Mathematical Journal of Okayama University

Volume 39, Issue 1

1997

Article 13

JANUARY 1997

The Comparison Theorem of Hilbert-space-valued Tangent Sequences

Yu He* Peide Liu[†]

Copyright ©1997 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}University Of Science And Technology Of China

[†]Wuhan University

Math. J. Okayama Univ. 39 (1997), 147-157

THE COMPARISON THEOREM OF HILBERT-SPACE-VALUED TANGENT SEQUENCES

YU HE and PEIDE LIU

Let $(\Omega, \mathcal{F}, \mu)$ be a complete probability space, X be a Hilbelt space. When X has a Schauder basis $(e_i)_{i\geq 1}$, we consider $\varphi\colon X\to\mathbb{R}^\infty=\left\{(a_i)_{i\geq 1}\mid a_i\in\mathbb{R}\right\},\ \varphi(\sum_{i\geq 1}a_ie_i)=(a_i)_{i\geq 1};\ \text{Let }f$ be an X-valued random variable, then $\varphi(f)$ is a serie of random functions, there exists RCPD (regular conditional probability distribution) $P_{\varphi(f)}$ of $\varphi(f)$ w.r.t. \mathcal{B} , where \mathcal{B} is a subalgebra of \mathcal{F} . Let \mathcal{B}^∞ be the Borel algebra of \mathbb{R}^∞ , \mathcal{B}_X be the Borel algebra of X, $\varphi(\mathcal{B}_X)=\left\{\varphi(B)\mid B\in\mathcal{B}_X\right\}$. Let χ_A be the characteristic function of $A\in\mathcal{F}$.

In this article, integrability means Bochner integrability.

Lemma 1. Let X be a Banach space, f be an X-valued random variable with almost separable values, \mathcal{B} be a subalgebra of \mathcal{F} , then there exists regular conditional probability distribution of f w.r.t. \mathcal{B} denoted by P_f .

Proof. see [1].

Theorem 2. Let X be a Hilbert space, f be an X-valued integrable random variable, then $E(f|\mathcal{B})(t) = \int_X x P_f(t, dx)$. a.e.

Proof. Since an X-valued integrable random variable is strong measurable, it is almost separably-valued by the Pettis theorem. We need only consider the case where X is a separable Hilbert space. Let $(e_n)_{n\geq 1}$ be an orthonormal basis of X, p_n respectively q_n be the projections of X respectively \mathbb{R}^{∞} to the n'th coordinate, then for all $x \in X$, $p_n(x) = q_n(\varphi(x))$;

Y. HE and P. LIU

$$E(f|\mathcal{B})(t) = E\left(\sum_{n=1}^{\infty} (p_n f) e_n \middle| \mathcal{B}\right)(t) = \sum_{n=1}^{\infty} E(p_n f|\mathcal{B})(t) e_n$$

$$(\text{Since } \left\| \sum_{n=1}^{k} p_n f(t) e_n \right\| \le \|f(t)\|)$$

$$= \sum_{n=1}^{\infty} E\left(q_n(\varphi(f)) \middle| \mathcal{B}\right)(t) e_n = \sum_{n=1}^{\infty} \int_{\mathbb{R}^{\infty}} q_n(y) P_{\varphi \circ f}(t, dy) e_n$$

$$= \sum_{n=1}^{\infty} \int_X q_n(\varphi(x)) P_f(t, dx) e_n = \sum_{n=1}^{\infty} \int_X p_n(x) e_n P_f(t, dx)$$

$$= \int_X \sum_{n=1}^{\infty} p_n(x) e_n P_f(t, dx) = \int_X x P_f(t, dx).$$

Theorem 3. Let X, Y be Hilbert spaces, f be an X-valued random variable with almost separable values, $h: X \to Y$ be Borel measurable, $h \circ f$ be integrable, Then $E(h \circ f|\mathcal{B})(t) = \int_{Y} h(x) P_f(t, dx)$. a.e.

Proof. Because $h: X \to Y$ is measurable, we can define

$$P_{h \circ f}(t, B) = P_f(t, h^{-1}(B)), \quad \forall t \in \Omega, B \in \mathcal{B}_Y$$

then $\forall t \in \Omega$, $P_{h \circ f}(t, *)$ is a probability measure on \mathcal{B}_Y . $\forall B \in \mathcal{B}_Y$,

$$P_{h \circ f}(t, B) = P_f(t, h^{-1}(B)) = E(f^{-1}(h^{-1}(B)) | \mathcal{B})(t)$$

= $E((h \circ f)^{-1}(B) | \mathcal{B})(t)$ a.e.

So $P_{h \circ f}$ is a regular distribution of $h \circ f$ w.r.t. \mathcal{B} . Choosing regular distribution pair such as these and using Theorem 2, we have

$$E(h \circ f | \mathcal{B})(t) = \int_{Y} y P_{h \circ f}(t, dy)$$

= $\int_{X} h(x) P_{f}(t, dx).$

Definition 4. Let $(\mathcal{F}_n)_{n\geq 0}$ be an increasing sub- σ -algebra sequence of \mathcal{F} , $(d_n)_{n\geq 1}$, $(e_n)_{n\geq 1}$ are X-valued random variables w.r.t $(F_n)_{n\geq 1}$. We call $(d_n)_{n\geq 1}$ and $(e_n)_{n\geq 1}$ tangent, if $\forall A \in \mathcal{B}_X$, $\forall n \geq 1$, $P(d_n^{-1}(A)|\mathcal{F}_{n-1}) =$

 $P(e_n^{-1}(A)|\mathcal{F}_{n-1})$ a.e. We call $(d_n)_{n\geq 1}$ conditionally symmetric, if $(-d_n)_{n\geq 1}$ and $(d_n)_{n\geq 1}$ are tangent.

Let $\Phi \colon \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function satisfying the condition Δ_2 , it means: $\exists C > 0$ such that $\forall x \geq 0$, $\Phi(2x) \leq C\Phi(x)$, and $\Phi(0) = 0$. Easily, we have: $\forall x, y \geq 0$, $\Phi(x+y) \leq C\Phi(x) + C\Phi(y)$. Let $(d_n)_{n\geq 1}$ be a random variable sequence, we define

$$d_0^* = 0, \quad d_n^* = \sup_{1 \le k \le n} \|d_k\|, \quad d^* = \sup_{n \ge 1} \|d_n\|.$$

Lemma 5. Let X be a Hilblert space with orthonormal basis $(e_i)_{i\geq 1}$, $\varphi(\sum_{i\geq 1} a_i e_i) = (a_i)_{i\geq 1}$, then

$$\varphi(\mathcal{B}_X) = \mathcal{B}^{\infty} \bigcap \varphi(X) = \{A \bigcap \varphi(X) \mid A \in \mathcal{B}^{\infty}\}.$$

Proof. Let p_n be the projection of \mathbb{R}^{∞} to the first n coordinates, \mathcal{B}^n be the Borel algebra of \mathbb{R}^n . Then $\mathcal{B}^{\infty} = \sigma(T)$, $T = \bigcup_{n \geq 1} p_n^{-1}(\mathcal{B}^n)$, where $\sigma(T)$ is the σ algebra generated by T. So $\sigma(T \cap \varphi(X)) = \mathcal{B}^{\infty} \cap \varphi(X) \subseteq \varphi(\mathcal{B}_X)$, $\mathcal{B}^{\infty} \cap \varphi(X) = \varphi(\mathcal{B}_X)$.

Lemma 6. Let Hilbert spaces X, Y have orthonormal bases $(e_{2k-1})_{k\geq 1}$, $(e_{2k})_{k\geq 1}$ respectively, we take product topology on $X\times Y$, then $\mathcal{B}_{X\times Y}=\mathcal{B}_X\times\mathcal{B}_Y$.

Proof. We define $\varphi \colon Z = X \times Y \to \mathbb{R}^{\infty}$, $\varphi(\sum_{i \geq 1} a_i e_i) = (a_i)_{i \geq 1}$,

$$\mathbb{R}_{1}^{\infty} = \left\{ (a_{n})_{n \geq 1} \mid a_{2k} = 0, \forall k \geq 1 \right\}$$

$$\mathbb{R}_{2}^{\infty} = \left\{ (a_{n})_{n \geq 1} \mid a_{2k-1} = 0, \forall k \geq 1 \right\}$$

 \mathcal{B}_i^{∞} is the Borel algebra of $\mathbb{R}_i^{\infty} (i=1,2)$. Then

$$\varphi(\mathcal{B}_Z) = \mathcal{B}^{\infty} \bigcap \varphi(Z) = (\mathcal{B}_1^{\infty} \times \mathcal{B}_2^{\infty}) \bigcap (\varphi(X) \times \varphi(Y))$$
$$= (\mathcal{B}_1^{\infty} \bigcap \varphi(X)) \times (\mathcal{B}_2^{\infty} \bigcap \varphi(Y))$$
$$= \varphi(\mathcal{B}_X) \times \varphi(\mathcal{B}_Y) = \varphi(\mathcal{B}_X \times \mathcal{B}_Y).$$

So $\mathcal{B}_Z = \mathcal{B}_X \times \mathcal{B}_Y$.

Y. HE and P. LIU

Lemma 7. Let X be a Hilbert space with basis, $(d_n)_{n\geq 1}$ be an X-valued conditionally symmetric sequence. We define

$$\lambda_n = (d_1, \dots, d_n) \colon \Omega \to X^n = Y,$$

$$\xi_n = (d_1, \dots, d_{n-1}, -d_n) \colon \Omega \to Y,$$

then both λ_n , ξ_n are measurable w.r.t. \mathcal{B}_Y , we can take their RCPDs P_{λ_n} , P_{ξ_n} w.r.t. \mathcal{F}_{n-1} and $E \in \mathcal{F}_{n-1}$ such that $\mu(E) = 0$, and $\forall t \in \Omega \setminus E$, $\forall A \in \mathcal{B}_Y$, $P_{\lambda_n}(t,A) = P_{\xi_n}(t,A)$.

Proof. By Lemma 6, $\mathcal{B}_Y = \mathcal{B}_X^n$, so $\forall A_i \in \mathcal{F}$, λ_n , ξ_n are measurable w.r.t. \mathcal{B}_Y . Since X is separable, X is secondly denumbrable, we can take a countable set $\mathcal{A} = \{A_i \mid i \in N\}$ consisted of open sets of X such that \mathcal{A} generates the topology \mathcal{T}_X of X. The σ algebra generated by \mathcal{T}_X is $\sigma(\mathcal{T}_X) = \mathcal{B}_X$, so $\sigma(\mathcal{A}) = \mathcal{B}_X$, $\sigma(\mathcal{A}^n) = \mathcal{B}_X^n = \mathcal{B}_Y$.

$$\forall B_{k} \in \mathcal{B}_{X}, \quad P_{\lambda_{n}}(t, \prod_{k=1}^{n} B_{k}) = P(\lambda_{n}^{-1}(\prod_{k=1}^{n} B_{k}) | \mathcal{F}_{n-1})(t)$$

$$= P(\bigcap_{k=1}^{n} d_{k}^{-1}(B_{k}) | \mathcal{F}_{n-1})(t)$$

$$= \prod_{k=1}^{n-1} \chi_{D_{k}} E(\chi_{D_{k}} | \mathcal{F}_{n-1})(t)$$

$$\cdot (\text{where } D_{k} = d_{k}^{-1}(B_{k}))$$

$$= \prod_{k=1}^{n-1} \chi_{D_{k}} E(\chi_{E_{n}} | \mathcal{F}_{n-1})(t)$$

$$(\text{where } E_{n} = (-d_{n})^{-1}(B_{n}))$$

$$= E(\prod_{k=1}^{n-1} \chi_{D_{k}} \circ \chi_{E_{n}} | \mathcal{F}_{n-1})(t)$$

$$= P(\xi_{n}^{-1}(\prod_{k=1}^{n} B_{k}) | \mathcal{F}_{n-1})(t)$$

$$= P_{\xi_{n}}(t, \prod_{k=1}^{n} B_{k}). \text{ a.e.}$$

For $k_i \in N$, we take $E(k_1, \ldots, k_n) \in \mathcal{F}_{n-1}$, such that $\mu(E(k_1, \ldots, k_n)) = 0$, $\forall t \in \Omega \setminus E(k_1, \ldots, k_n), P_{\lambda_n}(t, \prod_{i=1}^n A_{k_i}) = P_{\xi_n}(t, \prod_{i=1}^n A_{k_i})$. (1)

Let $E = \bigcup \{E(k_1, \ldots, k_n) \mid k_i \in N, 1 \leq i \leq n\}$, then $\mu(E) = 0, \forall t \in \Omega \setminus E$, $\forall k_i \in N, (1)$ holds. Since $P_{\lambda_n}(t, *)$ and $P_{\xi_n}(t, *)$ are probability measures on \mathcal{B}_Y , by (1), they are equal on \mathcal{A} that generates \mathcal{B}_Y , so $\forall t \in \Omega \setminus E$, $\forall A \in \mathcal{B}_Y$, $P_{\lambda_n}(t, A) = P_{\xi_n}(t, A)$. For $t \in E$, we take

$$P_{\lambda_n}(t,A) = \mu(\lambda_n^{-1}(A)), \quad P_{\xi_n}(t,A) = \mu(\xi_n^{-1}(A)).$$

Lemma 8. Let X be a Hilbert space, $(d_n)_{n\geq 1}$ be a conditionally symmetric sequence, $d_n \in L_1(\mu, X)$. We denote $f_n = \sum_{k=1}^n d_k$, then $f = (f_n)_{n\geq 1}$ is a martingale w.r.t. $(\mathcal{F}_n)_{n\geq 1}$, and we have decomposition $f_n = g_n + h_n$, such that $g = (g_n)_{n\geq 1}$ and $h = (h_n)_{n\geq 1}$ are martingales w.r.t. $(\mathcal{F}_n)_{n\geq 1}$, where

$$g_n = \sum_{k=1}^n a_k = \sum_{k=1}^n d_k \chi_{A_k}, \quad h_n = \sum_{k=1}^n b_k = \sum_{k=1}^n d_k \chi_{B_k}$$
$$A_k = \{ \|d_k\| \le 2d_{k-1}^* \}, \quad B_k = \{ \|d_k\| > 2d_{k-1}^* \}$$

Proof. Similar to the proof of Theorem 2, we need only consider the case where X is a separable Hilbert space. We define $\mathcal{B}\colon X^n\to X$ by

$$\beta(x_1, \dots, x_n) = x_n \chi_{\{\|x_n\| \le 2y_{n-1}\}}$$
$$y_{n-1} = \max\{\|x_1\|, \dots, \|x_{n-1}\|\}, \quad y_0 = 0$$

then

$$\begin{split} E(a_{n}|\mathcal{F}_{n-1})(t) &= E(\beta(d_{1},\ldots,d_{n})\big|\mathcal{F}_{n-1}\big)(t) = E(\beta\circ\lambda_{n}|\mathcal{F}_{n-1})(t) \\ &= \int_{X^{n}} \beta(x)P_{\lambda_{n}}(t,dx) = \int_{X^{n}} \beta(x)P_{\xi_{n}}(t,dx) \\ &= E(\beta\circ\xi_{n}|\mathcal{F}_{n-1})(t) = E(-a_{n}|\mathcal{F}_{n-1})(t) \quad \text{a.e.} \end{split}$$

So $E(a_n|\mathcal{F}_{n-1})=0$ a.e., g is a martingale. Similarly, h is a martingale. We denote the RCPD of $(d_n)_{n\geq 1}$ and $(-d_n)_{n\geq 1}$ w.r.t. \mathcal{F}_{n-1} by P_+ , P_- respectively, then $P_+=P_-$ a.e., similarly to Lemma 7, using separability of X. By this result

$$E(d_n|\mathcal{F}_{n-1})(t) = \int_X x P_+(t, dx) = \int_X x P_-(t, dx)$$

= $E(-d_n|\mathcal{F}_{n-1})(t) \Rightarrow E(d_n|\mathcal{F}_{n-1}) = 0$ a.e.,

so f is a martingale.

Y. HE and P. LIU

Lemma 9. Let X be a Hilbert space, then there exists a constant C > 0 dependent only on Φ , such that for all $L_1(\mu, X)$ bounded martingale $f = (f_n)_{n \geq 1}$ satisfying $||d_n|| \leq w_{n-1}$, where $d_n = f_n - f_{n-1}$, w_n is \mathcal{F}_n measurable, we have

(1)
$$E\Phi(f^*) \le CE\Phi(S(f)) + CE\Phi(w^*)$$

(2)
$$E\Phi(S(f)) \le CE\Phi(f^*) + CE\Phi(w^*)$$

Proof.

$$S_n(f) = \left(\sum_{k=1}^{n-1} \|d_k\|^2 + \|d_n\|^2\right)^{1/2} \le \left(S_{n-1}(f)^2 + w_{n-1}^2\right)^{1/2}$$

$$\le S_{n-1}(f) + w_{n-1} = \varrho_{n-1}$$

For $\beta > 0$, $\lambda > 0$, we define a stopping time

$$S = \inf\{n \mid \varrho_n > \beta\lambda\}.$$

We consider martingale $f^{(S)} = (f_{n \wedge S})_{n>0}$ and define a stopping time

$$T = \inf \{ n \mid ||f_n^{(S)}|| > \lambda \}.$$

Then $\forall \alpha > 1$, denoting |A| the measure of A, we have

(3)
$$|\{f^* > \alpha\lambda\}| \le |\{f^* > \alpha\lambda, S = \infty\}| + |\{S < \infty\}|$$

$$\le |\{f^{(S)^*} > \alpha\}| + |\{S < \infty\}|$$

$$\le |\{f^{(S)^*} - f_{T-1}^{(S)^*} > (\alpha - 1)\lambda\}| + |\{S < \infty\}|$$

Now we consider a new σ algebra sequence $(\mathcal{F}'_n)_{n\geq 0}$, where $\mathcal{F}'_n = \mathcal{F}_{n+T}$. We define $g' = (g'_n)_{n\geq 0}$, $g'_n = f^{(S)}_{n+T} - f^{(S)}_{T-1}$, then g' is a martingale, because

$$E(g'_{n+1}|\mathcal{F}'_n) = E(f_{n+T+1}^{(S)} - f_{T-1}^{(S)}|\mathcal{F}_{n+T})$$

$$= E(f_{(n+T+1)\wedge S} - f_{(T-1)\wedge S}|\mathcal{F}_{n+T})$$

$$= E(f_{(n+T+1)\wedge S}|\mathcal{F}_{n+T}) - f_{(T-1)\wedge S}$$

and

$$E(f_{(n+T+1)\wedge S}|\mathcal{F}_{n+T})$$

$$= E(f_{S}\chi_{\{S\leq n+T\}}|\mathcal{F}_{n+T}) + E(f_{n+T+1}\chi_{\{S\geq n+T+1\}}|\mathcal{F}_{n+T})$$

$$= f_{S}\chi_{\{S\leq n+T\}} + \chi_{\{S\geq n+T+1\}}E(f_{n+T+1}|\mathcal{F}_{n+T})$$

$$= f_{S}\chi_{\{S< n+T\}} + f_{n+T}\chi_{\{S> n+T+1\}} = f_{(n+T)\wedge S}$$

So $E(g'_{n+1}|\mathcal{F}'_n) = g'_n$. Because $f^{(S)}_{T-1}^* = \sup_{n \geq 0} \|f^{(S)}_{n \wedge (T-1)}\|$, if $\exists m \leq T-1$, such that $f^{(S)^*} = \|f^{(S)}_m\|$, then $f^{(S)^*} = \|f^{(S)}_m\|$, $f^{(S)^*} - f^{(S)^*}_{T-1}^* = 0$. If m > T-1, $f^{(S)^*} > f^{(S)}_m$, we have

$$\begin{split} f^{(S)^*} - f_{T-1}^{(S)^*} &\leq \sup_{m \geq T} \|f_m^{(S)}\| - \|f_{T-1}^{(S)}\| \leq \sup_{m \geq T} \|f_m^{(S)}\| - \|f_{n+T}^{(S)}\|. \\ S(g') &= \left(\sum_{n \geq 0} \|f_{n+T+1}^{(S)} - f_{n+T}^{(S)}\|^2\right)^{1/2} \\ &= \left(\sum_{n \geq 0} \|f_{n+T+1}^{(S)} - f_{n+T}^{(S)}\|^2\right)^{1/2} \chi_{\{T < \infty\}} \\ &\leq S(f^{(S)}) \chi_{\{T < \infty\}} \leq \varrho_{T-1} \chi_{\{T < \infty\}} \leq \beta \lambda \chi_{\{S < \infty\}}. \\ \left| \{f^{(S)^*} > \alpha \lambda\} \right| &\leq \left| \{(g')^* > (\alpha - 1)\lambda\} \right| \\ &\leq E(g')^* / (\alpha - 1)\lambda \leq CES(g') / (\alpha - 1)\lambda \\ &\qquad (\text{using } [5, \text{ p.414, Theorem 7}]) \\ &\leq C\beta |\{T < \infty\} | / (\alpha - 1). \end{split}$$

So $\left|\left\{f^* > \alpha\lambda\right\}\right| \leq \left(C\beta\left|\left\{f^* > \lambda\right\}\right|/(\alpha-1)\right) + \left|\left\{S(f) + w^* > \beta\lambda\right\}\right|$ it means that $\left(f^*, S(f) + w^*\right)$ satisfies "good λ inequality", so we have (1). The proof of (2) is similar. With $\|f_n\| \leq f_{n-1}^* + w_{n-1} = \varrho_{n-1}$, we define a stopping time

$$S = \inf\{n \mid \varrho_n > \beta\lambda\}, \quad \forall \beta > 0, \, \lambda > 0$$

We consider martingale $f^{(S)} = (f_{n \wedge S})_{n \geq 0}$, and define a stopping time

$$T = \inf\{n \mid S_n(f^{(S)}) > \lambda\}$$

then for $\alpha > 1$, we have

$$\left| \left\{ S(f) > \alpha \lambda \right\} \right| \le \left| \left\{ S(f^{(S)}) > \alpha \lambda \right\} \right| + \left| \left\{ S < \infty \right\} \right|$$
$$\le \left| \left\{ S(f^{(S)}) - S_{T-1}(f^{(S)}) > (\alpha - 1)\lambda \right\} \right| + \left| \left\{ S < \infty \right\} \right|$$

Y. HE and P. LIU

Because

$$S(f^{(S)}) - S_{T-1}(f^{(S)}) \le \left(\sum_{n \ge T} \|f_n^{(S)} - f_{n-1}^{(S)}\|^2\right)^{1/2}$$

$$= \left(S(f^{(S)})^2 - S_{T-1}(f^{(S)})^2\right)^{1/2},$$

$$\sup_{m \ge T} \|f_m^{(S)} - f_{T-1}^{(S)}\| \le 2f^{(S)*}\chi_{\{T < \infty\}}$$

$$\le 2\beta\lambda\chi_{\{T < \infty\}}.$$

So

$$\begin{split} \left| \left\{ S(f^{(S)}) > \alpha \lambda \right\} \right| &\leq \left| \left\{ S(f^{(S)}) - S_{T-1}(f^{(S)}) > (\alpha - 1)\lambda \right\} \right| \\ &\leq \left| \left\{ \left(S(f^{(S)})^2 - S_{T-1}(f^{(S)})^2 \right)^{1/2} > (\alpha - 1)\lambda \right\} \right| \\ &\leq E \left(S(f^{(S)})^2 - S_{T-1}(f^{(S)})^2 \right)^{1/2} / (\alpha - 1)\lambda \\ &= E \left(\sum_{n \geq T} \|f_n^{(S)} - f_{n-1}^{(S)}\|^2 \right)^{1/2} / (\alpha - 1)\lambda \\ &\leq C E \left(\sup_{m \geq T} \|f_m^{(S)} - f_{n-1}^{(S)}\|^2 \right) / (\alpha - 1)\lambda \\ &\qquad \qquad (\text{using } [5, \text{ p.411, Theorem 4}]) \\ &\leq 2\beta C \left| \left\{ T < \infty \right\} \right| / (\alpha - 1) \\ &= 2\beta C \left| \left\{ S(f^{(S)}) > \lambda \right\} \right| / (\alpha - 1) \\ &\leq 2\beta C \left| \left\{ S(f^{(S)}) > \lambda \right\} \right| / (\alpha - 1). \end{split}$$

So

$$\left|\left\{S(f) > \alpha\lambda\right\}\right| \le 2\beta C \left|\left\{S(f) > \lambda\right\}\right| / (\alpha - 1) + \left|\left\{f^* + w^* > \beta\lambda\right\}\right|,$$

it means $\left(S(f), f^* + w^*\right)$ satisfies "good λ inequality", (2) holds.

Theorem 10. Let X be a Hilbert space, then there exists a constant C dependent only on Φ , such that for all integrable conditionally symmetric X-valued sequence $(d_n)_{n\geq 1}$ with respect to $(\mathcal{F}_n)_{n\geq 0}$, denoting $f_n = \sum_{1\leq k\leq n} d_k$, we have

$$C^{-1}E\Phi(S(f)) \le E\Phi(f^*) \le CE\Phi(S(f)).$$

HILBERT-SPACE-VALUED TANGENT SEQUENCES

Proof. Let

$$\begin{split} g_n &= \sum_{1 \leq k \leq n} a_k = \sum_{1 \leq k \leq n} d_k \chi_{A_k}, \quad A_k = \left\{ \|d_k\| \leq 2 d_{k-1}^* \right\} \\ h_n &= \sum_{1 \leq k \leq n} b_k = \sum_{1 \leq k \leq n} d_k \chi_{B_k}, \quad B_k = \left\{ \|d_k\| > 2 d_{k-1}^* \right\} \end{split}$$

then

$$f^* \le g^* + h^* \le g^* + \sum_{n \ge 1} \|b_n\|$$

$$S(g) \le S(f) + S(h) \le S(f) + \sum_{n \ge 1} \|b_n\|$$

$$E\Phi(f^*) \le CE\Phi(g^*) + CE\Phi\left(\sum_{n \ge 1} \|b_n\|\right)$$

By Lemma 9, we have

$$E\Phi(g^*) \le CE\Phi S(g) + CE\Phi(2d^*)$$

$$\le CE\Phi(S(f)) + CE\Phi\left(\sum_{n\ge 1} \|b_n\|\right) + CE\Phi(d^*).$$

$$d^* \le S(f) \to \sum_{n\ge 1} \|b_n\| \le 2d^* \le 2S(f)$$

So $E\Phi(f^*) \leq CE\Phi(S(f))$. The proof of the other inequality is similar, using $S(f) \leq S(g) + \sum_{n\geq 1} \|b_n\|$, $g^* \leq f^* + \sum_{n\geq 1} \|b_n\|$.

Remark 11. Let $\Phi(x) = x^p$, $0 , we can obtain (11.2) in [2] and (1.6), (1,7) of Thorem 1 in [3] with different constants by inequality <math>||f||_p \le ||f^*||_p$, but the constants in [3] are the best possible.

Lemma 12. There exists a constant C depending only on Φ such that for all nonnegative \mathbb{R} -valued tangent sequences $(d_n)_{n\geq 1}$, $(e_n)_{n\geq 1}$, we have

$$E\Phi\left(\sum_{n\geq 1}d_n\right)\leq CE\Phi\left(\sum_{n\geq 1}e_n\right)$$

Proof. see [4, Theorem 2].

Y. HE and P. LIU

Corollary 13. Let X be a Hilbert space, then there exists a constant C depending only on Φ such that for all X-valued conditionally symmetric sequences $(d_n)_{n\geq 1}$, $(e_n)_{n\geq 1}$, d_n , $e_n\in L_1(\mu,X)$, when $(\|d_n\|)_{n\geq 1}$ and $(\|e_n\|)_{n\geq 1}$ are tangent, we have

$$E\Phi(f^*) \leq CE\Phi(g^*)$$

where $f_n = \sum_{1 \le k \le n} d_k$, $g_n = \sum_{1 \le k \le n} e_k$.

Proof. From Lemma 12,

$$E\Phi(f^*) \le CE\Phi(S(f)),$$

 $E\Phi(S(g)) \le CE\Phi(g^*)$

and we take $\Phi(t^{1/2})$ in stead of $\Phi(t)$ and take tangent sequences $(\|d_n\|^2)_{n\geq 1}$, $(\|e_n\|^2)_{n\geq 1}$, and get

$$E\Phi(S(f)) \le E\Phi(S(g))$$

Acknowledgement. The authors thank very much to the referee, who checked so carefully the original manuscript and corrected the errors contained in it.

REFERENCES

- [1] S. BINGHAM: A Fourier-analytic proof that conditional probability distribution exists on a group, Lecture Notes in Math. 1379, Springer-Verlag, 1988, 1-5.
- [2] D. L. BURKHOLDER: Explorations in martingale theory and its applications, Lecture Notes in Math. 1964, Springer-Verlag, 1989, 3-66.
- [3] G. WANG: Sharp square-function inequalities for conditionally symmetric martingales, Trans. Amer. Math. Soc. 328 (1991), no.1, 393-419.
- [4] P. HITCHENKO: Comparison of Moments for Tangent Sequences of Random Variables, Prob. Th. Rel. Fields 78 (1988), 223-230.
- [5] P. Liu: Martingles and Banach space geometry, WuHan University Press, 1993, in Chinese.

Yu HE

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

HILBERT-SPACE-VALUED TANGENT SEQUENCES

157

PEIDE LIU WUHAN UNIVERSITY WUHAN, HUBEI 430072, P.R.CHINA

(Received January 9, 1997) (Revised January 5, 1998)

CURRENT ADDRESS:
YU HE
DEPARTMENT OF MATHEMATICS, ZHONGSHAN UNIVERSITY,
GUANGZHOU, GUANGDONG 510275, P.R.CHINA