Mathematical Journal of Okayama University

 Volume 30, Issue 1
 1988
 Article 19

 JANUARY 1988

Singular point sets of a general connection and black holes

Tominosuke Otsuki*

Copyright ©1988 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Science University of Tokyo

Math. J. Okayama Univ. 30 (1988), 199-211

SINGULAR POINT SETS OF A GENERAL CONNECTION AND BLACK HOLES

Dedicated to Professor Hisao Tominaga on his 60th birthday

TOMINOSUKE OTSUKI

§ 1. General connections and geodesics. In the present paper the author will try to construct a theory of black holes as a subject in differential geometry by means of general connections, which are now called Otsuki connections mainly by Eastern European geometers, taking the results obtained in [10], [11] and the example in § 3 into consideration.

Let M^n be an n-dimensional manifold with a smooth general connection Γ , which we denote by (M^n, Γ) . The concept of general connections was defined by the author in [5]. Let (P^i_j, Γ^i_{jk}) be the components of Γ in local coordinates u^i , i.e.

$$\Gamma = \partial u_i \otimes (P_i^i d^2 u^j + \Gamma_{ih}^i du^j \otimes du^h).$$

The part of the first order of Γ is represented as

$$P = \lambda(\Gamma) = \partial u_i \otimes P_i^i du^i.$$

which is a tensor field of type (1.1). A point of M^n is called a regular point of Γ if $\det(P^i_j) \neq 0$ and otherwise a singular one, and the set of all regular points is denoted by reg Γ , which is open, and we set sing $\Gamma = M^n - \operatorname{reg} \Gamma$.

A curve $\gamma : x = \gamma(t)$ for a < t < b in M^n is called a geodesic of (M^n, Γ) , if it satisfies the condition:

$$\frac{D}{dt}\frac{dx}{dt} = \phi(t)P\left(\frac{dx}{dt}\right),\,$$

where D denotes the covariant differentiation of Γ and $\phi(t)$ is a suitable function along γ , which is represented in local coordinates as

$$(1.1) P_{j}^{i} \frac{d^{2}u^{j}}{dt^{2}} + \Gamma_{jh}^{i} \frac{du^{j}}{dt} \frac{du^{h}}{dt} = \phi P_{j}^{i} \frac{du^{j}}{dt}.$$

If (1.1) is satisfied with $\phi \equiv 0$, the parameter t is called an affine parameter of the geodesic, which is defined within an affine transformation for it. If we take a change of parameter s = s(t), then (1.1) can be written as

$$\frac{D}{ds} \left(\frac{du^i}{ds} \right) = \left[\left(\frac{dt}{ds} \right)^2 \phi + \frac{d^2t}{ds^2} \right] \frac{ds}{dt} P_J^i \frac{du^j}{ds}.$$

Therefore, integrating the differential equation

$$\left(\frac{dt}{ds}\right)^2 \psi + \frac{d^2t}{ds^2} = 0,$$

we obtain an affine parameter s of the geodesic γ as

$$s = \int e^{\int \varphi \, dt} dt.$$

On the other hand, taking a tensor field Q on M^n of type (1.1) with local components Q_j^i , consider the general connection $Q\Gamma$ with local components $(Q_k^i P_j^k, Q_k^i \Gamma_{ih}^k)$. We see easily from (1.1) that γ is also a geodesic of $(M^n, Q\Gamma)$.

P can be considered as an endomorphism of the tangent space T_xM^n at each point x of M^n , $P_x: T_xM^n \to T_xM^n$. On reg Γ , we denote the inverse of P by P^{-1} , then $P^{-1}\Gamma$ is a classical affine connection on reg Γ . Accordingly, an affine parameter s of a geodesic of (M^n, Γ) is also an affine parameter in the classical sense.

Definition. We call a curve $x = \gamma(s)$, $a \le s < b$, $-\infty < a < b \le +\infty$, of (M^n, Γ) , a maximal semi-geodesic, ms-geodesic, if it is a geodesic of (M^n, Γ) for a < s < b, s is an affine parameter of this geodesic, and (a, b) is maximal on these properties with respect to b. We call a curve $x = \gamma(s)$, a < s < b, $-\infty \le a < b \le +\infty$, a maximal geodesic, mgeodesic, if it is a geodesic of (M^n, Γ) for a < s < b, with s as an affine parameter and (a, b) is maximal on these properties with respect to a and b.

Let (TM^n, M^n, π) be the tangent bundle over M^n . We consider now an open subset E of TM^n such that, for any point $x \in \pi(E)$, $E_x = E \cap T_x M^n$ is invariant under any scalar multiplication in $T_x M^n$. We say such E is a direction range of M^n and geodetically invariant, g-invariant, if it satisfies the following condition: For any maximal geodesic $x = \gamma(s)$, a < s < b, whose lift γ' in TM^n is not disjoint with E, then $\gamma' \subset E$.

In the following, we consider only such E and say E satisfies (α)-condition, if the following conditions hold:

i) For any point $p_0 \in \text{reg } \Gamma \cap \pi(E)$ and any ms-geodesic $x = \gamma(s)$ $(a \le s < b)$ with $p_0 = \gamma(a), \ \gamma'(a) \in E$, it holds

201

$$\gamma(s) \to \operatorname{sing} \Gamma \text{ as } s \to b$$

or it diverges, i.e., for any compact set $K \subset M^n$, there exists s_0 such that $a < s_0 < b$ and $\gamma(s) \in K$ for $s \ge s_0$.

- ii) For any m-geodesic $x = \gamma(s)$, a < s < b, such that $\gamma' \subset E$ and $\gamma(s) \to \operatorname{sing} \Gamma$ as $s \to a$ and also as $s \to b$, then $\gamma \subset \operatorname{sing} \Gamma$.
- § 2. Black holes and sing Γ . Let E be a g-invariant direction range of M^n . We call a geodesic γ of (M^n, Γ) an E-geodesic, if its lift γ' in TM^n lies in E.

Definition. $A \subset M^n$ is called a black hole of (M^n, Γ) with respect to E, if it has an open neighborhood U with the following properties:

- i) ∂U is smooth and $\partial U \subset \operatorname{reg} \Gamma$.
- ii) If an ms-*E*-geodesic $x = \gamma(s)$, $a \le s < b$, enters into *U* through ∂U at $\gamma(s_0)$, with $\gamma'(s_0) \in T_{\gamma(s_0)} \partial U$, then $\gamma(s) \in U$ for $s > s_0$ and $\gamma(s)$ tends to *A* as $s \to b$.
- iii) U does not contain divergent ms-E-geodesics. U and ∂U in this definition are called a causal neighborhood and a causal boundary of A with respect to E respectively.

In the following, we assume the connection Γ satisfies the condition (α) for E. Let A be a black hole of (M^n, Γ) and U be a causal neighborhood of A with respect to E.

If an ms-*E*-geodesic $x = \gamma(s)$, $a \leq s < b$, enters into *U* through ∂U at $\gamma(s_0)$, with $\gamma'(s_0) \in T_{\gamma,s_0}$, ∂U , then the condition i) of (α) and the condition iii) of a black hole implies that $\gamma(s) \to \sin g \Gamma \cap A$ as $s \to b$. Therefore, this fact tells us that under the condition (α) any black hole for *E* may be considered as a subset of sing Γ .

Take an ms-*E*-geodesic $x = \gamma(s)$, $0 \le s < b$, starting a point $p_0 = \gamma(0) \in (U-A) \cap \operatorname{reg} \Gamma$ and complete it to an m-geodesic $x = \gamma(s)$, a < s < b.

1) If $\gamma(s)$ ($0 \le s < b$) is contained in U, then it tends to sing Γ by the condition iii) of a black hole and the condition i) of (α) . Then, $x = \gamma_1(s) := \gamma(-s)$, $0 \le s < -a$, is an ms-E-geodesic. If γ_1 is contained in U, then $\gamma_1(s)$ also tends to sing Γ . The condition ii) of (α) implies that the m-geodesic $x = \gamma(s)$, a < s < b, is contained in sing Γ . This contradicts to $p_0 = \gamma(0) \in \text{reg } \Gamma$. Hence, γ_1 must not be contained in U. γ_1 must run out U or tangent to ∂U at $\gamma_1(s_0)$, with $\gamma_1(s) \in U$ for $0 \le s < s_0$. If γ_1 runs

out U, with $\gamma'_1(s_0) \in T_{\gamma_1(s_0)} \partial U$, then the ms-geodesic $x = \gamma(s)$, $-s_0 \leq s < b$, enters into U through ∂U at $\gamma(-s_0)$, with $\gamma'(-s_0) \in T_{\gamma(-s_0)} \partial U$, hence $\gamma(s)$ tends to A as $s \to b$, by the condition ii) of a black hole. If γ is tangent to ∂U , then must be on ∂U by the following Theorem 1, which contradicts to $p_0 \in U$.

2) If $\gamma(s)$ $(0 \le s < b)$ is not contained in U, then γ runs out U at a point $\gamma(s_0) \in \partial U$, with $\gamma'(s_0) \in T_{\gamma(s_0)} \partial U$. Then, $\gamma(s)$ must tend to A as $s \to a$.

Theorem 1. For (M^n, Γ) , which satisfies the condition (α) for a ginvariant direction range E, a causal boundary of a black hole A with respect to E is totally geodesic with respect to E, i.e. any E-geodesic tangent to it at some point lies on it.

Proof. Let U be a causal neighborhood of the black hole A. For any point $p_0 \in \partial U$ and an ms-E-geodesic $x = \gamma(s)$, $0 \le s \le b$, with $\gamma'(0) \in T_{p_0} \partial U$, we obtain $\gamma(s) \in \overline{U}$. In fact, we can take a family of ms-E-geodesics $\gamma_i(s)$, $0 \le s < b_i$, such that $\lim_{i \to \infty} \gamma_i'(0) = \gamma'(0)$ and $\gamma_i'(0)$ points to the inside of U at p_0 , since $\partial U \subset \operatorname{reg} \Gamma$. We may suppose $\lim_{i \to \infty} b_i > b_0 > 0$. $\gamma_i(b_i) \in A$ and $\lim_{i \to \infty} \gamma_i(s) = \gamma(s)$ for $0 \le s \le b_0$, hence $s \le b$ and so $b_0 \le b$. Since $\gamma_i(s) \in U$ for $0 \le s \le b_0$, it must be $\gamma(s) \in \overline{U}$ for $0 \le s \le b_0$. By repeating this arguments for γ and using the condition ii) of a black hole, we see that $\gamma(s) \in \overline{U}$ for $0 \le s < b$.

On the other hand, taking a subsidiary Riemannian metric g on a neighborhood W of p_0 in reg Γ , we can put that $\gamma'(0)$ and $\gamma'(0)$ are all unit vectors with respect to g and take b_0 uniformly for any ms-E-geodesic γ , with $\gamma'(0) \in T_P \partial U$, where $p = \gamma(0) \in W \cap \partial U$.

Now, take a geodesic $x=\gamma_0(s), -c < s < c, c > 0$, such that $\gamma_0(0)=p_0$, s is an affine parameter, γ_0' is a unit vector with respect to g, $\gamma_0'(0) \in T_{p_0} \partial U$, $\gamma_0(s) \in U$ for $-c \leq s < 0$ and $\gamma_0(s) \in \overline{U}$ for $0 < s \leq c$. Taking another point $p_1 \in W \cap \partial U$ sufficiently near p_0 , which can be joined with p_0 by an E-geodesic in W, we choose a geodesic $x=\gamma_1(s), -c \leq s \leq c$, which satisfies the same conditions as γ_0 . We consider the family of E-geodesics $x=\tau_s(t), 0 \leq t \leq 1$, such that $\tau_s(0)=\gamma_0(s)$ and $\tau_s(1)=\gamma_1(s)$ and t is an affine parameter for each geodesic τ_s . If c is sufficiently small, the construction of the family τ_s is always possible as Riemannian cases and we may assume that $\tau_s(t)$ is in W and differentiable with respect to s and t, and $\tau_c \subset M^n - \overline{U}$.

SINGULAR POINT SETS OF A GENERAL CONNECTION AND BLACK HOLES

Let $s_0 \geq 0$ be the value such that for $s > s_0$, $\tau_s \subset M^n - \overline{U}$ and $\tau_{s_0} \cap \partial U \neq \Phi$. If $s_0 > 0$, then take a point $q = \tau_{s_0}(t_0) \in \partial U$. We see easily that $0 < t_0 < 1$ and $\tau'_{s_0}(t_0) \in T_q \partial U$. By means of the above mentioned fact $\tau_{s_0} \subset \overline{U}$, which contradicts to $\tau_{s_0}(0) = \gamma_0(s_0) \in \overline{U}$. Therefore it must be $s_0 = 0$.

If there exists t_0 ($0 < t_0 < 1$) such that $\tau_0(t_0) \in U$, then $\tau_0(t_0) \in U$, because $\tau_0(t_0) \in U$ implies $s_0 > 0$. Then, we can choose s_1 ($-c < s_1 < 0$) such that $\tau_{s_1}(t_0) \in U$ and τ_{s_1} passes through ∂U transversally at two points $\tau_{s_1}(t_1)$ and $\tau_{s_1}(t_2)$ with $0 < t_1 < t_0 < t_2 < 1$ and $\tau_{s_1}(t) \in \overline{U}$ for $t_1 < t < t_2$. Let $x = \tau(t)$. a < t < b, be the m-E-geodesic such that $\tau(t) = \tau_{s_1}(t)$ for $0 \le t \le 1$. Then, by the condition i) of a black hole we obtain

$$\tau(t) \in U$$
 for $a < t < t_1$ and $t_2 < t < b$

and

$$\tau(t)$$
 tends to $A \cap \operatorname{sing} \Gamma$ as $t \to a$ or $t \to b$.

By the condition ii) of (α) , it must be $\tau \subset \operatorname{sing} \Gamma$, which contradicts $\tau(t_0) \in \operatorname{reg} \Gamma$. Hence we see that

$$\tau_0(t) \in \partial U$$
 for $0 \le t \le 1$. Q. E. D.

203

Theorem 2. For (M^n, Γ) , which satisfies the condition (α) for a ginvariant direction range E, let A be a black hole with respect to E and U a causal neighborhood of A, then one end of any m-E-geodesic through a regular point of U tends to $A \cap \operatorname{sing} \Gamma$ in U and the other end goes out of U through ∂U transversally.

§ 3. An example. Here, we shall consider the 4-manifold with a smooth general connection (R^4, Γ) studied in [11].

Let x, i = 0, 1, 2, 3, be the canonical coordinates of R^4 , and t, r, θ , ϕ be the coordinates such that

$$x_0 = t$$
, $x_1 = r \sin \theta \cos \phi$, $x_2 = r \sin \theta \sin \phi$, $x_3 = r \cos \theta$.

For the space-time metric g:

(3.1)
$$d\sigma^2 = -\left(1 - \frac{4m^2}{r^2}\right)dt^2 + \frac{2}{r}dtdr + r^2(d\theta^2 + \sin^2\theta d\phi^2)$$

given for $r \neq 0$, we can choose a smooth general connection Γ on R^4

which has the same system of geodesics as the connection determined by the Christoffel symbols made by g on $r \neq 0$, the symmetric affine connection which is metric with respect to g, denoted by Γ_g . (Theorem 2 in [11]).

The equations of a geodesic of Γ_{ε} is

where $B = 1 - 4 m^2/r^2$ and s is the canonical parameter of the geodesic as

$$(3.3) \qquad \frac{d\sigma^2}{ds^2} = -\left(1 - \frac{4m^2}{r^2}\right) \left(\frac{dt}{ds}\right)^2 + \frac{2}{r} \frac{dt}{ds} \frac{dr}{ds}$$
$$+ r^2 \left[\left(\frac{d\theta}{ds}\right)^2 + \sin^2\theta \left(\frac{d\phi}{ds}\right)^2 \right]$$
$$= c = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$

according to the sign of the right hand side of (3.1), which is an affine parameter.

Now, we denote the sets of $X=X^i \partial/\partial x^i$ with $r\neq 0$ such that $g_{ij}X^iX^j$ is negative, zero or positive by E_{-1} , E_0 and E_{+1} , respectively. The above fact shows that E_{-1} and E_{+1} are g-invariant direction ranges in the sense described in § 2 and E_0 is also g-invariant. TR^4 is disjoint sum of E_{-1} , E_{+1} , E_0 and $\pi^{-1}(r=0)$.

For any geodesic γ , we may put $\theta \equiv \pi/2$ and have two constants A and J such that

$$(3.4) \frac{1}{r} \left(\frac{dr}{ds} - Br \frac{dt}{ds} \right) = A,$$

$$(3.5) r^2 \frac{d\phi}{ds} = J$$

which, joining with (3.3), are equivalent to (3.2) (See § 1 of [9]). In the following, we shall discuss whether the set W(r=0) is a black hole with the causal neighborhood U(r < 2m) or not for (R^4, Γ) with respect to $E = E_{-1}$ in the sense stated in § 2.

Let γ be a visible geodesic, i.e. c=-1 or 0, which enters into U, passing through ∂U transversally at $p_0=\gamma(0)$. Then we have

$$B=0$$
 and $\frac{dr}{ds}=2\,\text{mA}<0$ at p_0 .

From (3.4), (3.5) and (3.3) we obtain easily

(3.6)
$$\left(\frac{d\log r}{ds}\right)^2 = A^2 - B\left(\frac{J^2}{r^2} - c\right).$$

Case I: γ is visible, i.e. c = -1 or 0. We have

$$\frac{d\log r}{ds} < A \text{ and } r < 2m \text{ for } s > 0$$

and

$$(3.7) r < 2me^{s},$$

from which we find

$$(3.8) \lim_{s \to +\infty} r = 0.$$

Then, from (3.4) we obtain

$$\frac{dt}{ds} = \frac{1}{B} \frac{d \log r}{ds} - \frac{A}{B} = \frac{1}{1 - \frac{4 m^2}{r^2}} \frac{d \log r}{ds} - \frac{A}{1 - \frac{4 m^2}{r^2}}$$

hence

$$(3.9) t = t_0 + \frac{1}{2} \log \frac{4 m^2 - r^2}{4 m^2 - r_0^2} + A \int_{s_0}^{s} \frac{r^2}{4 m^2 - r^2} ds$$

by integration, where $t_0 = t(s_0)$, $r_0 = r(s_0)$ and $s_0 > 0$. We obtain first from (3.9) the inequality:

(3.10)
$$\lim_{s \to +\infty} t < t_0 + \frac{1}{2} \log \frac{4 m^2}{4 m^2 - r_0^2}.$$

On the other hand, we have from (3.7)

$$e^{-2AS}-1 < \frac{4m^2}{r^2}-1$$
,

and hence

$$t > t_0 + \frac{1}{2} \log \frac{4 m^2 - r^2}{4 m^2 - r_0^2} + A \int_{s_0}^{s} \frac{ds}{e^{-2As} - 1}$$

$$= t_0 + \frac{1}{2} \log \frac{4 m^2 - r^2}{4 m - r_0^2} - \frac{1}{2} \log \frac{\sinh |A| s}{\sinh |A| s_0} - \frac{A}{2} (s - s_0),$$

i.e.

$$(3.11) t > t_0 + \frac{1}{2} \log \frac{4 \, m^2 - r^2}{4 \, m^2 - r_0^2} + \frac{1}{2} \log \sinh |A| \, s_0 + \frac{1}{2} \, A s_0$$
$$- \frac{1}{2} \{ \log \sinh |A| \, s - |A| \, s \}.$$

Since we have for x > 0

$$\log \sinh x - x = \log \frac{e^x - e^{-x}}{2} - x < \log \frac{e^x}{2} - x = -\log 2,$$

we obtain the inequality

$$(3.12) \quad t > t_0 + \frac{1}{2} \log \frac{4 \, m^2 - r^2}{4 \, m^2 - r_0^2} + \frac{1}{2} \log \sinh |A| \, s_0 + \frac{1}{2} \, A s_0 + \log \sqrt{2}$$

for $s > s_0$, which implies

$$(3.13) \quad \lim_{s \to +\infty} t \ge t_0 + \log \frac{2m}{\sqrt{4m^2 - r_0^2}} + \frac{1}{2} \log \sinh |A| s_0 + \frac{As_0}{2} + \log \sqrt{2}.$$

Case II: γ is non-visible, i.e. c = 1. (3.6) becomes

(3.6')
$$\left(\frac{d \log r}{ds}\right)^2 = A^2 + \left(\frac{4 m^2}{r^2} - 1\right) \left(\frac{J^2}{r^2} - 1\right).$$

If $2m \leq |J|$, we have for $0 < r \leq 2m$

$$\left(\frac{d}{ds}\log r\right)^2 \ge A^2,$$

and so we can treat γ as the previous case and find that (3.7), (3.8), (3.10) and (3.13) also hold.

SINGULAR POINT SETS OF A GENERAL CONNECTION AND BLACK HOLES

207

In the following, we suppose

$$(3.15) |J| < 2m.$$

For $r \leq |J|$, (3.14) holds. If γ passes through the hypersurface r = |J| at $p_1 = \gamma(s_1)$, $s_1 > 0$, then we have

(3.7')
$$r < |J| e^{A(s-s_1)}$$
 for $s > s_1$.

from which we find

$$\lim_{s\to+\infty} r=0.$$

We have also

$$(3.9') t = t_1 + \frac{1}{2} \log \frac{4m^2 - r^2}{4m^2 - J^2} + A \int_{s_1}^{s} \frac{r^2 ds}{4m^2 - r^2} ,$$

where $t_1 = t(s_1)$ and which implies

(3.10')
$$\lim_{s \to +\infty} t < t_1 + \frac{1}{2} \log \frac{4 m^2}{4 m^2 - J^2}.$$

On the other hand, we have from (3.7')

$$\frac{r^2}{4\,m^2-r^2}<\frac{J^2}{4\,m^2\,e^{2^{1/4\,\text{KS}-S_{1}}}-J^2}$$

and hence

$$\begin{split} t &> t_1 + \frac{1}{2} \log \frac{4 \, m^2 - r^2}{4 \, m^2 - J^2} + A \int_{s_1}^s \frac{J^2 ds}{4 \, m^2 \, e^{2 \, \mathrm{IA} \, (S - S_1)} - J^2} \\ &= t_1 + \frac{1}{2} \log \frac{4 \, m^2 - r^2}{4 \, m^2 - J^2} \\ &\qquad - \frac{1}{2} \bigg[\log \bigg\{ e^{\, \mathrm{IA} \, (S - S_1)} - \frac{J^2}{4 \, m^2} \, e^{-\, \mathrm{IA} \, (S - S_1)} \bigg\} \bigg]_{s_1}^s - \frac{A}{2} (s - s_1) \\ &> t_1 + \frac{1}{2} \log \frac{4 \, m^2 - r^2}{4 \, m^2 - J^2} + \frac{1}{2} \log \bigg(1 - \frac{J^2}{4 \, m^2} \bigg). \\ &\qquad - \frac{1}{2} \big[\log \, e^{\, \mathrm{IA} \, (S - S_1)} - \big| \, A \, \big| (s - s_1) \big], \end{split}$$

i.e.

$$(3.12') t_1 > t_1 + \frac{1}{2} \log \frac{4m^2 - r^2}{4m^2 - J^2} + \frac{1}{2} \log \left(1 - \frac{J^2}{4m^2} \right),$$

which implies

$$(3.13') \qquad \lim_{s \to +\infty} t \ge t_1 + \log \frac{2m}{\sqrt{4m^2 - J^2}} + \frac{1}{2} \log \left(1 - \frac{J^2}{4m^2} \right).$$

Now, we investigate whether γ can attain the hypersurface r=|J| in this case. We obtain from (3.6)

$$\begin{split} \left(\frac{dr}{ds}\right)^2 &= r^2 A^2 - B(J^2 - r^2) \\ &= \frac{1}{r^2} |(A^2 + 1) r^4 - (4 m^2 + J^2) r^2 + 4 m^2 J^2|, \end{split}$$

and

(3.16)
$$s = \int_{r}^{2m} \frac{rdr}{\sqrt{(A^{2}+1)r^{4}-(4m^{2}+J^{2})r^{2}+4m^{2}J^{2}}}$$
$$= \frac{1}{2} \int_{r^{2}}^{4m^{2}} \frac{dy}{\sqrt{(A^{2}+1)y^{2}-(4m^{2}+J^{2})y+4m^{2}J^{2}}},$$

where $y = r^2$. Setting

$$f(y) := (A^2 + 1)y^2 - (4m^2 + J^2)y + 4m^2J^2,$$

we find

$$f(J^2) = A^2 J^4 < f(4m^2) = 16 A^2 m^4.$$

If we have

$$\frac{4m^2 + J^2}{2(A^2 + 1)} \le J^2$$

i.e.

$$(3.17) 4m^2 \le J^2(2A^2+1),$$

then f(y) is monotone increasing and positive in $J^2 \le y \le 4m^2$. Hence, s is monotone decreasing with respect to r in $|J| \le r \le 2m$, and so r is monotone decreasing from 2m to |J|. γ can attain to the hypersurface r = |J|.

Next, we consider the case

$$(3.18) 4 m2 > J2(2A2+1).$$

If the descriminant D of the quadratic function f(y) is negative

$$D = (4m^2 + J^2)^2 - 16m^2(A^2 + 1)J^2 = (4m^2 - J^2)^2 - 16m^2A^2J^2 < 0$$

i.e.

$$(3.19) 4m^2 - J^2 < 4m|A||J|,$$

then we have f(y) > 0 for $J^2 \le y \le 4 m^2$. We can also claim the same fact for γ as above. When D = 0, we have the same.

Finally we consider the case

$$(3.20) 4m^2 - J^2 > 4m|A||J|$$

under (3.18). Then, there exist two roots y_1 , y_2 of f(y) = 0 such that

$$J^2 < y_1 < y_2 < 4 m^2$$
.

For $r_1 = \sqrt{y_1} < r < r_2 = \sqrt{y_2}$, (3.6) is impossible. Therefore, this argument is stopped. We have only the formula (3.16) for $r_2 \le r \le 2m$.

Therefore, we find that the exceptional geodesic γ is the one which satisfies the conditions:

(3.21)
$$\begin{cases} c = 1, (dr/ds)_{s=0} < 0, |J| < 2m, \\ 4m^2 > J^2(2A^2+1), \\ 4m^2 - J^2 > 4m|A|J|. \end{cases}$$

Setting

$$u = |dr/ds|_{s=0}, v = |d\phi/ds|_{s=0},$$

we have from (3.4) and (3.5)

$$|J| = 4 m^2 v, |A| = \frac{1}{2m} u.$$

(3.21) can be represented as

(3.21')
$$\begin{cases} u > 0, \ 0 \le v < 1/2m \\ 4m^2v^2 + 2u^2v^2 < 1, \\ 4m^2v^2 + 2uv < 1. \end{cases}$$

From the last inequality of (3.21'), we find 2uv < 1, and hence

$$4m^2v^2 + 2u^2v^2 < 4m^2v^2 + 2uv < 1$$
.

Therefore, (3.21') is equivalent to

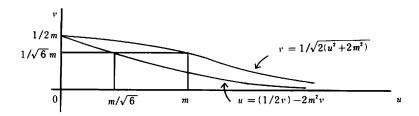
$$0 < u < \frac{1}{2v} - 2m^2 v, \ 0 < v < \frac{1}{2m}$$

210

T. OTSUKI

or

$$0 < u, v = 0.$$



Theorem 3. Let (R^4, Γ) be the space with a smooth general connection Γ with the same system of geodesics determined by the metric g:

$$d\sigma^{2} = -\left(1 - \frac{4m^{2}}{r^{2}}\right)dt^{2} + \frac{2}{r}dtdr + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

on $r \neq 0$. Any geodesic γ which enters into U(r < 2m) through ∂U transversally at $\gamma(0)$ can not tend to A(r = 0) if and only if

$$1 = -\left(1 - \frac{4m^2}{r^2}\right)\left(\frac{dt}{ds}\right)^2 + \frac{2}{r}\frac{dt}{ds}\frac{dr}{ds} + r^2\left\{\left(\frac{d\theta}{ds}\right)^2 + \sin^2\theta\left(\frac{d\phi}{ds}\right)^2\right\}$$

and

$$0 < u < \frac{1}{2v} - 2m^2v$$
, $0 < v < \frac{1}{2m}$ or $0 < u$, $v = 0$,

where

$$u = -\left(\frac{dr}{ds}\right)_{s=0}, \ v = \left[\left(\frac{d\theta}{ds}\right)^2 + \sin^2\theta \left(\frac{d\phi}{ds}\right)^2\right]_{s=0}^{1/2}.$$

REFERENCES

- [1] N. ABE: General connections on vector bundles, Kodai Math. J. 8 (1985), 322-329.
- [2] H. NAGAYAMA: A theory of general relativity by general connections I, TRU Mathematics, 20 (1984), 173-187.
- [3] H. NAGAYAMA: A theory of general relativity by general connections II, TRU Mathematics, 21 (1985), 287-317.
- [4] H. NEMOTO: On differential geometry of general connections, TRU Mathematics, 21 (1985), 67-94.
- [5] T. OTSUKI: On general connections I, Math. J. Okayama Univ. 9 (1960), 99-164.
- [6] T: OTSUKI: On general connections II, Math. J. Okayama Univ. 10 (1961), 113-124.

211

SINGULAR POINT SETS OF A GENERAL CONNECTION AND BLACK HOLES

- [7] T. OTSUKI: On metric general connections, Proc. Japan Acad. 37 (1961), 183-188.
- [8] T. OTSUKI: A note on metric general connections, Proc. Japan Acad. 38 (1962), 409-413.
 [9] T. OTSUKI: On normal general connections, Kodai Math. Sem. Reports, 13 (1961), 152-
- 166.
 [10] T. Otsuki: A construction of spaces with general connections which have points swallowing geodesics, Math. J. Okayama Univ. 24 (1982), 157-165.
- [11] T. OTSUKI: A certain space-time metric and smooth general connections, Kodai Math. J. 8 (1985), 307-316.

DEPARTMENT OF MATHEMATICS
SCIENCE UNIVERSITY OF TOKYO
WAKAMIYA- CHO 26, SHINJUKU- KU
TOKYO JAPAN, 162

(Received July 10, 1987)