \iota_{2}\right]_{r} \oplus \bar{f}_{*} \pi_{n+1}\left(D^{n}, S^{n-1}\right)=\mathbb{Z} \cdot\left[\bar{f}, \iota_{2}\right]_{r} \oplus \mathbb{Z} / 2 \cdot \bar{f} \circ \eta,
\end{array}\right.
$$

where $\eta \in \pi_{n+1}\left(D^{n}, S^{n-1}\right) \cong \mathbb{Z} / 2$ denotes the generator and $[,]_{r}$ is a relative Whitehead product. If we recall the commutative diagrams

$$
\begin{array}{ccccc}
\pi_{n+1}\left(K, S^{3}\right) & \xrightarrow{\partial_{n+1}^{\prime}} \pi_{n}\left(S^{3}\right) & \pi_{n+1}\left(X, S^{2}\right) & \xrightarrow{\partial_{n+1}} \pi_{n}\left(S^{2}\right) \\
\bar{g}_{*} \uparrow \cong & g_{*} \uparrow & \bar{f}_{*} \uparrow & f_{*} \uparrow \\
\pi_{n+1}\left(D^{n}, S^{n-1}\right) \xrightarrow{\partial^{\prime}} & \pi_{n}\left(S^{n-1}\right) & \pi_{n+1}\left(D^{n}, S^{n-1}\right) \xrightarrow{\partial^{\prime}} & \begin{array}{c}
\cong \\
\cong
\end{array} S_{n}\left(S^{n-1}\right)
\end{array}
$$

then we have

$$
\left\{\begin{array}{l}
\partial_{n+1}^{\prime}(\bar{g} \circ \eta)=g \circ \eta_{n-1}, \partial_{n+1}(\bar{f} \circ \eta)=f \circ \eta_{n-1}, \\
\partial_{n+1}\left(\left[\bar{f}, \iota_{2}\right]_{r}\right)=-\left[f, \iota_{2}\right]=0 .
\end{array} \quad(\text { by }[1] \text { and }[3])\right.
$$

Hence, by using (2.8) we have the isomorphisms

$$
i_{*}^{\prime}\left(\pi_{n}\left(S^{3}\right)\right) \cong \pi_{n}\left(S^{3}\right) /\left\langle g \circ \eta_{n-1}\right\rangle \text { and } i_{*}\left(\pi_{n}\left(S^{2}\right)\right) \cong \pi_{n}\left(S^{2}\right) /\left\langle f \circ \eta_{n-1}\right\rangle
$$

However, because $\eta_{2 *}: \pi_{k}\left(S^{3}\right) \stackrel{\cong}{\rightrightarrows} \pi_{k}\left(S^{2}\right)$ is an isomorphism for any $k \geq 2$ and $f=\eta_{2} \circ g$, the map η_{2} also induces an isomorphism

$$
\pi_{n}\left(S^{3}\right) /\left\langle g \circ \eta_{n-1}\right\rangle \cong \pi_{n}\left(S^{2}\right) /\left\langle f \circ \eta_{n-1}\right\rangle
$$

Hence, the isomorphism (2.7) is proved.
Let $\bar{\theta} \in \pi_{n+1}(\tilde{X}, K) \cong \mathbb{Z}$ denote the characteristic map of the top cell e^{n+1} in \tilde{X} and consider the exact sequence of the pair (\tilde{X}, K),

$$
\mathbb{Z} \cdot \bar{\theta}=\pi_{n+1}(\tilde{X}, K) \xrightarrow{\partial_{n+1}^{\prime \prime}} \pi_{n}(K) \xrightarrow{j_{*}} \pi_{n}(\tilde{X}) \longrightarrow 0
$$

Because $j_{*}: \pi_{n}(K) \rightarrow \pi_{n}(\tilde{X})$ is surjective and there are isomorphisms

$$
\pi_{n}(K) \xrightarrow[\cong]{\cong} \pi_{n}(X) \stackrel{\varphi_{1 *}}{\cong} \pi_{n}(\tilde{X}),
$$

in fact, j_{*} is an isomorphism. Hence, $\partial_{n+1}^{\prime \prime}=0$ and we have $\theta=\partial_{n+1}^{\prime \prime}(\bar{\theta})=0$. So $\tilde{X} \simeq K \vee S^{n+1}$ and we complete the proof for the case $n \geq 5$.

3. The case $n=4$.

The proof of the case $n=4$ is essentially due to Jie Wu and the author does not claim its originality. However, for completeness of this paper, we shall give its proof here.

If we assume $n=4$, without loss of generalities we may assume that $X=L_{m}=S^{2} \cup_{m \eta_{2}} e^{4}$ for an integer $m \geq 2$. We note that the equality $x_{2} \cdot x_{2}=m x_{4}$ holds, where $x_{2 k} \in H^{2 k}(X, \mathbb{Z}) \cong \mathbb{Z}(k=1,2)$ denote the
corresponding generators. Then, if we compute the Serre spectral sequence associated to the fibration (2.1), we have

$$
H^{k}(\tilde{X}, \mathbb{Z}) \cong \begin{cases}\mathbb{Z} & \text { if } k=0,5 \\ \mathbb{Z} / m & \text { if } k=4 \\ 0 & \text { otherwise }\end{cases}
$$

So there is a homotopy equivalence

$$
\begin{equation*}
\tilde{X} \simeq \mathrm{P}^{4}(m) \cup_{\theta} e^{5} \quad\left(\theta \in \pi_{4}\left(\mathrm{P}^{4}(m)\right)\right. \tag{3.1}
\end{equation*}
$$

It suffices to show that $\theta=0$. If we use James's isomorphism [4], we have

$$
\pi_{4}\left(\mathrm{P}^{4}(m)\right)= \begin{cases}\mathbb{Z} / 2 \cdot i_{*}^{\prime \prime}\left(\eta_{3}\right) & \text { if } m \equiv 0(\bmod 2) \tag{3.2}\\ 0 & \text { if } m \equiv 1(\bmod 2)\end{cases}
$$

where $i^{\prime \prime}: S^{3} \rightarrow \mathrm{P}^{4}(m)$ denotes the inclusion. If $m \equiv 1(\bmod 2)$, since $\theta \in \pi_{4}\left(\mathrm{P}^{4}(m)\right)=0, \theta=0$ and the assertion follows. Next, consider the case $m \equiv 0(\bmod 2)$. Because $\theta \in \pi_{4}\left(\mathrm{P}^{4}(m)\right)=\mathbb{Z} / 2 \cdot i_{*}^{\prime \prime}\left(\eta_{3}\right), \theta=0$ or $\theta=i_{*}^{\prime \prime}\left(\eta_{3}\right)$. Now we suppose that $\theta=i_{*}^{\prime \prime}\left(\eta_{3}\right) \neq 0$. Then let $\bar{\theta} \in \pi_{5}\left(\tilde{X}, \mathrm{P}^{4}(m)\right) \cong \mathbb{Z}$ denote the characteristic map of the top cell e^{5} and consider the exact sequence

$$
\mathbb{Z} \cdot \bar{\theta}=\pi_{5}\left(\tilde{X}, \mathrm{P}^{4}(m)\right) \xrightarrow{\partial_{5}} \pi_{4}\left(\mathrm{P}^{4}(m)\right) \longrightarrow \pi_{4}(\tilde{X}) \longrightarrow 0
$$

Because $\partial_{5}(\bar{\theta})=\theta=i_{*}^{\prime \prime}\left(\eta_{3}\right)$, we have $\pi_{4}(\tilde{X})=0$. However, since $\pi_{4}(\tilde{X}) \cong$ $\pi_{4}(X) \cong \mathbb{Z} / 2$ (by [8]), this is a contradiction. Hence $\theta=0$.

Acknowledgments. The author would like to take this opportunity to thank Professors J. Mukai and J. Wu for their numerous helpful suggestions concerning 2-connective coverings and the homotopy groups of Moore spaces.

References

[1] A. L. Blakers and W. S. Massey, Products in homotopy theory, Annals of Math., 58 (1953), 295-324.
[2] B. Gray, On the homotopy groups of mapping cones, Proc. London Math. Soc., 26 (1973), 497-520.
[3] P. J. Hilton and J. H. C. Whitehead, Note on the Whitehead product, Annals of Math., 58 (1953), 429-442
[4] I. M. James, On the homotopy groups of certain pairs and triads, Quart. J. Math. Oxford, 5 (1954), 260-270.
[5] J. Mukai and K. Yamaguchi, Homotopy classification of twisted complex projective spaces of dimension 4, J. Math. Soc. Japan, 57 (2005) 461-489.
[6] H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. Studies, Princeton Univ. Press, 49, 1962.
[7] J. Wu, Private communications.
[8] K. Yamaguchi, The group of self-homotopy equivalences of S^{2}-bundles over S^{4}, I, Kodai Math. J., 9 (1986) 308-326.

Kohnei Yamaguchi
Department of Information Mathematics
University of Electro-Communications
Chofugaoka, Chofu, Tokyo 182-8585 Japan
e-mail address: kohhei@im.uec.ac.jp
(Received April 5, 2004)

[^0]: Mathematics Subject Classification. Primary 55P15; Secondary 55P10, 55Q15.
 Key words and phrases. CW complexes, Hopf map, characteristic map.
 This research was partially supported by Grant-in-Aid for Scientific Research (No. 13640067 (C)(2) and No. 16540056 (C)(2)), The Ministry of Education, Culture, Sports, Science and Technology, Japan.

