Mathematical Journal of Okayama University

Volume 47, Issue 1

2005 January 2005

Article 11

Connective Coverings of a Few Cell Complexes

Kohhei Yamaguchi*

*University of Electro-Communications

Copyright ©2005 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Connective Coverings of a Few Cell Complexes

Kohhei Yamaguchi

Abstract

We shall determine the 2-connective coverings of a few cell complexes of the form $S^2 \cup f e^n$ for $n \ge 4$ and $0 \ne f \in \pi_{n-1}(S^2)$.

KEYWORDS: CW complexes, Hopf map, characteristic map.

Math. J. Okayama Univ. 47 (2005), 133-139

CONNECTIVE COVERINGS OF A FEW CELL COMPLEXES

KOHHEI YAMAGUCHI

ABSTRACT. We shall determine the 2-connective coverings of a few cell complexes of the form $S^2 \cup_f e^n$ for $n \ge 4$ and $0 \ne f \in \pi_{n-1}(S^2)$.

1. INTRODUCTION.

The principal motivation of this paper comes from the work due to J. Wu [7], who showed that the 2-connective covering of $L_m = S^2 \cup_{m\eta_2} e^4$ is homotopy equivalent to $P^4(m) \vee S^5$, where $\eta_2 \in \pi_3(S^2)$ is the Hopf map map and $P^{k+1}(m)$ denotes the Moore space of type $(k, \mathbb{Z}/m)$ given by $P^{k+1}(m) =$ $S^k \cup_{m\iota_k} e^{k+1}$. We would like to generalize his result for all 2-cell complexes X of the form $X = S^2 \cup_f e^n$ $(n \ge 4, 0 \ne f \in \pi_{n-1}(S^2))$. Since the induced homomorphism $\eta_{2*} : \pi_k(S^3) \xrightarrow{\cong} \pi_k(S^2)$ is an isomorphism for any $k \ge 2$, there is a unique element $g \in \pi_{n-1}(S^3)$ such that $\eta_2 \circ g = f$. Then the main purpose of this note is to show the following result.

Theorem 1.1. Let $n \ge 4$ be an integer and let X be a 2-cell complex of the form $X = S^2 \cup_f e^n \quad (0 \ne f \in \pi_{n-1}(S^2))$. Then if \tilde{X} denotes the 2-connective covering of X, there is a homotopy equivalence

(1.1)
$$\tilde{X} \simeq S^3 \cup_q e^n \vee S^{n+1}$$

where the map $g \in \pi_{n-1}(S^3)$ satisfies the condition $\eta_2 \circ g = f$.

Corollary 1.2. Under the same assumptions as Theorem 1.1, we have:

- (1) If $X = S^2 \cup_{m\eta_2} e^4$, $\tilde{X} \simeq \mathbb{P}^4(m) \vee S^5$.
- (2) If $X = S^2 \cup_{\eta_3^2} e^5$, $\tilde{X} \simeq S^3 \cup_{\eta_3} e^5 \lor S^6$.
- (3) If $X = S^2 \cup_{\eta_2^3} e^6$, $\tilde{X} \simeq S^3 \cup_{\eta_3^2} e^6 \vee S^7$.
- (4) If $X = S^2 \cup_{\eta_2 \circ \omega} e^7$, $\tilde{X} \simeq S^3 \cup_{\omega} e^7 \vee S^8$, where $\omega \in \pi_6(S^3) \cong \mathbb{Z}/12$ denotes Blackers-Massey element.

Remark. (1) Let $q: S^2 \cup_f e^n \to S^n$ be the pinch map and F_f be its homotopy fiber. It is known that the (n + 2)-skeleton of F_f is homotopy equivalent to $S^2 \vee S^{n+1}$ ([2]). This fact may be closely related to the statement of

Mathematics Subject Classification. Primary 55P15; Secondary 55P10, 55Q15.

Key words and phrases. CW complexes, Hopf map, characteristic map.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 13640067 (C)(2) and No. 16540056 (C)(2)), The Ministry of Education, Culture, Sports, Science and Technology, Japan.

K. YAMAGUCHI

Theorem 1.1 although we cannot explain it clearly. It is also known that $[f_1, f_2] = 0$ for any $f_1 \in \pi_k(S^2)$, $f_2 \in \pi_l(S^2)$ if $(k, l) \neq (2, 2)$ ([3]), and this fact is a crucial point for our proof of Theorem 1.1.

(2) This result will be used for studying the problem of homotopy type classifications of *m*-twisted complex projective spaces in [5]. In fact, if we use this result, we can extend the dimension that James excision isomorphism holds (cf. [4]) and it may be useful for computing higher homotopy groups $\pi_*(S^2 \cup_f e^n)$ without using Gray's method [2].

2. The case $n \geq 5$.

Let $n \geq 4$ be an integer and consider the space $X = S^2 \cup_f e^n$ $(0 \neq f \in \pi_{n-1}(S^2))$. Let $\iota_f \in [X, \mathbb{C}P^{\infty}] \cong H^2(X, \mathbb{Z}) \cong \mathbb{Z}$ be the map which represents the generator and let \tilde{X} be the homotopy fiber of the map ι_f . It is easy to see that \tilde{X} is a 2-connective covering of X and there is a fibration sequence

$$(2.1) S^1 \to \tilde{X} \xrightarrow{\varphi} X.$$

134

First, we treat the case $n \ge 5$. (The case n = 4 will be considered in the next section.) If we consider the Serre spectral sequence associated to (2.1), we have

$$H^{k}(\tilde{X}, \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & \text{if } k = 0, 3, n, n+1 \\ 0 & \text{otherwise} \end{cases}$$

and we obtain a homotopy equivalence

(2.2)
$$\tilde{X} \simeq S^3 \cup_g e^n \cup_\theta e^{n+1} = K \cup_\theta e^{n+1} \qquad (g \in \pi_{n-1}(S^3), \theta \in \pi_n(K)),$$

where we write $K = S^3 \cup_g e^n$. In this case, without loss of generalities, we may identify $\tilde{X} = S^3 \cup_g e^n \cup_{\theta} e^{n+1} = K \cup_{\theta} e^{n+1}$ and we may also suppose that φ is a cellular map. Then because $\varphi(K) \subset X$, there is a commutative diagram

$$\begin{array}{ccc} K & \stackrel{j}{\longrightarrow} & \tilde{X} \\ \parallel & & \varphi \\ K & \stackrel{\varphi_1}{\longrightarrow} & X \end{array}$$

where $j: K = S^3 \cup_g e^n \to \tilde{X}$ denotes the inclusion. Furthermore, since the 3-skeleton of X is S^2 , $\varphi(S^3) \subset S^2$. Hence, the map φ_1 also defines the map $\overline{\varphi}: (K, S^3) \to (X, S^2)$.

Lemma 2.1. $\varphi_{1*}: \pi_n(K) \to \pi_n(X)$ is a surjective homomorphism.

CONNECTIVE COVERINGS

135

Proof. Since $n \geq 5$, (\tilde{X}, S^3) and (X, S^2) are at least 4-connected. Hence, if we consider the commutative diagram

$$\begin{aligned} \pi_3(S^3) & \xrightarrow{\cong} & \pi_3(\tilde{X}) \\ (\varphi|S^3)_* & \varphi_* & \varphi_* \\ \pi_3(S^2) & \xrightarrow{\cong} & \pi_3(X) \end{aligned}$$

we have that $(\varphi|S^3)_* : \pi_3(S^3) \xrightarrow{\cong} \pi_3(S^2)$ is an isomorphism. Hence, without loss of generalities, we may assume that

(2.3) $\varphi | S^3 = \eta_2$ (up to homotopy equivalence).

Consider the commutative diagram

$$\pi_n(K) \xrightarrow{j_*} \pi_n(\tilde{X}) \longrightarrow 0$$

$$\parallel \qquad \varphi_* \downarrow \cong$$

$$\pi_n(K) \xrightarrow{\varphi_{1_*}} \pi_n(X)$$

where the upper horizontal sequence is exact. Since j_* is surjective, φ_{1_*} : $\pi_n(K) \to \pi_n(X)$ is also surjective.

Lemma 2.2. The attaching map g satisfies the condition $\eta_2 \circ g = f$.

Proof. Consider the commutative diagram

$$\pi_n(K) \longrightarrow \pi_n(K, S^3) \longrightarrow \pi_{n-1}(S^3) \longrightarrow \pi_{n-1}(K) \longrightarrow 0$$

$$\varphi_{1*} \downarrow \qquad \overline{\varphi}_* \downarrow \qquad \eta_{2*} \downarrow \cong \qquad \varphi_{1'*} \downarrow \cong$$

$$\pi_n(X) \longrightarrow \pi_n(X, S^2) \longrightarrow \pi_{n-1}(S^2) \longrightarrow \pi_{n-1}(X) \longrightarrow 0$$

where horizontal sequences are exact.

By the dimensional reason, $\varphi_{1'_*}$ is bijective. Then because φ_{1*} is surjective, the Five Lemma indicates that $\overline{\varphi}_* : \pi_n(K, S^3) \to \pi_n(X, S^2)$ is surjecive. However, because $\pi_n(K, S^3) \cong \mathbb{Z} \cong \pi_n(X, S^2)$, in fact,

(2.4)
$$\overline{\varphi}_* : \pi_n(K, S^3) \xrightarrow{\cong} \pi_n(X, S^2)$$
 is bijective.

Let $\overline{g} \in \pi_n(K, S^3) \cong \mathbb{Z}$ (resp. $\overline{f} \in \pi_n(X, S^2)$) denote the characteristic maps of the top cells e^n of K (resp. of X), and consider the commutative diagram

Produced by The Berkeley Electronic Press, 2005

K. YAMAGUCHI

Since $\overline{\varphi}_*$ is bijective, $\overline{\varphi}_*(\overline{g}) = \pm \overline{f}$. Hence,

136

$$\eta_2 \circ g = \eta_{2*}(g) = \eta_{2*} \circ \partial'_n(\overline{g}) = \partial_n \circ \overline{\varphi}_*((\overline{g}) = \partial_n(\pm \overline{f}) = \pm f.$$

Because there is a homotopy equivalence $S^3 \cup_g e^n \simeq S^3 \cup_{-g} e^n$, we may assume $\eta_2 \circ g = f$ and this completes the proof.

Since $0 \neq f \in \pi_{n-1}(S^2)$ and $n \geq 5$, the order of f is finite. Let $m \geq 2$ be the order of the map $f \in \pi_{n-1}(S^2)$. Since $\eta_2 \circ g = f$, the order of g is also m. If we consider the homotopy exact sequences of the pairs (K, S^3) and (X, S^2) , we have isomorphisms

where $\partial'_n : \pi_n(K, S^3) \to \pi_{n-1}(S^3)$ and $\partial_n : \pi_n(X, S^2) \to \pi_{n-1}(S^2)$ denote the corresponding boundary operators.

Lemma 2.3. $\varphi_{1_*}: \pi_n(K) \xrightarrow{\cong} \pi_n(X)$ is an isomorphism.

Proof. Since φ_{1*} is surjective (by Lemma 2.1), it suffices to show that there is an isomorphism $\pi_n(K) \cong \pi_n(X)$ as abelian groups. If we consider the homotopy exact sequence $\pi_n(S^3) \xrightarrow{i'_*} \pi_n(K) \to \text{Ker } \partial'_n \to 0$, we have an isomorphism $\pi_n(K) \cong \mathbb{Z} \oplus i'_*(\pi_n(S^3))$, where $i' : S^3 \to K$ denotes the inclusion. Similarly, if we denote by $i : S^2 \to X$ the inclusion, we have an isomorphism $\pi_n(X) \cong \mathbb{Z} \oplus i_*(\pi_n(S^2))$. Hence, it is sufficient to show that there is an isomorphism

(2.7)
$$i'_*(\pi_n(S^3)) \cong i_*(\pi_n(S^3)).$$

Consider the commutative diagram

$$\pi_{n+1}(K, S^3) \xrightarrow{\partial'_{n+1}} \pi_n(S^3) \xrightarrow{i'_*} \pi_n(K)$$
$$\overline{\varphi}_* \downarrow \qquad \qquad \eta_{2*} \downarrow \cong \qquad \varphi_{1*} \downarrow$$
$$\pi_{n+1}(X, S^2) \xrightarrow{\partial_{n+1}} \pi_n(S^2) \xrightarrow{i_*} \pi_n(X)$$

where horizontal sequences are exact. Then we have isomorphisms

(2.8)
$$\begin{cases} i'_*(\pi_n(S^3)) \cong \pi_n(S^3) / \partial'_{n+1}(\pi_{n+1}(K,S^3)), \\ i_*(\pi_n(S^2)) \cong \pi_n(S^2) / \partial_{n+1}(\pi_{n+1}(X,S^2)). \end{cases}$$

It follows from the James's isomorphism [4] that we have the isomorphisms

$$\begin{cases} \pi_{n+1}(K, S^3) = \overline{g}_* \pi_{n+1}(D^n, S^{n-1}) = \mathbb{Z}/2 \cdot \overline{g} \circ \eta, \\ \pi_{n+1}(X, S^2) = \mathbb{Z} \cdot [\overline{f}, \iota_2]_r \oplus \overline{f}_* \pi_{n+1}(D^n, S^{n-1}) = \mathbb{Z} \cdot [\overline{f}, \iota_2]_r \oplus \mathbb{Z}/2 \cdot \overline{f} \circ \eta, \end{cases}$$

CONNECTIVE COVERINGS

where $\eta \in \pi_{n+1}(D^n, S^{n-1}) \cong \mathbb{Z}/2$ denotes the generator and $[,]_r$ is a relative Whitehead product. If we recall the commutative diagrams

then we have

$$\begin{cases} \partial'_{n+1}(\overline{g} \circ \eta) = g \circ \eta_{n-1}, \ \partial_{n+1}(\overline{f} \circ \eta) = f \circ \eta_{n-1}, \\ \partial_{n+1}([\overline{f}, \iota_2]_r) = -[f, \iota_2] = 0. \end{cases}$$
 (by [1] and [3])

Hence, by using (2.8) we have the isomorphisms

$$i'_*(\pi_n(S^3)) \cong \pi_n(S^3)/\langle g \circ \eta_{n-1} \rangle$$
 and $i_*(\pi_n(S^2)) \cong \pi_n(S^2)/\langle f \circ \eta_{n-1} \rangle$.

However, because $\eta_{2*} : \pi_k(S^3) \xrightarrow{\cong} \pi_k(S^2)$ is an isomorphism for any $k \geq 2$ and $f = \eta_2 \circ g$, the map η_2 also induces an isomorphism

$$\pi_n(S^3)/\langle g \circ \eta_{n-1} \rangle \cong \pi_n(S^2)/\langle f \circ \eta_{n-1} \rangle$$

Hence, the isomorphism (2.7) is proved.

Let $\overline{\theta} \in \pi_{n+1}(\tilde{X}, K) \cong \mathbb{Z}$ denote the characteristic map of the top cell e^{n+1} in \tilde{X} and consider the exact sequence of the pair (\tilde{X}, K) ,

$$\mathbb{Z} \cdot \overline{\theta} = \pi_{n+1}(\tilde{X}, K) \xrightarrow{\partial_{n+1}^{\prime\prime}} \pi_n(K) \xrightarrow{j_*} \pi_n(\tilde{X}) \longrightarrow 0$$

Because $j_*: \pi_n(K) \to \pi_n(\tilde{X})$ is surjective and there are isomorphisms

$$\pi_n(K) \xrightarrow{\varphi_{1_*}} \pi_n(X) \xleftarrow{\varphi_*} \pi_n(\tilde{X}),$$

in fact, j_* is an isomorphism. Hence, $\partial_{n+1}'' = 0$ and we have $\theta = \partial_{n+1}''(\overline{\theta}) = 0$. So $\tilde{X} \simeq K \lor S^{n+1}$ and we complete the proof for the case $n \ge 5$.

3. The case n = 4.

The proof of the case n = 4 is essentially due to Jie Wu and the author does not claim its originality. However, for completeness of this paper, we shall give its proof here.

If we assume n = 4, without loss of generalities we may assume that $X = L_m = S^2 \cup_{m\eta_2} e^4$ for an integer $m \ge 2$. We note that the equality $x_2 \cdot x_2 = mx_4$ holds, where $x_{2k} \in H^{2k}(X,\mathbb{Z}) \cong \mathbb{Z}$ (k = 1, 2) denote the

137

K. YAMAGUCHI

corresponding generators. Then, if we compute the Serre spectral sequence associated to the fibration (2.1), we have

$$H^{k}(\tilde{X}, \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & \text{if } k = 0, 5, \\ \mathbb{Z}/m & \text{if } k = 4, \\ 0 & \text{otherwise.} \end{cases}$$

So there is a homotopy equivalence

(3.1)
$$\tilde{X} \simeq \mathbf{P}^4(m) \cup_{\theta} e^5 \quad (\theta \in \pi_4(\mathbf{P}^4(m)).$$

It suffices to show that $\theta = 0$. If we use James's isomorphism [4], we have

(3.2)
$$\pi_4(\mathbf{P}^4(m)) = \begin{cases} \mathbb{Z}/2 \cdot i''_*(\eta_3) & \text{if } m \equiv 0 \pmod{2}, \\ 0 & \text{if } m \equiv 1 \pmod{2}, \end{cases}$$

where $i'': S^3 \to P^4(m)$ denotes the inclusion. If $m \equiv 1 \pmod{2}$, since $\theta \in \pi_4(P^4(m)) = 0$, $\theta = 0$ and the assertion follows. Next, consider the case $m \equiv 0 \pmod{2}$. Because $\theta \in \pi_4(P^4(m)) = \mathbb{Z}/2 \cdot i''_*(\eta_3)$, $\theta = 0$ or $\theta = i''_*(\eta_3)$. Now we suppose that $\theta = i''_*(\eta_3) \neq 0$. Then let $\overline{\theta} \in \pi_5(\tilde{X}, P^4(m)) \cong \mathbb{Z}$ denote the characteristic map of the top cell e^5 and consider the exact sequence

$$\mathbb{Z} \cdot \overline{\theta} = \pi_5(\tilde{X}, \mathbf{P}^4(m)) \xrightarrow{\partial_5} \pi_4(\mathbf{P}^4(m)) \longrightarrow \pi_4(\tilde{X}) \longrightarrow 0.$$

Because $\partial_5(\overline{\theta}) = \theta = i''_*(\eta_3)$, we have $\pi_4(\tilde{X}) = 0$. However, since $\pi_4(\tilde{X}) \cong \pi_4(X) \cong \mathbb{Z}/2$ (by [8]), this is a contradiction. Hence $\theta = 0$.

Acknowledgments. The author would like to take this opportunity to thank Professors J. Mukai and J. Wu for their numerous helpful suggestions concerning 2-connective coverings and the homotopy groups of Moore spaces.

References

- A. L. Blakers and W. S. Massey, Products in homotopy theory, Annals of Math., 58 (1953), 295–324.
- [2] B. Gray, On the homotopy groups of mapping cones, Proc. London Math. Soc., 26 (1973), 497–520.
- [3] P. J. Hilton and J. H. C. Whitehead, Note on the Whitehead product, Annals of Math., 58 (1953), 429-442
- [4] I. M. James, On the homotopy groups of certain pairs and triads, Quart. J. Math. Oxford, 5 (1954), 260–270.
- [5] J. Mukai and K. Yamaguchi, Homotopy classification of twisted complex projective spaces of dimension 4, J. Math. Soc. Japan, 57 (2005) 461–489.
- [6] H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. Studies, Princeton Univ. Press, 49, 1962.
- [7] J. Wu, Private communications.
- [8] K. Yamaguchi, The group of self-homotopy equivalences of S²-bundles over S⁴, I, Kodai Math. J., 9 (1986) 308–326.

138

CONNECTIVE COVERINGS

Kohhei Yamaguchi Department of Information Mathematics University of Electro-Communications Chofugaoka, Chofu, Tokyo 182-8585 Japan *e-mail address*: kohhei@im.uec.ac.jp

(Received April 5, 2004)

139