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QUASI-HAMSHER MODULES AND QUASI-MAX RINGS
WEIMIN XUE

Throughout rings are associative with identity and modules are uni-
tary. We freely use the terminology and notations of Anderson and Fuller
(1].

Faith [5] said that a module Af is Hamsher if every non-zero sub-
module of M has a maximal submodule. It is well-known (see, e.g., [1,
§11]) that M has finite length if and only if M is Hamsher and artinian.
A ring R is called right max [5] if every non-zero right R-module has a
maximal submodule. The class of right max rings includes right perfect
rings, and right V-rings as well. As generalizations, we call a module M
quasi-Hamsher if every non-zero artinian submodule of A has a maximal
submodule, and call a ring R right quasi-max if every right R-module is
quasi-Hamsher, i.e., every non-zero artinian right R-module has a maxi-
mal submodule. In this paper, we characterize quasi-Hamsher modules and
quasi-max rings, which are shown to be proper generalizations of Hamsher
modules and max rings, respectively. The dual notions of quasi-Hamsher
modules and quasi-max rings are also considered.

1. Quasi-Hamsher modules and quasi-max rings. It is easy to
see that the class of (quasi-)Hamsher modules is closed under submodules.
The following two propositions show that this class is also closed under
extensions, direct products, and direct sums. In this and the next section,
R is a fixed ring and modules are right R-modules when not specified.

Proposition 1.1. Let 0 — M; LA VN My — 0 be an ez-
act sequence of modules. If both My and M, are (resp. quasi-Hamsher)
Hamsher, then so is M.

Proof. Let 0 # A be a (resp. artinian) submodule of M, If g(A) # 0,
being a (resp. artinian) submodule of the (resp. quasi-Hamsher) Hamsher
module Mj, g(A) has a maximal submodule B. Then ANg~!(B) is a
maximal submodule of A. If g(4) =0, A C Ker(g) = Im(f) = M; and so

A has a maximal submodule since M is (resp. quasi-Hamsher) Hamsher.
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Proposition 1.2. The following are equivalent for a family {M;}icy
of modules:
(a) Ewery M; is Hamsher (resp. quasi-Hamsher);
(b) [lic; Mi is Hamsher (resp. quasi-Hamsher);
(¢) ;e M; is Hamsher (resp. quasi-Hamsher);

Proof. (a)=(b). Let 0 # A be a (resp. artinian) submodule of
HieI M;. Let p;: Hiel M; — M; be the canonical projections. We have
an M; such that p;(A) # 0. Now p;(A) is a (resp. artinian) submodule of
the (resp. quasi-Hamsher) Hamsher module M; so p;(A) has a maximal
submodule B. The AN pi_l(B) is a maximal submodule of A.
(b)=(c)=(a). These are obvious, since the class of (quasi-)Hamsher mod-
ules is closed under submodules.

Cai and Xue [4] called a module strongly artinian if each of its proper
submodule has finite length. It is easy to see that a non-zero strongly
artinian module has finite length if and only if it has a maximal submodule,
if and only if it is finitely generated.

Proposition 1.3. The following are equivalent for a module M:
(a) M is quasi-Hamsher;
(b) Every artinian submodule of M has finite length;
(c) Every artinian submodule of M is finitely generated;
(d) Every strongly artinian submodule of M 1is finitely generated;
(e) Ewvery non-zero strongly artinian submodule of M has a mazimal
submodule (hence has finite length).

Proof. (a)=>(b). Let A be a non-zero artinian submodule of M. Since
each submodule of A is still artinian, A is an artinian Hamsher module,
which has finite length.

(b)=(c)=(d) &(e) and (c)=(a). These are obvious.
(e)=>(b). If A is an artinian submodule of M and A has infinite length,
then the non-empty family

{B £ A| B has infinite length}

has a minimal member, say B. It is eary to see that B is strongly artinian
and B has infinite length.
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As a generalization of right max rings we call a ring R right quasi-
max if every right R-module is quasi-Hamsher. The next characterizations
of right quasi-max rings follow immediately from the above proposition.

Theorem 1.4. The following are equivalent for a ring R:
(a) R is right quasi-maz;
(b) Every non-zero (strongly) artinian right R-module has a mazi-
mal submodule;
(c) Ewvery (strongly) artinian right R-module has finite length;
(d) PBuvery (strongly) artinian right R-module is finitely generated.

Camillo and Xue [3] called a ring R right quasi-perfect if every ar-
tinian right R-module has a projective cover. Using Theorem 1.4 and (3,
Theorem 1] we see that a ring R is right quasi-perfect if and only if it is
semiperfect and right quasi-max. Hence the next result follows immediately
from [3, Proposition 6].

Proposition 1.5. If R is commutative semiperfect ring with nil
J(R) then R is quasi-maz.

It is known (see [5, p.203]) that a ring R is right max if and only
if R/J(R) is right max and J(R) is right T-nilpotent. The ring R in [3,
Example 7] is a local commutative ring with nil J(R) which is not 7-
nilpotent. Hence R is not max, but R is quasi-max by Proposition 1.5.
Therefore there is a quasi-Hamsher R-module which is not Hamsher. We
conclude that quasi-Hamsher modules and right quasi-max rings are proper
generalizations of Hamsher modules and right max rings, respectively.

Example 1.6. Let D be a divison ring. Let R be the ring of all
countablely infinite upper triangular matrices over D with constant on the
main diagonal and having non-zero entries in only finitely many rows above
the main diagonal. Then R is a local right perfect ring which is not left
perfect. Miller and Turnidge [6] constructed and artinian left R-module AJ
which is not noetherian. Hence R is not left quasi-max. This shows that
the notion of (quasi-)max rings is not left-right symmetric.

In view of the above example and Proposition 1.5, we mention the
following result, which follows immediately from [8, Proposition 2].

Proposition 1.7 ([8]). Let R be a semiperfect ring with nil J(R).
If J(R) is of bounded indez n, i.e., j™ = 0 for each j € J(R), then R is

(two-sided) quasi-maz, equivalently, quasi-perfect.
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Modifying the proof of [5, Theorem 1] we have an analogous result.

Theorem 1.8. The following are equivalent for a ring R:
(a) R 1is right quasi-maz;
(b) The category Mod-R has a cogenerator C which is quasi-
Hamsher;
(¢) The injective envelope E(T) of T is quasi-Hamsher for each
simple right R-module T'.

Proof. (a)=-(b). This is obvious.

(b)=(c). Since C is a cogenerator there is a monomorphism E(T) — C for
each simple right R-module T'. Hence E(T') must be quasi-Hamsher since
Cis.

(c)=(a). Let T range over all simple right R-modules. Then @ E(T) is a
cogenerator of Mod-R and @ E(T) is quasi-Hamsher by Proposition 1.2.
Let A be a non-zero artinian right R-module. We have a non-zero homo-
morphism f: A — @ E(T). Since f(A) is a non-zero artinian submodule
of @ E(T), which is quasi-Hamsher, f(A) has a maximal submodule B.
Then f~!(B) is a maximal submodule of A.

2. Quasi-Loewy modules and quasi-Loewy rings. A module
M is called Loewy (resp. quasi-Loewy) if every non-zero (resp. non-zero
noetherian) factor module of M has non-zero socle. It is well-known (see,
e.g., [1, §11]) that M has finite length if and only if M is Loewy and
noetherian. The next two propositions show that the class of (quasi-)
Loewy modules is closed under extensions and direct sums.

Proposition 2.1. Let 0 —» M; EEAN VNN My — 0 be an ezact
sequence of modules. If both M; and M, are Loewy (resp. quasi-Loewy)
then M is Loewy (resp. quasi-Loewy).

Proof. Let 0 # M/N be a (resp. noetherian) factor module of M.
We have an exact sequence

0 = My /Ny = M/N — My/Ny — 0.

If M, /Ny # 0, Soc(My/Ny) # 0 and then Soc(M/N) # 0. If My /Ny = 0,
My /Ny = M/N # 0. Then Soc(M3/N2) # 0, and so Soc(M/N) # 0.
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Proposition 2.2. Let {M;}ier be a family of modules. Then
@Dic; M; is Loewy (resp. quasi-Loewy) if and only if each M; is Loewy
(resp. quasi-Loewy).

Proof. (=). The class of (quasi-)Loewy modules is closed under
factor modules.
(¢<). Let ji: M; = ;e M; be the canonical injection. If (@, M;)/N
is a non-zero (noetherian) factor module of P, ; M; then there is an
i € I such that 0 # pji: M; — (D;c; Mi)/N where p: @, M; —
(B;c; Mi)/N is the natural epimorphism. Since 0 # Im(pj;) which is iso-
morphic to a (noetherian) factor module of M; we have 0 # Soc(Im(pj;)) <
Soc((€P;e; Mi)/N). :

If R = [[{2, F; is an infinite product of the fields F;’s then R is not
a Loewy R-module by [2, p.354, Remark 3(2)]. Since each F; is a Loewy
R-module, this shows that the class of Loewy modules is not closed under
direct products. We do not know if the class of quasi-Loewy modules is
closed under direct products.

A module is called strongly noetherian [4] if each of its proper factor
module has finite length. It is easy to see that a non-zero strongly noethe-
rian module has finite length if and only if it has non-zero socle, if and only
if it is finitely cogenerated.

Proposition 2.3. The following are equivalent for a module M:
(a) M is quasi-Loewy;
(b) Ewvery noetherian factor module of M has finite length;
(c) Every noetherian factor module of M 1s finitely cogenerated;
(d) Ewvery strongly noetherian factor module of M is finitely cogen-
erated;
(e) Every non-zero strongly noetherian factor module of M has non-
zero socle (hence has finite length).

Proof. (a)=(b). Let 0 # M /N be a noetherian factor module of M.
Since each factor module of M /N is still noetherian, M/N is a noetherian
Loewy module, which has finite length.

(b)=(c)= (d)<(e) and (c)=(a). These are obvious.
(e)=>(b). If M/N is a noetherian factor module of A and M /N has infinite
length, then the non-empty family

{N £ N'£ M| M/N' has infinite length}
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has a maximal member, say N'. It is easy to see that M/N' is strongly
noetherian and M /N’ has infinite length.

A ring R is called right quasi-Loewy if every right R-module is quasi-
Loewy. The next characterizations of right quasi-Loewy rings follow im-
mediately from the above proposition.

Theorem 2.4. The following are equivalent for a ring R:
(a) R is right quasi-Loewy;
(b) Ewvery non-zero (strongly) noetherian right R-module has non-
zero socle;
(c) Every (strongly) noetherian right R-module has finite length;
(d) Every (strongly) noetherian right R-module is finitely cogener-
ated;

It follows from Theorems 1.4 and 2.4 that the rings studied by Tanabe
[8] are precisely left quasi-max and left quasi-Loewy rings. An analogous
result of Theorem 1.8 is the following

Theorem 2.5. A ring R is right quasi-Loewy if and only if Mod-R
has a generator G which is quasi-Loewy.

Proof. (=). This is clear.
(«=). If M is a noetherian right R-module, M = G"/H. Now G" is quasi-
Loewy by Proposition 2.2, so G"/H has finite length by Proposition 2.3.
Hence R is right quasi-Loewy by Theorem 2.4.

The next proposition gives a class of commutative quasi-Loewy rings.

Proposition 2.6. If R is a commutative semiperfect ring with nil
J(R) then R is quasi-Loewy.

Proof. By Theorem 2.5, it suffices to show that R is a quasi-Loewy
R-module. Let I be an ideal of R such that R/I is a noetherian R-module.
Then the commutative semiperfect noetherian ring R/I has nil J(R/I).
Hence R/I is an artinian ring. Then R/I has finite length as an R-module.

A ring R is right Loewy if every right R-module is Loewy, i.e., ev-
ery non-zero right R-module has non-zero socle, equivalently, the right
R-module Rp is Loewy. Every left perfect ring is right Loewy. By [7],
R is right Loewy if and only if R/J(R) is right Loewy and J(R) is left
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T-nilpotent. The ring R in [3, Example 7] is a local commutative ring
with nil J(R) which is not T-nilpotent. Hence R is not Loewy. But R is
quasi-Loewy by the above proposition. Therefore there is a quasi-Loewy
R-module which is not Loewy. We conclude that quasi-Loewy modules
and right quasi-Loewy rings are proper generalizations of Loewy modules
and right Loewy rings, respectively.

Let R be the ring in Example 1.6. Then R is a local right perfect ring
which is not left perfect. Miller and Turnidge {6] constructed a noetherian
right R-module M which is not artinian. Hence R is not right quasi-
Loewy. This shows that the notion of (quasi-)Loewy rings is not left-right
symmetric. In view of this fact and Proposition 2.6, we state the next
result, which follows from (8, Proposition 2].

Proposition 2.7 ([8]). Let R be a semiperfect ring with nil J(R).
If J(R) is of bounded indez n then R is (two-sided) quasi-Loewy.

Since a commutative regular ring need not be Loewy (see R = [[{2, F;
preceding Proposition 2.3) we recall the following result which follows from
[8, Theorem 1]. Here we give a simple proof.

Proposition 2.8 ([8]).  Ewvery strongly regular ring R is a (two-
sided) quasi-Loewy ring.

Proof. Let M = Y"1, m;R be a noetherian right R-module. To
show M has finite length, it suffices to show each m;R has finite length.
We have m;R = R/I for some ideal I of R. Since R/I is a right noetherian
regular ring it is semisimple. So R/I (= m;R) has finite length as a right
R-module.

3. Morita duality. A bimodule g Ug defines a Morita duality if
sUr is faithfully balanced and both Ug and s U are injective cogenerators.
In this case, both R and S are semiperfect rings. A presentation of Morita
duality can be found in [1, §23,§24] and [9, Chapter 1].

Using properties of of Morita duality and [3, Thorems 10 and 11] we
conclude this paper with the following two results.

Proposition 3.1. Let sUg define a Morita duality. If Mg is a
U -reflezive right R-module then

(a) Mg is Hamsher (resp. quasi-Hamsher) if and only if the left
S-module sHompg(Mpg, s Ur) is Loewy (resp. quasi-Loewy).
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(b) Mp is Loewy (resp. quasi-Loewy) if and only if the left S-module
sHompg(Mg, s Ug) ts Hamsher (resp. quasi-Hamsher).

Theorem 3.2. If sUg defines a Morita duality the following are
equivalent:
(a) R is right quasi-maz;
(b) S is left quasi-maz;
(¢) R is right quasi-Loewy;
(d) S is left quasi-Loewy.
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