Mathematical Journal of Okayama University Volume 30, Issue 1 1988 Article 10 JANUARY 1988 # Correspondences of modules over a Morita ring Nobuo Nobusawa* Copyright ©1988 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou ^{*}University of Hawaii Math. J. Okayama Univ. 30 (1988), 63-70 ## CORRESPONDENCES OF MODULES OVER A MORITA RING #### Nobuo NOBUSAWA The Theorem of Morita on correspondences of modules over unital rings was generalized in case of non-unital rings in [1] and [2]. It deals with modules M over a ring R which satisfy RM = M. Modules with this property are said to be lower closed. The concept of lower and upper closed ideals are introduced in [2]. Let J be a left ideal of R. We say that J is lower closed if RJ = J and that J is upper closed if $R^{-1}J = J$ where $R^{-1}J = | r \in R |$ $Rr \subseteq J$. In this paper, we introduce the concept of upper closed modules and generalize the theorem of correspondences in this case. A definition of upper closed modules is given in 1. Let M be a (left) R-module. When Rm =0 for $m \in M$ implies m = 0, we say that M is a proper R-module. Generally, let $m \in M$. Then, m induces an R-homomorphism of R to M by its right multiplication which we denote by \overline{m} ; $r^{\overline{m}} = rm$. Let $\overline{M} = |\overline{m}| m \in M|$. Then, M is homomorphic to \overline{M} . That M is proper is equivalent to that this homomorphism is an isomorphism. When M is proper and M coincides with Hom_R (R, M), we say that M is upper closed. In 2, we introduce a Morita ring and modules over a Morita ring. A Morita ring is just a Morita context considered as a ring. Sometimes, it is called a ring of a Morita context. A ring C is a Morita ring if $C = C_{11} \oplus C_{22} \oplus C_{12} \oplus C_{21}$ (a direct sum of submodules C_{ij}), where $C_{ij}C_{jk}\subseteq C_{ik}$ and $C_{ij}C_{mn}=0$ if $j\neq m$. Thus, C_{ii} are rings and C_{ij} are C_{ii} - C_{jj} -bimodules. Now, let W be a C-module. We say that Wis a module over a Morita ring C, or shortly, a C_m -module in case that W = $M_1 \oplus M_2$ (a direct sum of submodules M_i) where $C_{ij}M_j \subseteq M_i$ and $C_{ij}M_k = 0$ if $j \neq k$. Then, M_1 and M_2 are called the first and second components of W. Naturally, M_i are C_{ii} -modules. In this case, we say that M_1 and M_2 correspond to each other via a C_m -module W. This is a general concept of correspondences of modules. The correspondence is however not one to one. In 3 and 4, we restrict our modules to closed modules and show that the correspondence is one to one. We also show that if (closed modules) M and N correspond to each other, M' and N' correspond to each other, and there is a homomorphism ϕ_1 of M to M', then there is a uniquely determined homomorphism ϕ_2 of N to N'. If M'' and N'' correspond to each other and if there is a homomorphism ϕ'_1 of M' to M'' with the homomorphism ϕ'_2 of N' to N'' determined by ϕ_1' , then $\phi_2 \circ \phi_2'$ is the homomorphism of N to N determined by the homo- morphism $\phi_1 \circ \phi_1'$ of M to M''. 64 1. Upper closed modules. Let M be an R-module. In the following, we denote $M^* = \operatorname{Hom}_R(R, M)$. M^* is an R-module. Here, rf for $r \in R$ and $f \in M^*$ is defined to be a mapping of R to M such that $x^{rf} = (xr)^f$. Let $m \in M$. The mapping $x \to xm$ is an R-homomorphism of R to M, which we denote by \overline{m} . So, $\overline{m} \in M^*$. Especially, $rf = \overline{r^f}$ since $(xr)^f = x(r^f)$ in the above. Let $\overline{M} = |\overline{m}| m \in M$. \overline{M} is an R-submodule of M^* . The mapping $m \to \overline{m}$ is an R-homomorphism of R to R. When this is an isomorphism, i.e., one to one, we say that R is a proper R-module. In other words, R is proper if and only if R R R implies R R for R R. Proposition 1. If M is proper, so is M^* . *Proof.* Let f be an element of M^* such that Rf = 0. Then, $0 = rf = \overline{r^f}$ for any $r \in R$. Since M is proper, $r^f = 0$, and hence f = 0. M^* is proper. **Proposition 2.** Suppose that M is proper. There exists a proper R-module U such that (1) $RU \subseteq M \subseteq U$ and (2) if E is a proper R-module with $RE \subseteq M \subseteq U \subseteq E$, then E = U. Moreover, if V is another proper R-module satisfying (1) and (2), then U and V are isomorphic over M. *Proof.* M is isomorphic with M. We prove Proposition 2 for M. We show that M^* satisfies (1) and (2) (for \overline{M} in place of M). M^* is proper by Proposition 1 and naturally contains \overline{M} . If $r \in R$ and $f \in M^*$, then $rf = \overline{m}$ with m = r' as we noted above. So, (1) holds. For (2), let E be a proper R-module with $RE \subseteq \overline{M} \subseteq M^* \subseteq E$. Let $g \in E$. Then, $rg \in \overline{M}$ for any $r \in R$, and hence $rg = \overline{m(r)}$ with $m(r) \in M$. The mapping $r \to m(r)$ is an R-homomorphism of R to M, and hence there is an element f of M^* such that m(r) = r'. $\overline{m(r)} = \overline{r'} = rf$ as above. Thus, $rg = \overline{m(r)} = rf$. r(g-f) = rf0. Here, g-f is an element of E, which is proper. So, g-f=0, or g=f. This implies $E \subseteq M^*$. Therefore, $E = M^*$, and (2) holds. Lastly, suppose that V is another proper R-module satisfying (1) and (2) for M. As above, we can conclude that if $v \in V$, then rv = rf(v) with some $f(v) \in M^*$. The mapping $\phi: v \to f(v)$ is an R-isomorphism of V into M^* over \overline{M} . $\phi(V)$ satisfies (1) and (2) as V does. Now, observe that M^* satisfies the condition of E in (2) for $\phi(V)$. Thus, $\phi(V) = M^*$, which implies that V and M^* are isomorphic over M. http://escholarship.lib.okayama-u.ac.jp/mjou/vol30/iss1/10 2 We call U in Proposition 2 an upper closure of a proper R-module M. We denote an upper closure of M by $R^{-1}M$. $R^{-1}M$ is determined up to isomorphisms over M. **Definition 1.** We say that M is upper closed if M is proper and $M = R^{-1}M$. When $R^2 = R$, $R^{-1}M$ is upper closed for any proper R-module. For, let $N = R^{-1}(R^{-1}M)$. N is proper as well as $R^{-1}M$. $RN = R(RN) \subseteq R(R^{-1}M)$ $\subseteq M \subseteq R^{-1}M \subseteq N$. Thus, by (2) of Proposition 2, $N = R^{-1}M$, which shows that $R^{-1}M$ is upper closed. 2. Morita rings; Modules over a Morita ring. A Morita ring is a ring C such that $C = C_{11} \oplus C_{22} \oplus C_{12} \oplus C_{21}$ where C_{tJ} are submodules satisfying $C_{tJ}C_{Jk} \subseteq C_{tk}$ and $C_{tJ}C_{mn} = 0$ if $j \neq m$. Then, C_{tt} are subrings of C and C_{tJ} are $C_{tt} \cdot C_{JJ}$ -bimodules. For example, the matrix ring $M_2(R)$ of 2×2 matrices over a ring R is a Morita ring where $C_{tJ} = Re_{tJ}(e_{tJ})$ are the matrix units). Usually, the system $\langle C_{11}, C_{22}, C_{12}, C_{21} \rangle$ is called a Morita context. In this paper, we consider a Morita ring C which satisfies the additional properties $C_{12}C_{21} = C_{11}$ and $C_{21}C_{12} = C_{22}$. For example, if D is a left ideal of D0, D1, D2, D3, D3, D4, D3, D4, D5, is a Morita ring satisfying the above properties. Note also that if D3 satisfies the properties then we have $C_{11}C_{12} = C_{12}C_{22}$ and $C_{22}C_{21} = C_{21}C_{11}$ as we can easily verify. **Definition 2.** Let W be a C-module. We say that W is a module over a "Morita" ring, or shortly, a C_m -module if there exists submodules M_1 and M_2 of W such that $W = M_1 \oplus M_2$, $C_{ij}M_j \subseteq M_i$ and $C_{ij}M_k = 0$ if $j \neq k$. In the above definition, we should have called W as a C_m -module with the components M_1 and M_2 . When this is the case, we say that a C_{11} -module M_1 and a C_{22} -module M_2 correspond to each other via a C_m -module W. The correspondence is generally not one to one. First, we want to show the existence of the correspondence for a given M_1 . Let M be a C_{11} -module. We need to show the existence of a C_m -module $W = M_1 \oplus M_2$ such that $M_1 = M$. For the purpose, consider $\text{Hom}_{C_{11}}(C_{12}, M)$, which we denote by M_* throughout this paper. M_* is a C_{22} -module. Here, we define a product bf for $b \in C_{22}$ and $f \in M_*$ as a mapping $u \to (ub)^f$, which is seen to be a C_{11} -homomorphism of C_{12} to M. Now, consider $M \oplus M_*$, a direct sum of modules. By defining left multiplication by elements of C as follows, we can obtain a C_m -module $W=M\oplus M_*$. In the following, denote elements of C_{11} by a, elements of C_{22} by b, elements of C_{12} by u, elements of C_{21} by v, elements of M by m and elements of M_* by f. Define the products am and bf in a natural way (via a C_{11} -module M and a C_{22} -module M_*). We define af=bm=um=vf=0. Let vm be defined as an element of M_* such that $u^{vm}=(uv)m$. Lastly, define $uf=u^f$. Now, using the linearity, we can define cw for any $c\in C$ and $w\in W$. It is routine to verify that W becomes a C_m -module. In the following, we denote $W=M\oplus M_*$ constructed above by W_M . **Definition 3.** A C_m -module $W = M_1 \oplus M_2$ is said to be proper if M_i are proper C_{ii} -modules (i = 1, 2). **Proposition 3.** If M is a proper C_{11} -module, then W_M is proper. *Proof.* We need only to show that M_* is a proper C_{22} -module. Let $f \in M_*$ and suppose that $C_{22}f = 0$. bf = 0 for any b. So, $0 = u^{bf} = (ub)^f$. Now for any $a \in C_{11}$, we have $au = \sum (u_t b_t)$ with some $u_t \in C_{12}$ and $b_t \in C_{22}$ because $C_{11}C_{12} = C_{12}C_{22}$. Thus, $a(u^f) = (au)^f = \sum (u_t b_t)^f = 0$. Since M is proper, this implies that $u^f = 0$, and hence f = 0. We have shown that M_* is proper. #### 3. Lower closed proper C_m-modules. **Definition 4.** A C_m -module $W=M_1\oplus M_2$ is said to be lower closed if $C_{ij}M_j=M_i$ for all i and j. Note that if W is lower closed then M_i are lower closed but the converse is not true. **Theorem 1.** Let M be a lower closed proper C_{11} -module. There exists a lower closed proper C_m -module $W = M_1 \oplus M_2$ such that $M_1 = M$. *Proof.* Consider $W_M = M \oplus M_*$, which is a proper C_m -module by Proposition 3. Let $N = C_{21}M$. N is clearly a C_{22} -submodule of M_* . We have $C_{22}N = C_{22}C_{21}M = C_{21}C_{11}M = C_{21}M = N$, $C_{12}N = C_{12}C_{21}M = C_{11}M = M$ and $C_{21}M = C_{21}C_{12}N = C_{22}N = N$. Let $W = M \oplus N$. It is clear that W is a lower closed proper C_m -module. Theorem 1 implies that for a given lower closed proper C_{11} -module, there exists a lower closed proper C_{22} -module such that the two modules correspond to each other via a lower closed proper C_m -module. Next, we want to show that this correspondence is one to one up to within isomorphisms (of modules). **Proposition 4.** Let $W = M \oplus N$ and $W' = M' \oplus N'$ be both proper C_m -modules. Suppose that $N = C_{21}M$. If ϕ_1 is a C_{11} -homomorphism of M to M', then there exists uniquely a C_{22} -homomorphism ϕ_2 of N to N' such that the mapping $\phi = \phi_1 \oplus \phi_2$ of W to W' obtained from ϕ_1 and ϕ_2 in a natural way is a C-homomorphism. Proof. Let $n \in N$. Since $N = C_{21}M$, $n = \sum v_t m_t$ with $v_t \in C_{21}$ and $m_t \in M$. Define a mapping ϕ_2 of N to N' by $n^{\varphi_2} = \sum v_t (m_t^{\varphi_1})$. We have to show that ϕ_2 is well defined. For it, it is sufficient to show that $\sum v_t m_t = 0$ implies $\sum v_t (m_t^{\varphi_1}) = 0$. Assume $\sum v_t m_t = 0$. Then, for any $u, 0 = u(\sum v_t m_t) = \sum (uv_t) m_t$, whence $0 = (\sum (uv_t) m_t)^{\varphi_1} = \sum (uv_t) (m_t^{\varphi_1}) = u(\sum v_t (m_t^{\varphi_1}))$. This implies that $b(\sum v_t (m_t^{\varphi_1})) = 0$ for any $b \in C_{22}$ since $C_{22} = C_{21} C_{12}$. Since N' is proper, we have $\sum v_t (m_t^{\varphi_1}) = 0$ as required. Now, let $\phi = \phi_1$ ϕ_2 be the mapping of W to W' such that $\phi = \phi_1$ on M and $\phi = \phi_2$ on N. We can verify that ϕ is a C-homomorphism of W to W'. Lastly, ϕ is uniquely determined by ϕ_1 , because $n^{\varphi} = (\sum v_t m_t)^{\varphi} = \sum v_t (m_t^{\varphi}) = \sum v_t (m_t^{\varphi_1})$. Naturally, ϕ_2 is uniquely determined by ϕ_1 . Theorem 2. Let $W = M \oplus N$ and $W' = M' \oplus N'$ be lower closed proper C_m -modules. If M and M' are C_{11} -isomorphic, then N and N' are C_{22} -isomorphic. *Proof.* Let ϕ_1 be the isomorphism of M to M'. By Proposition 4, there exists a C-homomorphism ϕ of W to W' such that it maps N to N'. Similarly, consider the isomorphism ϕ_1^{-1} of M' to M. There exists a C-homomorphism ϕ' determined by ϕ_1^{-1} of W' to W. Now, we consider $\phi_1 \circ \phi_1^{-1}$ which is the identity mapping of M to M. $\phi \circ \phi'$ is the C-homomorphism of W to W determined by $\phi_1 \circ \phi_1^{-1}$. It must be the identity mapping of W. By the uniqueness part of Proposition 4, we have $\phi \circ \phi' =$ the identity. Similarly, $\phi' \circ \phi$ must be the identity mapping of W' to W'. Thus, ϕ and ϕ' are inverse each other. Hence, when we restrict ϕ on N, we obtain a C_{22} -isomorphism of N onto N'. We denote ϕ_2 of Proposition 4 by $F(\phi_1)$ (or, more precisely, $F_{w,w'}(\phi_1)$). Then, the following Theorem 3 is almost clear. **Theorem 3.** Suppose that $W = M \oplus N$, $W' = M' \oplus N'$ and W'' = M'' 68 \oplus N" are lower closed proper C_m -modules. If ϕ_1 is a C_{11} -homomorphism of M to M' and ϕ_1' is a C_{11} -homomorphism of M' to M", then $\phi_1 \circ \phi_1'$ is a C_{11} -homomorphism of M to M", and we have $F(\phi_1 \circ \phi_1') = F(\phi_1) \circ F(\phi_1')$. #### 4. Upper closed C_m-modules. **Definition 4.** A C_m -module $W = M_1 \oplus M_2$ is said to be upper closed if M_i are upper closed C_{ii} -modules (i = 1, 2). Let $W=M\oplus N$ and $W'=M'\oplus N'$ be C_m -modules. When W is a C-submodule of W' and $M\subseteq M'$ and $N\subseteq N'$, we say that W is a C_m -submodule of W'. **Proposition 5.** Let $W = M \oplus N$ be a proper C_m -module. If M' is a proper C_{11} -module containing M, then W is isomorphically imbedded as a C_m -submodule in $W_{M'}$. *Proof.* Let ϕ_1 be the imbedding mapping of M to M'. We define a mapping ϕ_2 of N to $(M')_*$ by $n^{\varphi_2} = \bar{n}$ for $n \in N$ where \bar{n} is the right multiplication: $u^{\bar{n}} = un$. Since N is proper, ϕ_2 is a one to one mapping. We can verify that ϕ_2 is a C_{22} -homomorphism of N to M_* and hence to $(M')_*$. Then, $\phi = \phi_1 \oplus \phi_2$ is an isomorphism of W to $W_{M'}$. It is obvious that $\phi(W)$ is a C_m -submodule of $W_{M'}$. Similarly, we can conclude that if $W=M\oplus N$ is a proper C_m -module and if N' is a proper C_{22} -module containing N, then there exists a proper C_m -module $M'\oplus N'$, which contains a C_m -submodule isomorphic to W. Let $W=M\oplus N$ be a C_m -module. For a subset S of M, we define $[C_{11}^{-1}S]_W=|m\in M\mid C_{11}m\subseteq S|$ and $[C_{12}^{-1}S]_W=|n\in N\mid C_{12}n\subseteq S|$. Similarly, for a subset T of N, we define $[C_{22}^{-1}T]_W=|n\in N\mid C_{22}n\subseteq T|$ and $[C_{21}^{-1}T]_W=|m\in M\mid C_{21}m\subseteq T|$. Especially, if S is an upper closed C_{11} -module and if W is upper closed, then $[C_{11}^{-1}S]_W=C_{11}^{-1}S=S$. Proposition 6. Let W, S and T be as above. Then, $[C_{22}^{-1}[C_{12}^{-1}S]_w]_w = [C_{12}^{-1}[C_{11}^{-1}S]_w]_w$ and $[C_{11}^{-1}[C_{21}^{-1}T]_w]_w = [C_{21}^{-1}[C_{22}^{-1}T]_w]_w$. Also, $[C_{21}^{-1}[C_{12}^{-1}S]_w]_w = [C_{11}^{-1}S]_w$ and $[C_{12}^{-1}[C_{21}^{-1}T]_w]_w = [C_{22}^{-1}T]_w$. *Proof.* Proposition 6 follows from $C_{12}C_{22} = C_{11}C_{12}$, $C_{21}C_{11} = C_{22}C_{21}$, $C_{12}C_{21} = C_{11}$ and $C_{21}C_{12} = C_{22}$. **Theorem 4.** If M is an upper closed C_{11} -module, then M* is an upper closed C_{22} -module, and hence W_M is an upper closed C_m -module. Proof. Let $N'=C_{22}^{-1}(M_*)$, an upper closure of M_* . There exists a proper C_m -module $W'=M'\oplus N'$ which contains W_M as a C_m -submodule by the remark right after Proposition 5. First, we want to show that $\begin{bmatrix} C_{12}^{-1}M \end{bmatrix}_{W'}=M_*$. Clearly, $\begin{bmatrix} C_{12}^{-1}M \end{bmatrix}_{W'}\supseteq M_*$. Let $y\in \begin{bmatrix} C_{12}^{-1}M \end{bmatrix}_{W'}$. y is an element of N' such that $C_{12}y\subseteq M$. Let \bar{y} be the right multiplication by y, i. e., $u^{\bar{y}}=uy$ for $u\in C_{12}$. \bar{y} is an element of $M_*=\operatorname{Hom}_{C_{11}}(C_{12},M)$. But, by the definition of $W_M,u^{\bar{y}}=u\bar{y}$. Thus, $uy=u\bar{y}$ in W_M . Therefore, $u(y-\bar{y})=0$. Since W' is proper, $y-\bar{y}=0$, or $y=\bar{y}\in M_*$. We showed that $\begin{bmatrix} C_{12}^{-1}M \end{bmatrix}_{W'}=M_*$. Now, $\begin{bmatrix} C_{22}^{-1}M_* \end{bmatrix}_{W'}=\begin{bmatrix} C_{22}^{-1}[C_{12}^{-1}M]_{W'} \end{bmatrix}_{W'}=\begin{bmatrix} C_{12}^{-1}[C_{11}^{-1}M]_{W'} \end{bmatrix}_{W'}$ by Proposition 6. Since M is upper closed, $\begin{bmatrix} C_{11}^{-1}M \end{bmatrix}_{W'}=M$. Therefore, $\begin{bmatrix} C_{22}^{-1}M_* \end{bmatrix}_{W'}=\begin{bmatrix} C_{12}^{-1}M \end{bmatrix}_{W'}=M_*$. So, $N'\subseteq \begin{bmatrix} C_{12}^{-1}M \end{bmatrix}_{W'}\subseteq M_*\subseteq N'$, and hence $C_{22}^{-1}(M_*)=N'=M_*$. We have shown that M_* is upper closed, and the proof of Theorem 4 is completed. Theorem 4 implies that if M is an upper closed C_{11} -module then M_* is an upper closed C_{22} -module and M and M_* correspond to each other via an upper closed C_m -module. **Proposition 7.** Let $W = M \oplus N$ and $W' = M' \oplus N'$ be upper closed C_m -modules. If W is a C_m -submodule of W', then $[C_{12}^{-1}M]_{W'} = N$ and $[C_{21}^{-1}N]_{W'} = M$. *Proof.* Let $T = [C_{12}^{-1}M]_{W'}$. Then, $[C_{21}^{-1}T]_{W'} = [C_{11}^{-1}M]_{W'}$ by Proposition 6. Since M is upper closed, $[C_{11}^{-1}M]_{W'} = M$. Hence, $[C_{21}^{-1}T]_{W'} = M$. On the other hand, $N \subseteq T$. So, $[C_{21}^{-1}N]_{W'} \subseteq [C_{21}^{-1}T]_{W'} = M$. Clearly, $M \subseteq [C_{21}^{-1}N]_{W'}$. Therefore, $[C_{21}^{-1}N]_{W'} = M$. The first identity is similarly proved. **Theorem 5.** Let $W = M \oplus N$ and $W' = M' \oplus N'$ be upper closed C_m -modules. If M and M' are C_{11} -isomorphic, then N and N' are C_{22} -isomorphic. *Proof.* It is enough to show that if $W = M \oplus N$ is upper closed then N and M_* are C_{22} -isomorphic. By Proposition 5, W is imbedded in W_M as a C_m -submodule. So, we may assume that W is a C_m -submodule of W_M . Then, by Proposition 7, $\begin{bmatrix} C_{12}^{-1}M \end{bmatrix}_{W_M} = N$. It is clear that $\begin{bmatrix} C_{12}^{-1}M \end{bmatrix}_{W_M} = M_*$. Therefore, $N = M_*$. We have shown that the imbedding isomorphism gives an isomorphism of N onto M_* . **Proposition 8.** Let $W = M \oplus N$ and $W' = M' \oplus N'$ be upper closed C_m -modules. If ϕ_1 is a C_{11} -homomorphism of M to M', then there exists uniquely a C_{22} -homomorphism ϕ_2 of N to N' such that $\phi = \phi_1 \oplus \phi_2$ is a C-homomorphism of W to W'. *Proof.* For the existence of ϕ or of ϕ_2 , we may assume that $W=W_M=M\oplus M*$ and $W'=W_{M'}=M'\oplus (M')*$ by virtue of Theorem 5. We define a mapping ϕ_2 of M* to (M')* as follows. For $f\in M*$, let f^{φ_2} be a mapping $u\to (u^f)^{\varphi_1}$. We can show that $\phi=\phi_1\oplus\phi_2$ is a C-homomorphism of W to W'. The uniqueness of ϕ or of ϕ_2 is proved as in Proposition 4. Now, let $\phi_2 = F(\phi_1)$ as in case of lower closed proper modules. We can obtain the same theorem as Theorem 3 in case of upper closed modules. #### REFERENCES - [1] S. KYUNO: Equivalence of module categories, Math. J. Okayama Univ. 28 (1986), 147-150. - [2] N. NOBUSAWA: Γ-rings and Morita equivalences, Math. J. Okayama Univ., 26 (1984), 151-156. DEPARTMENT OF MATHEMATICS UNIVERSITY OF HAWAII HONOLULU, HAWAII, 986822, U. S. A. (Received March 2, 1987)