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Otsuki: Associated Riemannian manifolds and motions

ASSOCIATED RIEMANNIAN MANIFOLDS AND
MOTIONS

TOMINOSUKE OTSUKI

In this paper, we shall investigate the associated Rimannian mani-
fold Vv (N ==n(n + 1)/2) with a Riemannian manifold V, that a Rie-
mannian metric which is naturally derived from the one of V, is given
on the bundle space of the associated principal fibre bundle of ¥, and the
motions on V, in connection with V.

In §§1—3, we shall calculate the paramecters of the connection and
the curvature forms of Vy with respect to the canonical frames. In §4,
we shall investigate the conditions in order that V~ becomes an Einstein
space. In §§5, 6, we shall give the equations of geodesics in V5 and an
elementary exposition of the relations between the Levi-Civita connection
of V, and the associated Riemannian manifold V with V.. In §§7, 8, we
shall show that a mapping derived from the differential mapping of a
motion of ¥V, becomes a motion of V5 and investigate the properties of
motions of V, by means of such motions of V,. In §9, we shall investi-
gate sequences of motions of V', and prove that under a suitable condition,
we can derive a differentiable tangent vector field of motion from a se-
quence of motions which is a geometrical treatment of such sequences of
motions of V, investigated in [6, 7]. Lastly in §10, we shall give an
elementary exposition of holonomy groups of V.

§ 1. Definitions

Let V, be an n-dimensional Riemannian manifold and let B = {B,
b, V,, O, O,} be the associated principal fibre bundle of the tangent
fibre bundle of V', as a differentiable manifold with a Riemannian metric,
that is

i) p: B——>V, be the projection,
ii) for any point x € V,, the fibre p7'(x) = O,(x) is homeomorphic
to the n-dimensional orthogonal group O,,

and

iii) O,(x) b = {x, e, -, e,} is an othonormal frame at x such that
e, 1==1,2, +, n, are unit tangent vectors to V., at x and mutually ortho-
gonal.

Let be given the line element of V,, by
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(1; 1) dsi = S_] Wi Wy
and the equations of structure of V,, with respect to b are

d(u; == >y \w I

(1, 2) da;y == DlwaN\wrs + 245,
Mg == — (g
(1, 3) .Q{j et ‘%‘ERUHL(')#/\(U)H

where R,;., are the components of curvature tensor of V..
Now, define a Ricmannian manifold V » of dimension N==n(s-+1)/2
whose underlying manifold is B and whose linc clement is given by

(1, 4) dS}zv == Zmimi + PQE('Jij(!Ji s
i<
p == constant 7 0.

We shall represent (1, 4) by local coordinates in V.. Let x', % «+, x”
be local coordinates of a neighborhood in V., on which the line element of
V.. is written as

(1, 1) ds® == 33g,(x)dx'dx’.
Let X;,i=1,2, -, 2 be tangent vectors such as

X, = 0/ox' = yie,,

& =X X; = Syi¥i
In matrix notations, putting
(1, 5) G = (g Y =),
then we have

G=YY
where Y’ denotes the transposed matrix of Y. If we put
== (=), =!==20{}}dx"

where {/:}'s are the Christoffel symbols made by g,; then we have, as is
well known,

dG = zG <+ GZ/,

and
=YY — Y'dY, w == (o).

Hence we have

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 5/issl/3



Otsuki: Associated Riemannian manifolds and motions

ASSOCIATED RIEMANNIAN MANIFOLDS AND MOTIONS 15
Slwigwiy = — L Trace wo
<5 2
= _ % Trace (Y"'zzY — Y 'zdY — Y- dYY 'Y
4+ Y- dYY-'dY)

- % Trace (== — 2dYY "'z + dYY-dYY-").

Accordingly, (4) can be written as

(1, 4" dsy = 3.gi(x)dx'dx’
— 1 pTrace (= — 2dYY "z + dYY~dYY ™),
where

Y=(yf)» r:=(2§f~‘;.idx"), Gz(gu), G=YY'.

§ 2. Parameters of the connection of Levi-Civita of V. In this
section, we shall determine the parameters of the connection of Levi-
Civita of V» with respect to orthonormal frames of V5. According to the
ordinary method, let us put

Aoy = Do I\ Ox; -+ p?z;mkn a2
2,1 (== Dlwz /\ W),
Ay =1 Sk /N i 15+ Dwin /N O iy
P &<n

1
(= Do /\ wiy + _Q‘ER; sanwr /N o),
(2, 2) Ciy=— 05  Oin;e=— Oiaany, Oij;en== — Orn;1s

As is well known, 'we can solve (2,1), (2, 2) with respect to 0y, Oin;4
0.5, and shall obtain an unique solution. We get from (2, 1), (2, 2) the
equations?

wx N\ (Fxi — wr) o /\%_P,’kh;i =0,

wg /N (?%; w— _Z‘Ru/mwn)

1 o
+ wwm A\ (‘i‘”tm:t) + Suwny) = 0.
From the first of the above equations, we may put
Ori == o + Akih(’)h, +%Bk”u(r)nj,

(2, 4) )
plwn:i== Bji.lchwj +—2"Cknij1 @

1) In the following we shall use the summation convention.
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where A’s, B's and C’s satisfy the following relations :
Akm = Amk = = Aim,
(2, 5) By = — Bus; = — By,
Cinisn = — Criign = — Crauy = Cpysn.
The first of (2, 5) yields
(2, 6) Ay =0.
Substituting (2, 4) into the second of (2, 3), we get

— wr /\ {% Bimﬂ')n + 2_’1071 Ci STIPNOIN + _:IZ_RUA:MU;L}

1 : .
+ "Z [OTTWAN (27/.-11,; iJ + Jinwk,i - O‘mvn) — 0 JhOLL
+ (;Jk('JJ»t) = 0,
from which we may put
1 1 1
? Bhlcij(')n + 2/12 Cuklmwtm + —2’ Ru/.-nwn.

(2,7) i
= Dijhhf')h + E Efjkhl(')m,

1 : :
Own;sy 5 (Binmry — Cuewnt — Omiors + 8 jpons)
(2, 8)

— _E 1lg
= = {ftkh (O — 2 AR Jin Oy

where D’s, E's and F's satisfy the following relations ;

D[jkh. = Du/m
(2, 9) Etjkh.l = = Lijan == — Ejikh-ly *

FA-M Jlm — — Fnu Jlm — — Fur,,uzm = — Fkni Jml = qu,u-m

Since w;, wy are linearly independent, we get from (2, 7) the relations

(2, 10) Disun == -t Buas + - R,
@1 Evns ==z Coso.

By (2, 5) and (2, 9), we get easily

(2,12) Dy =0,
accordingly

(2, 13) Bru, — — % PRun = 5 0" Riary

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 5/issl/3
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On the other hand, from (2, 2) we get

(2, 14) Euum = - El:muy
(2. 15) Fkhijlm == - Fiﬂ'lunm

By (2, 11) and (2, 5) we get
Ei Jkh = Ekmt Jo
This equation and (2, 14) follow the relation

(2, 16) Euum= ijlkh=0-

Analogously, we get easily from (2, 95, (2, 15)

(2,17) Fijinim == 0.

Thus, we obtain the solution of (2,1) under the condition (2,2) as
follows :

0= iy + —1‘ szmhwkn,
(2,18) D= — 5 pRiginon,

1
Oigin == 5 (O + Opou — 050 — o)

§3. Curvature forms in Vs Making use of (2,1), (2,18), we
shall calculate the curvature forms of Vy.
We have

1y,=db; — 0w /\ iy —% Ogsne /N Orns

= dors + 5 p'dRignonn)
(o + L 0 Rutnion) N g+ Riguion)
+ 5 ("Roa 0 N Runguon,

==y + % P (Rijin, 00 + Riyinwn + Rivnco g

4+ Riwn + Riuuon) /\ wm

+ 4 PR L+ wu A wn) |
— % P (Ruamwnn /N @iy Rijawi /\ )
— 3 0 RustRssutona N o
5 F RunsiRun o /N
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that is
) ,l_ 2 ( .1-_. & .
”ij = !-tj + 4 4 Rijkh-‘-)kn + ] P RkhuRknijJl /\ Wy
(3, 1) -+ “11‘ PR a0 I\ win
—_ %‘02( Rijl.-n(')kl /\ any, + % P‘JRiklmRkjaL(’)lnn /\ﬂJsc);
where a comma denotes the covariant differentiation of V. We have
. 50 == d«”i;jk — Oin /\ On; g2 —% Ont A\ Ora: 1
= %‘ pd(Rj,(-m(l)n)
- ((')"p + % P.ZRlll.hu“)lm) /\ (—é— PRJ'L'RJU}J)
-8 pRhlis(').v I\ Dy =+ Ouweony — Onewny — Sryons)
== % P(Rjkm.zwl + Rzkmw 7 + Rilin(okl ‘l" R @i ‘|“ R chil(l)hl) /\ wy
+ % pRmnwz N oun + % [)Rjkh,.s(u.s /N o % pngmR Jkrs®0s /\ Ov,

1
-3 AR sy /N re t Rurisw, /N ony — Rugw, /\ wny
— Rpujiatws /\ @ni)
1
=3 pRJMh.Ll’)l /\ wp

+ % PR unown /N @ t+ Ruuwr /\ wny)
+ % P;:Rihlijkh»a(U.! /\ (Ol

On the other hand, we have

Rjun w0 /N @) == — (Runion /\ on + Ruynwr /\ wn)
= lecnl,i.(')h. A @ + RJkll.h(Ul /\ wp,
that is,

2R 10 /N o == Ryngcon /\ wq.

Thus we obtain
Ili;jk = '}: pRka_f,(l)n /\ wy
(3,2) + % P(Rippwn /\ 0 — Ripmewn /N wyy)

1
-+ B8P RintnR jinss /\ e

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 5/issl/3
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Finally, we have
1
isien == A0igan — Oiza /N Oan — o Otgtm N Brozin

1
=9 $0uLm 4 o /N om) + 0 p(Lu t oo /N o)
- 30;(‘-'1& + (512 VA (Ulk) - (;_u«(-Qm + wa N\ )
1
-+ 4 pgRiﬂ-mRkhl.t(um FANCE

1
-_— g (I)“ @ j + (;jm(l)ﬂ et l)g,,‘mﬁ _ ()J({Ui’m)

N N N ~
X { Buptnn & Bnnone — Oin@ur — Omrtom),

that is
.l N N N N
Ilij;kh = 2 (ﬂu..{.)j). + f)j’..’!ik - I)“,.Q_u. -_ ljﬂ.gm)
(3,3) + % szlﬂmRkhh(um /\ w,

1
-+ —4 (f;u-{l)ﬂ/\(l)"l -+ (}Jhmu /N g — (}ghlujz /\ @
N
— O pi0q /\ l‘!)m).

Now, let us put
(3, 4) IIAB =’%‘ PABnn(’\un /\ (:)D,

where

A, B, - =1i. j, [ij], =,

N N
(W == Wy, Wij = ’)(I)[J,

then P,u-p are components of the Riemann-Cristoffel tensor of Vx with
respect to the orthonormal frames which are derived from the ones of V..
In the first place, we get from (3, 1) the equations as follow.

(3,5 Pujin == Rigin + - p'RiguRonin

| + % (RusRonsn — RusiaRuns
(3, 6) Piucis =3 pRigns.
Since

1 1
-4 [igRl AN 16 {IJRu-lme- et /\ Vst
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2

(Ru,,,ﬂ}“, _ Rijkh(;ml)(uﬂ- /N\ Wnn

1
8
+ 32 P4(Rtsl'le.trr;h e Ri.‘mhijkl)ll)kl /\ [N T

we have
(87 Pignom =5 (Rimdn — Rigndin = Ripdin + Rigsdsn)

+ L Ry — RimaRor).
Since we have

% p(Ringeon /\ wn — Riweon /N anyg)

+ 5 PR R inscos /N i
=y P(Rupbin — Rinud ) wn /\ im
A + 3 O RianR siancon /N @imy
we get from (3, 1)
(3,8)  Pioson =+ (Rasbon — Rowdm — Rumiu + Rimd )
— % "R atnRon gt

and
(3,9) P cpacann = 0.

Lastly, since

? fr’)‘mwﬂ /\ Wp + f?jh(l)ll /\ g — (’)‘i),,(l)ﬂ /\ e — (;jk")il /\ (l)m;

=% g"’\u-;" jl’}:u}i — dud ,,,,(??,f +4 jnf”‘uf?;.i -0 jhi;lm’?l’:'
—_ (?;hl}jll;;,‘l» + l')‘mlli\],,,();i. —_ (}j;—(’)‘ul?:,,;t‘ + l?jkﬁi,,,(}';z ;(Ul,,, /\ (Dgt
= ILG follont — obran 4+ olione — 61700 @i /N @y
— o Lotk — afyaik -+ Blant — otpak
— !}f‘}r?f;'f + r?fjr?f.x‘ — l')‘ﬂl}:’,{.' + r?w!ﬁ]{.‘ Oim I\ Wy P
we have

1) Where 8;‘}' denote the generalized Kronecker’s 3.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 5/issl/3
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IJU e i)

1 ¢ reant NS ¢
(3, 10) = ‘4— f(},}'f},,,, — O30 — 0 lj"m -+ nul)f,,

NKU Ny N NhL NI SR oy, 7.9 24
— 00’ 01y 0d + 056w — oireN

(3, 10) shows that Vi can not always become flat.

Now, we shall calculate components of the Ricci curvature tensor
with respect to the canonical orthonormal frames derived from those of
V, from (3, 5)—(3, 10).

Let us put
(3, 11) PAB == ?P‘mzm-
We have

P, — 23 Pun +% 21 Piow s
== Rus + % P?Rikllemﬂ:
+§ P RuisRone — RuiaRons)
+ & (Rumies — Riginds — Rigadmn — Rupat)
— % o RanRums
that is
(3, 12) Py=Ry;+ 4 O Rz Run,sie
Nextly, we have
Pigji; = Py Lakan %: Pl[lm:ukmm]

1

== Pmcﬂ:]h = = ? ,ﬂRm)k,n

[

% ,”(Rihkh,_j + R:hn],x),
that is
(3,13) Pigo = — = p(Riss — Ru).

Then, we have
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I)[U][kh:l = P[Ij]l[kh]! + % P[ij][st][khf’_[l’t]
= - % [J‘zRiﬂlemkh
+ L oot — anats — At -+ oot
— ool 4 ool + otiae — aes !
= — i‘ PERijIlemkh - %(71—2) ’73:
hence

(3, 14) 7 Py ciny = — % P2Rtjllemklt — %‘ (12 —2)3%h

Lastly we get from (3, 12), (3, 14) the scalar curvature of Vy as follows.

P———' Pu + % P[u] N

=Ru + —,i‘ f’gRllclleklm - %szU,mRtﬂm ——M—_:E;(_n_—_zl,
that is

(3, 15) P=— Lutn—1) -2 + R+ § pRumRupm:

§4. Some special cases. In this section, we shall consider the
spaces V, whose associated Riemannian spaces Vy are Einstein spaces,
that is

(4; 1) PAB = %’}AB-

These equations are written by (3, 12)—(3, 14) as

(4, 2) RlJ.k - Rtk,j == Ov
4,3) Ry A+ L pRumRum = & 0o
(4, 4) — 212:—2—) oty —%' p?Riﬂmerm == % oty

By contraction, we get from (4, 3), (4,4), (3,15)

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 5/issl/3
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R ""‘ % [)?RtﬂmRUlm = _ZI:T‘ 7

2 {__ m(n—1) (n—2) +R+%P€R£JlmRiﬂm}

= n-+1 4
and

_ T‘}Z— wn—1) (n-2) — % ' RijmRigm = 71% 7(iz—1)

_ 2n—1) nn—1)(n—2) 1 .

= 7 _‘_ 1 { - 4 + R + 8 P Rt)lmRiﬂm}:

that is
) 1

(4, 5) (n — DR + ‘Z‘ np RtjlmRijlm = — 2 n(n—1){(n—2),

which shows that (4, 3) and (4, 4) are linearly dependent.
Now, we get by (3, 15) and (4, 5) the equation

4, 6) P___(n+1)R_(1:—\—1)(71—1)(12—2)
2n 4

Substituting (4, 6) into (4, 3) and (4, 4), we have

(2—1)(12—2) |,

. 1 .
(4,39 Rij =+ Z [)'Rtuijum == (% R — o )iy,
1 . 1 —2 |
4,7 - Z‘ P"Riﬂmerum == _1‘:: R + " 51 )'th_;"-
By contraction, we get from (4, 7)
48  —t RunRun= (PSR @D,
7 2n

hence this and (4, 3') follow the equation
(41 9) RU == %2 R(?U.

(4, 9) shows that if Vy is an Einstein space, then V, is also an Einstein
space.

If #°> 2 and V, is an Einstein space, then, as is well known, (4, 2)
is automatically satisfied. If 2 ==2, since Ry, ::%R 0y, (4,2) becomes

R)l = R,-: == 07

that is R = constant. But, if Vi for V. is an Einstein space, then, by

Produced by The Berkeley Electronic Press, 1955 11
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means of (4,6), R is constant because N > 2. Then we obtain the
theorem.
Theorem 1. Let V, be an n-dimensional Riemannian space and

Vy be the Riemannian space of dimension N == % (s 4 1) associaled
with V,. In order that Vy be an Einstein space, it is necessary and
sufficient that V, be an Einstein space and satisfy the equation
2D i 1 R n—2 \
4 PR R = 20 R0,
Proof. The necessity of the conditions is evident by the arguments
above. We shall prove the sufficiency.

Since V, is an Einstein space, (4, 2) is clearly satisfied for 2 > 2.
When 7 =2, (4, 2) is equivalent to R = constant but it can be derived

from (4, 7).
We get from (3, 15), (4, 7)
P 2 {_n(n—l)(n—Z)_‘_ (n—
N = nni1) 4 -2
1+ (12 — 1)2(n — 2))}
(12—1) (12—2) R
2n + 1w
On the other hand, we get from (4, 7)
-2 .
- 112 “rt"}b - %P_Rt JlmRhM:h
2
- — ”Ta.‘,"-r( R+ 5= 2 )
=( — (n—1)(n—2) 1;1(:2 — 4 1§ Aty = —I{]—)ﬁﬂ'.

Analogously we have

Ru "" ':1]:' (’:RiklmRthn

R . 1 —1 n—1)(n—2),. P
;YT (nn” R+ & 2nn i3 =N

Thus we see that the system of equations (4, 2), (4, 8) and (4, 4) is equi-

valent to the onc of (4, 7) and (4, 9).
Now, let V, be a space of constant curvature, that is whose curva-

ture tensor satisfies the equations

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 5/issl/3
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Rt,um == - K((;ik()ih - /;Ih.';jl),

K = constant

with respect to orthonormal frames. Since

Ry=—(n—1K,, R= — n(n-1K,

1 n—2 _ = n-=1 n—2
Tz'*"R_‘_ 2n n K+ 2n

and

- ’}T /)2R1 s Ryt = — % /)ZK ;:()fjl

it follows that if p is a constant such that

’

2gre 21 —1) n—2

(4, 10) P K* = " K — ”
then Vy becomes an Einstein space. Thus we have a corollary.

Corollary. An n-dimensional Riemann space of constant cur-
vature K has an Einstein space as its associated Riemann space if and

, n—2 _ n(n —2)

only if K> 2= 1) (or — R > 5 )

Lastly, we shall consider the special case » = 3. Putting

Rz:-zs = — Kn, Rsm == - Km = = K:::,
(4, 11) R;n;;l == - K:-z, Rl-zzs = — Kil == - Kra.»
Rmz = - K;;;:, R‘.‘:j:.:l = - Kj'z == - Kzl,
we have
R, = — K»n — Ky, Ru=K;
(4, 12) R-z: == — K,. - Kn, R;:l = Kl:i;
Ry = — K, — K'zs; R, = Ky
and '
(4, 13) R= -2 2K

Then, (4, 9) becomes
Ky = Ku: = Ky = r,
K.‘.: = K;;J = K]: == 0,

(4, 14)

Since

Produced by The Berkeley Electronic Press, 1955
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R'_!:lllem?:J = ZEKHK.( == 2'-2,
RyynBRiwn = 2T KK, = O,

ete,,
{4, 7) becomes
1 .., 2 1
(4, 15) ,_2—‘"2'{ =§x—€
Since R = — 6-, (4, 15) yiclds the following corollary.

Corolloary. A 3-dimensional Einstein space has an Einstein
space as its associated Riemann space if and only if — R > 3,
. 2

Remark. (4, ) follows that R -+ -+ n(n —2) < 0,

§ 5. Geodesics in V. The differential equations of geodesics in Vi
are

dwy + Oum + *%‘_p Fin s s0xn

Wi

1
Pd(')u + On;i508 + o P TentgOin

p(UU

Since we have by means of (2, 18)
dw; + 0w %p Ten: 1k
=dw; + (v +-34L ‘1)"'ka.(r)1;.')tuk — %‘p:Rxhuwﬂ')m
=dw; + wnwx — %pgRumijm,
and
play + k.15 + —é—p Txnsi50kn

1 1 . .
= pdwy; + 5 PR A 7 (Guawny + Gnyon — eyon — Onoes)on

== pdrr)u,

the equations of geodesics in Vv become

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 5/issl/3 14



Otsuki: Associated Riemannian manifolds and motions

ASSOCIATED RIEMANNIAN MANIFOLDS AND MOTIONS 27
1
(5’ 1) d(l)i + Wy — E‘p“,R(ﬂmﬂ)[{l)kh . d(lJU
[OF) [O2F]

‘Let C be a geodesic in Vy and C be its image in V,, by the projection
p:Vx— V.. Let -, s be the arclengths of C, C respectively. Then,
(5, 1) is written as

dw; [O)%3 My

1 ~0 ( (OF%
a= tar g~ T R g g =0
d(l)“ _
= —

Hence, we have

d(!)i 171 Wy
s + == P Rﬂkh Chm
(5, 2) dr d- d- 2 d
(y; =— Cijdf,
where ¢;; = — ¢y are constants. In a local coordinate neighborhood (x%),
if we put
(5, 3) dx* = yio, gt = 3y

then since we have
wu ¥t == YeiNldxY + dyt,

where {},1's are the Christoffel symbols made by g, (5, 2) is written as

B_dx — P;)R'\;.nm dx* yty_;cl_n
, d- d- 2 dr
{5, 2') A
Dyi ==Cyy
d- e

where {3,{’s are the Christoffel symbols made by g,. and D denotes the
covariant differential in V.. From (5, 2), we see that

ds

T:—-k:-constant 0<e<1

This equation shows that a geodesic in Vy has a constant angle with
the field I' of n-dimensional horizontal tangent subspaces I',C T(B),
b E B, which will be defined in §6. By means of (1, 4), we must have
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(5, 3) 1-—_—=k2 + “%‘P?C(;C{j.

In the case k=10, Cis clearly a point curve, hence C is the image of
a one parameter subgroup of O, by an admissible mapping of the
fibre bundle B. In the case k=1, we have c; =0 by the above
equation, hence C is a geodesic in V, and the points of C are the
parallel displaced orthonormal frames of Vy along C. For an exam-
ple, if Vis a 2-sphere, then C is a circle on the sphere.

§ 6. The Levi-Civita's connection of V,, and its explanation in V.
According to §1, let B=1{B, p, V,, O,, 0.1 be the associated prin-
cipal fibre bundle of V,. Any point b € B is represented as

(6, 1) b = (x(b), edd))

where x(5) = p(b) and e,(d), i =1, 2, --n, are unit tangent vectors to V,
at x(b) and orthonal each others.

Let vy(d), v,0), i < j, i, j ==1, 2, .-, ., be tangent vectors to B
dual to w(b), wi(b), i { j,i,7=1,2, , .

In the following, for a differentiable mapping f of a differentiable
manifold X into another. differentiable manifold ¥, we shall denote the
differential mapping of f by fx: T(X)— T(Y) and the dual mapping of
Sx by f*: THY)— T*X), where T(X), T(Y) (T*X), T*Y)) arc the
spaces of tangent (cotangent) vectors to X, ¥ respectively.

Since m(b) = p*wi(b), where m(d) in the right-hand side is regarded
as a cotangent vector to V, at x(b) such that 4, == { w(b), e,b) >, we
have (), ps0,(b) D> =  wild), b(b) > =4y, hence

{6. 2) DxDi(D) = e(d).
Analogously we have
(6, 3) Pabiy(b) = 0.

For any a = ((a{(a))) £0,, we denoted the right translation corres-
ponding to « by #(a) which is defined by

(6, 4) 7(2)(b) = (x(b), al(a)ey D)),
where ((@{(«))) is an n-dimensional orthogonal matrix. Since we have

a{(&‘za’l) = di’:(a'z)af(-’h), ay, ae &S Om
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it follows that
(6, 5) ) 7‘(0'.)57‘(41»_-) == 7’(!;‘3!1'1).

Now, we shall consider (r(a))*. Let b = f (x) = (x, ei{x)) be a diffe-
rentiable local cross-section of B defined on a ncighborhood U in V..
Let us put

(6. 6) eib) = y4(b) exlx), x = p(d),

then we can consider x(b), y{(b) as local coordinates of the point b. Let
us put

6,7 0:%) == f*awud), Cu(x) = f*wu(D),
then we have the equations

wi(b) == z(b)8:(x),
{mu(b) == Y§(D)z} (D) (x) - 21(b)d ¥i(b)

(6, 8)

in the coordinates x(b), ¥!(b), where ¥§(b) z{(b) == il
Since we have from (6, 4) (6, 6)

7(a)(b) = (x, al(a)yiblex(x)), x = p(b),
we get
(@) wi(r(a)(B)) == aila™Nw;b) == ai(a)w,(b),
(6,9)
7’(a‘)*(uu(7’(a')(b)) = a?(a'){l'}'(n')nm.(b).
Accordingly, we get
{r(a)*b_’(b) = ai(a)0y(r(a)(d)),

7(a)x0al(D) = aila)a@(a)o (r{a)(D)).

(6, 10)

Now, let be /', the tangent subspace to B at b spaned by v(b), -+,
v,(b) which define a differentiable field /' on V.. By (6,2), (6,10) it
follows that

1’(0’)*['» = ['r(w)(b), a S Om
(6, 11) 1
Dad s = Tpiu(V.).

Let 2 Tu(B) = TW(O.(x)), p(b) =x, be the projection defined by
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(6, 12) ;zb(Zvin(b) + Zvi0i5(b)) = Tvi,0(b)
i<k <

and denote also by & the admissible mapping O, — O,(x) defined by b(a)
=r(a)d), a« €0,. Putting =z, == (bs) 'z : TW(B) = T.(O,), e == the iden-
tity of O,, we obtain a L(0,)-valued differential from = defined on B by
=| T9(B) == =,. Then it follows from (6, 11) that 7(a)*z = ad(a™"):x.

Let ¢, : O,(x) — B be the imbedding mapping then we get from (6, 8)

(6,13) b* Fmbla)) == al(a™dai(a) == dj(a)dai{a) = oylm),

which are left invariant differential forms on O,.
Let (D:(a)) be the tangent vector fields on O, dual to (wi(a)). Since

<(Ulj(b)7 ( mb)*fh-n(e) > = < (f);;(e), Dinle) >,
<nu(b), (f:ub)*ﬁkh(e) > = < {x*(”l(b)y b*ﬁm(e]>
= <O) b*ﬁkh(e) > ==y,

we have
(6, 14) (-zb)xDyy(e) = b, (b).

Let ¢ : p~"(U) = B be the imbedding mapping and define a mappings
p:U—>UX0, ¢: UXO,— Bby

olx) =2x Xe,
¢(x, o) = (x, al(a)e,( f (%)),

Then we have a L(0,)-valued differential from 6 = (:¢p)* on U. Since
(¢¢ p)(x) = (x, e/ f(x))), we get from (6, 8)

(¢ pY*ewi( f(x)) == 04(x),
(:¢p)*ﬂ)u(f(x) == (%) == (%) 2(x)

hence

(:¢p)*ek(f(X)) == Dk-(f(x)) -+ ‘%‘ /°i’xb:j(f(x)).

Accordingly, we have by (6, 14)

< b, ex(x) D> = < = (:(}Sp)*ek(x) >
— a0 + 5 IREv ) >

= —%“ < T I'{k(x)bu(f(x)) > == -%I‘{k(x)f)u(e).
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On the other hand, we can define canonically a L(0,)-valued differential
form # on U from 6;; by

6() = < 6i(x), v > Buyle), ve TAV,)
this shows that
0= p.
That is, the parameters ¢ on U CV, derived from the connection in
the sense of C. Ehresmann (3] defined by the field of tangent sub-
spaces I', by the local cross section f: U— B are the parameters 0 on

U of the Levi-Civita connection of V, with respect to the field of
orthonormal frames defined by f.

§ 7. Motions of V, derived from motions of V,. Let f bec a
motion of V,, that is a homeomorphism onto itself such that (f(x,), f(x.))
== (%3, X2), Xy, X. € V,, where (x,, ¥:) -denotes the Riemannian distance in
V., between x, and %.. As is well known, f is differentiable. Further-
more we have

(7,1) (fxX) » (fuXo) =X, + X, X, X, E TWV,),

where X, « X. denotes the inner product of X, and X.. Accordingly, we
can define a differentiable homeomorphism f = X(f) on B by

(7, 2) Fb) = (f(x(b)), fxeid)), bE B.

Since pf == fp, we have py fx0:(d) :f*P*bz(b) == f*et(b) == Cf(f(b)) by
(6, 2), (7,2), hence Fx0(b) == vy(f(3)) + a linear combinations of vy 7 (b))
"and f*w( £ (b)) = wi(B) + a linear combination of w (). On the other
hand, since we can consider () as differential forms in V,, we obtain

(7, 3) F*w(F(b)) == wib).
Furthermore, we get from (1, 2), (7, 3)

d(l)i == E(I)k /\j-*(l)ki,
T*(UU = - f*(u“-,

hence we have

(7, 4) F (D)) = wiyb).

Thus we obtain the following theorem.
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Theorem 2. If f is a motion of V., then the transformation
f =X(f) derived from f by (7,2) is also a motion of Vy and

(7,5) X(fi = fa) =X(f1) = X(f)

Now, denoting the group of motions of V., by M(V,), we get casily
from (6, 9) the following theorem.

Theorem 3. Any right translation of B is a motion of Vy and
commutes with X(f), f € M(V,).

It is sufficient to prove the second part of the theorem.

For «a €0, f=M(V,), be B, we have

() X()D)) = r(2)((f(x(B)), fye(D)))
== (f(x(b)), al(«) fye;b))
= (f(x2(0), filal(a)e, b))
==X()(x)(]), ai(x)e;b)))
== X( )7 {a)(b)).

Hence we have the relation

(7, 6) ra) o X(f) =X(f) ¢ r(a)
We sce also easily that

(7, 7) 7(O.) N X(M(V,)) =1,

where 1 denotes the identity transformation.

§8. Some mappings on Vy. Now, let S"' be the (2—1)-dimen-
sional unit sphere: X w'w'=1 in an n-dimensional Euclidean space R".
For any complete Riemannian manifold V., we define a mapping ®:
B x §*7' X R— B as follows :

For b€ B, W= (0, .-, w") 85", sER, let y(b, 1, s) be the geode-
sic arc in V,, starting at p(b) == x(b) whose tangent unit vector at x(d) is
w'e,(b) and whose length is s. Let F(b, v, s) be the end point of (b, v, 5).
By parallel displacing e,(b) along this geodesic, we get a curve 3(b, 11, s)
in B whose points are these frames, hence p(7(d, 1, 5)) = (b, v, 5). Let
d(h, v, s) be the end point of 7(b, v, s).

The mapping @ is clearly differentibale and have the following pro-
perties :

(8,1) p(b(b, n, 5)) = Fib, W, s).
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(8,2) r(a) o Db, W, 5) = P(r(a)b, a”'W,s), a € O0,,
(8,3) Fb, w0, s) = F(r(a)b, a~ iy, s),
(8, 4) b(h, v, 0) = b,

Furthermore, since any motion of V,, preserves geodesics and parallel
displaced vector fields, it follows that

(8, 5) F(® b, W, 5) == O(F (b), W, 5),
f=X, feMV.),

and by pe f =f - pand (8, 2),
(8, 6) f e Fb,w,s)=F(f(b), 10, s).

Let {f.},m==1,2, -+, be a sequence of motions on V.. Tor a fixed
point b, € B, we suppose that fu(by), fm==X(f.), converge to a point

b, For any point b= B, we can takc an «€ 0, a W& S"~' and a real
number s such that b == 7(a)((P(b, v, 5)). Hence, by (7,'5), (8, 5), we get

lim Fu(b) == 1im Fu(r(a) (BB, W, 5))
==1lim r(a) (fu(P(bg, W, s5)))
= r(ﬂ') (lim (I)'(fm(b(l)) n’; 3)),

that is
8,7 lim ful(d) == 7(x) (DD, 10, $).
Thus we can define a limiting map f B— B by

(8, 8) F(b) =1lim X(f) (b), bE B,
which is clearly a motion of Vy. By the above equation, we get easily
(8, 9) f o 7(ay) == #(ay) Oj, o) E 0._,.

Furthermore, since we have p(f(b)) =lim fa.{p(d)), we get a limiting
map f: V.—V,, by

f(x) =1lim f.(x), x€V,,
such that f = M(V,) and
fep=p=J-
Now, we have by (8, 1), (8,7) the relation

j- (x) = F(b,(;, lv, S)y
x == £(b), b ==r(a)(P(by, v, s)).
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On the other hand, we get from (8, 5) the equation

PUF(D(D, 1, 8))) == f(p(D(b,, W, $))) == [ (%)
== p(D(f(by), 0, 5)) = F(f(b), I, 5),
=X\,

hence

F(f(bo), n‘) S) == F(f_(bu), "Jy S)
we S, seR.

It follows that f(b,) == 7 (b,) and by (8, 5), (7, 5)

£(B) == 7()(D(F (Ba), W, 5))
== 7(a ) f (Db, 10, 5)) = £ (7()(D(by, 0, 5))
= f(b),

that is
(8, 10) lim X(f,)(8) = X(lim f..}b), bEB

For any V, which is not complete, we can carry the same argument
by means of a finite number of points of B such as b,, Thus, we
obtain.

Theorem 4. Let V, be a Riemannian manifold and let §f.}, m=
1,2, -, be a sequence of molions of V.. Then the sequence {X(f.)} is
simultlaneously convergent or do not convergent at every point of B.
In the first case, we have

lim X(fu)(0) = X(lim f.) (b), bE B.

In the next place, we suppose that for a sequence { f{ of motions of
V., lim fa(x,) = .. For a subsequence { f { of { ful, we may suppose
that lim F m(bs) == b',, where b, is a fixed element in p~'(x,). Then, by
means of the above theorem there exists a f € M(V,) such that f(x) =
linll_’{,.u(x) and X(f)(b)=)1\i_f£ X(fa)b), x€ V., bEB. Accordingly, we scc
that if lim f,.(x) == f(x), then lim X{f,,) () = X(f) (b). Thus, wc obtain

Theorem 5. For any V,, X: M(V,) > M(Vy) is continuous in the
sense of weakly convergence, that is, if lim fo.(x) == [f(x), then lim
X(fw) (b)) =X(f)(b),xc V, be V.

§9. Tangent vector fields over V, derived from sequences of
motions of V,. For the sake of simplicity, let V, be a complete Rie-
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mannian manifold. For any f<= M(V,), x=V,, since we have by
Theorem 3

(b, X()B)) == (r(a)(d), r{a)XX(£)(b))
== (7{a)(h), X(f)(r(a)(b))),
bepl(x), a€O0,,

we define a function #,: V, » R by
9,1 udx) == (b, X(f)b)), b p~i(x),

which is differentiable. If f% 1, then everywhere w/{x) = 0 by (8, 5).

Now, let be given a sequence {fn{,m=1,2, -+, of motions of V,
which are mutually distinct and weakly converge to the identity trans-
formation. For simplicity, we put

um(x) == zljm(x), x e V.,.
By Theorem 5, we have

lim X(f.)(b) =b, bE B.

m-—+00

Then we define a tangent vector field 5 over V,, by

13

(9, 2) L (5)() = lim  _JwR)(®) — h(x)
' moea Un(X)

where x = V, and 2 is any differentiable function defined on an open
neighborhood of x. We shall show that 7(x) can be defined by the
vight hand side of (9, 2) and 7 is a differentiable tangent vector field
over V..

Now, we define a differentiable function by

(9, 3) wib, b’, W, s) == (Db, 10, 5), Db, 11, 5)),
bb=B, we S s&R.

By Theorem 3, (8, 2), we get
(9, 4) w(b, b, W, §) == w(r{a)b), r{a)d’), a”'1,s) a« =0,

For any point %, we can take a spherical neighborhood U, such that for
a fixed b, € p~'(x), F(b, 0, s) gives a geodesic polar coordinate system
on U,. Then we can define a function # by

(9) 5) u(bn, bly x) - w(b(l) bl) n’v s))
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where x & Upa,, % ==Flo, W, 5s), byEB. By (8, 3),(8,4),(9,4), weget
a relation as

(9, 6) u(by, by, x) == ulr(a)(by), r(a)(b), %),
For a motion f on V,, we have

st Flbe, 10, 5)) = (B (by, 10, 5), X(f N Db, W, 5)
= (P(b,, M, s), ‘I’(X(f)(bo), 1o, s))
= W(b(;y x(f)(bﬂ)y ’Uy S))

hence
(9, 7] Z(f(x) =1 (b.‘,, X(f)(b(.), x), X e Up.:n"), bn (S B.

For a fixed we S, a fixed s€ R, the differentiable mapping
(I)m,s . B— B by

(9, 8) Dy, s(b) = Db, W, 5), b= B
is a differentiable homeorphism on B and it is evident from the definition
of @ that
(D—h).a = Oy, _,,
9,9
Py, Py, = 1.

Accordingly, if for a point b,= B, the tangent unit vectors to
clementary geodesic arcs y(bi, fm(ba)), fm=X(fu), from By t0 Fm(by) at
b, converge to a tangent vector to B at by, then for any point b € B, the
same i$ true. Furthermore, since for the function #(b,, b,, x) which is
differentiable with respect to b, b € B, % & U,a,, we have

ll(bo, bly xn) == (bm bl), Xy = ]b(bn),

we can take an open neighborhood of x:;, U',, C U;“ C U,, such that

9 10 li u(bn, bm, :C) — 1 Um(x)
4,10 e S S B ey

bm» = fm(b(l); xe U’x"-
In U,, we get from the equation x == F(b,, w, s) the inverse mapping
W =1iv(x), s=s(x), x7=x,

which are differentiable. Then, we have by (8, 6)
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9, 11) Smlx) == Flba, 'w(x), s(x)).
Therefore, we have by (9, 10), (9, 11)
(fu*h)(x) — h(x)

luﬂ—»m um(x)
h(F(bm, (%), s(x)) — h(x)
e lim (b('l) bm,)
m—x u(b(;, bm, x)
(b(l; bm)

This equation shows that 7(x) is defined and differentiable on U’; — %..
We have proved that we can define a vector field 7 over V, by (9, 2) and
it is differentiable on it.

On the other hand, from the above consideration, we can define a
differentiable scalar field 02, OVer V., for a point x, & V, by

9,12) 4, (%) =lim (1)

me (Dy, X(fm)(bu)) » XE I,’" b.& b (x4},

which is everywhere positive. Then, we can define a differentiable
covariant vector field  over V, as follows : in local coordinates %', -+, x"
onUCYV,

0 0
9,13) () = =2 10g 0., (0) (= Lrlog o))
xﬂ) x] = Vn: x = Ur
. which does not depend on the point x..

Now, in the coordinate neighborhood U s, fOT sufficiently large #n,
we must have

~ m*xx; ) m*xh
where g;(x) are the components of the fundamental tensor of V, with
respect to the coordinates x', -+, x". Taking a suitable neighborhood W
of b, in Vw, we can consider differentiable functions H;,(b, x) defined on

W x U, by
I“,Iu(b, X)) = — gu(x)
9,15)  + gul(Fb, w(x), s(x) tz‘ 2*(F(b, W(x), s(x)) X

X o 2(Fb, W), (), bE W, xE U,
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where we use

conventionally but there will be no confusion.

P

By (9,11), (9, 14), we have for sufficiently large #2 the equation
Hlj(bm, X) = 0-
Then we get easily the equation

0 — tim _Hulbu2)_
M—oo Up(X)

=71 5%) 7302 X)) 4 75(0)zi(x),
that is
(9, 16) 7u,4%) 4+ 75.0%) 4 7% 52) 4 74(0) (%) =0,

where 7,(x) = g(x)7’(x) and a comma denotes the covariant differenti-
ation of V,. This relations are clearly true on any coordinate neighbor-
hood since the fields 7, ¢ are defined on V, and do not depend on the
point x,.

If we define a differentiable contravariant vector field £ by

£ == '72:(-,7,')

that is

Y (f¥h)x) — h(x)
9,17 E(x) (h) lll'vln‘l_.m X )

where x € V,, h is any differentiable function defined on an open neigh-
horhood of x and b, is a fixed point of B.
Then we get by (9, 13), (9, 16)

ELJ(x) =+ &5,4(x) = 0

in any local coordinate neighborhood. This is the equation of Killing.

Since we can omit, in the above consideration, the condition thal
V. is complete as in §8 by means of a finite number of points in B
such as b,, we obtain the classical theorem |[6].

Theorem 6. Leil V, be a Riemannian manifold and let { f.| be a
sequence of motions of V., which are mutually distinct and weakly
converge to the identity transformation. If lhe tangent unit vector
to elementary geodesic arcs y(bo, X(fu) (b)) from b to X(f,) (b)) at a
Sfixed point b, = B converge to a tangent vector, then we can obtain a
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differentiable tangent vector field which represents an infinitesimal
transformation of motion by (9, 17).

§10. & (4, %) and holonomy groups. In this paragraph, we shall
investigate the automorphisms on V, which are generalizations of (b,
v, s) in §8 and the holonomy group of V..

Let W be the set of piecewise differentiable arcs parameterized with
arclengths in an s-dimentional Euclidean space. We shall classify the
clements of W as follows: W3;.:0<s<l,—R", a==1, 2, arc 7, ~
r1, (1) if there exists a translation such that y. =+ ¢ y;, (2) if for some
k¢ >0such that 0k — c <k +c <l =1+ 2, and we have

71(8) == y2(s) for 0<s<k—c,
i(s) =512k —s) for b —cs<k
71(8) = yuls — 2¢) for B —c s

or (3) if there exists a relation between y, and ;. exchanged y, and 7. in
(2).

Let T8 be the set of equivalent classes of W by the above cquivalent
relation.

For 7y, y» & W such that the end point of ;; is the starting point of
ve, 7 == jir2 is usually defined by

Tl(s) 0< S<ZJ,

7(s) =
s — 1) L<s<l + 1.

We define multiplication in T8 as follows :

£, € W, we take y, € &, y» € £ such that the end point of j; is
the starting point of y» and we denote the class containing jiy. by & <&..
Clearly &£, does not depend on the choice of y; €&, and y. EE£..

We can easily prove that T is @ group with respect to this multi-
plication. W contains the n-dimensional translation group T, of R as
a subgroup.

We define a homomorphism »: 3 — T, as follows: For any £ 28,
let ; be a representative with the minimum length in &, and let o( ) be
the translation corresponding to the sensed segment from the starting
point to the end point of ;". We can easily see that «(-) does not depend
on the choice of 7 and ¢ is a homomorphism onto. Let T, be the kernel
of z. We obtain easily the relations.
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(10! 1) SIS(I n (zn = ls .

(10, 2) QB == %ﬂ . zn = I'n . QB(!)
(10, 3) a(&,) =T,

Now, for any £ €T, we define a homeomorphism #%: Vy — Vi as
follows: Let y £ be a representative with its end point at the origin O
of R". For any point b & Vy, we take a curve C in V, and a curve C in
B such that
(i) pC)==C,

(ii) the points of C are the parallel displaced frames along C.

(iii) the point b is the end point of C,

(iv) by the linear mapping I,: Ton(V.) = R,, I(eib)) =, the tan.
gent unit vector C at pb) is transformed to the tangent unit
vector to y at O, where W, is the i-th unit vector at O of R",

and

(v) the developement of Con R’ so that the condition in (iv) is satis-
Sfied at p(b) is y.

As is well known, for y and b, C, C are uniquely determined under these

conditions (i)—(v)

Let &' be the starting point of C which depends only on £, b and put
b’ == ¥¢b). ¥ is clearly a homeomorphism on Vy and from the above
definition it follows that

(10, 4) UgoWp=Upp, £,E.€B
(10, 5) r(a) v Fp== Wyl or(a), a« € 0.

The set ® of all the 7, £ W, is a group of automorphism on Vy and
the correspondcnce ?: W — & by #()==7; is a homomorphism by
(10, 4).

For any we S*', s R, we get easily the rclation

(10, 6) W ap(b) == (b, 10, —s) = d(b, —1D, s).
By means of (10, 2), putting
K==Wy, S.=1(T),
%, is an invariant subgroup of & and
(10, 7 R=8,+S5,=8S,- K,

Now. for a fixed point x € V,,, let ¢, be the set of piecewise differen-
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tiable closed curves in V, starting and ending at x and parameterized
with arclength. Classifying the elements of £, by the equivalent relation
(2) which was used when we derived 28 from W in the beginning of this
paragraph, we define a group //. with multiplication by the usual method
in it.

For any b € p~'(x), CE £., weobtain C C B, y C R”such that C, C,
y have the above mentioned properties (i)—(v). Then, let ¢ : O.(x) =
O,(x) be defined by

(10, 8) \[r-g(b) == y'vg(b), E=E(C,b)

where £ denotes the class containing y depending on b and C. Since by
a right translation 7(a), «a€0,, a system {C,C, £} is transformed to
{C,7(a) (C), a(E)§, we get

(10, 9) 7(ar) ° afrg == g © #a).
By definition, we get easily
(10, 10) Yro, © Vo, = r ¢ uc,r

Since yr dependends only on the element in //. containing C, it define a
homomorphism of //. onto a group of automorphisms on O,(x) by means
of (10,10). For any b €O0,(x), CE{E 1/, let 3(L) be defined by

’\l/'g(b) = r(ﬂb(f))b,
then for any ¢, {.€//., we have by (11, 9), (11, 10)

7(3u(E) BEND == (B E) 7 (3u(E1)D)
== (D) e, (B) = o (7(3(E2)B)
== \lfc](\]"cz(b)) == \Ifc].o._,(b)
= 7(3(5:5)b, et C.e8,,
hence

(10, 10) (1) 3(82)) == (&)« &)

The transformalion 3. : 11, — O, is a homomor phism. For b, == r(a\)b,
we have A
Yoldy) == 7(35 (ENby == (3, (D)) (r(a:))b)
== f(ll’jﬂol(g))b
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== #{a o) = r(w) (T(ﬁ'b({))b)
"—T"s r(ﬂb(;)a’l )bl

henee

(10,11) Bran(@) = a ' B8)a, [, «€O0,.

H,, = f(1l,) is the holonomy group of V, at x with respect to b.
With regards to £(C, b), we get analogously the formulas:

(10,12) E(C, r(a)b) = a™'(E(C, b)),

(10,13) E(CiCy, b) = E(C,, o, (b)) + E(Cy, D)
= (&) (E(Cy, D)) -E(Cy, b),
CEet.Ell;,, a=1,2.
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