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Introduction. Let G be a compact abelian Lie group. In the previous
paper [4] we have introduced a G-equivariant cohomology theory which is
concerned with the G-equivariant unitary cobordism theory. In the equivariant
cohomology theory there is the splitting principle and Chern classes are
defined for complex G-vector bundles.

In this paper we shall study on cochomology operations in the equivariant
cohomology theory. In §1 we consider Landweber-Novikov operations in our
equivariant cohomology theory. And, in § 2 we observe mod p Steenrod oper-
ations in the G-equivariant unitary cobordism theory and research on them
in connection with the Landweber-Novikov operations introduced in § 1.

1. Landweber-Novikov operations. Let G be a compact abelian Lie
group. Let U¥(—) and K&(—) be the G-equivariant unitary cobordism theory
and the G-equivariant complex K-theory, respectively. By making use of
Thom classes in K &-theory, we can get a natural multiplicative transformation

ue: UE(—) = K¥(—)

of the cohomologies (cf. [3]. [4]). We take up a multiplicative set Ty con-
sisting of all one dimensional representations in the representation ring
R(G) = K;(pt) and we consider a multiplicative system T = wg'(T%) in U%.
Then our multiplicative G-equivariant cohomology theory h#( —) is defined by

hE(—) = TUE—),
where T™'U¥(—) means a ring localized by the multiplicative system T.

Using the local triviality of complex G-vector bundles [5] and Theorem
4.5 in [4] we obtain the following splitting principle :

Proposition 1.1. Let & be an n-dimensional complex G-vector bundle
over a comapct G-space X. Then there exist a compact G-space F(€), a
G-map n: F(€) = X and n complex G-line bundles &,...., £, over F(§) satis-
Sfying the following conditions :
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1) =*: h¥(X) = hEF(€)) is a monomorphism.
2) x*¢ is isomorphic to the sum & ®---® §&,.

Proposition 1.2. Let £ and 7 be n and m-dimensional complex G-vector
bundles over a compact G-space X, respectively. Then there exist a compact
G-space F and a G-map n: F — X satisfying the following conditions :

1) =*: hE(X) = hEF) is a monomorphism.

2) =*(€) and n*(n) are isomorphic to the sums of n and m G-line
bundles over F, respectively.

Furthermore we have G-equivariant Chern classes c¢{(£&) € h%(X),
0 <i<n(ci(€) =1), of an n-dimensional complex G-vector bundle £ over
a compact G-space X [4].

We now define Landweber-Novikov operations [1, 9] in the cohomol-
ogy theory h¥(—) and call up their basic properties. Let t = (4, t,,...)

be a sequence of indeterminates. Assigning deg t; = —2i for each i =1,
U¥(—)[[]] and h¥(—)[[#]] become multiplicative G-equivariant cohomology
theories.

Let ¢ be an n-dimensional complex G-vector bundle over a compact G-
space X and let 7: F(§) = X and §&,,.... &, be ones of Proposition 1.1.
Consider the following
T (1+e(£) 0+ +e(€) tt-) € UHF(E)([e]]

and

(1) 1_1:1‘ (I +ci(E) -+ ei( ) et ---) € AEF(E)[[t]],
where e(&;) € Ui(F(€)) is the Euler class of &; and c{(§;) = e(fi> I
hi(F(€)) is the first Chern class of £;.

Given an n-tuple ¢ = (i,,...,in) of non-negative integers, denote by

o
25 XXy

the least symmetric polynomial in variables x,,...,x, which contains the
term xi'---x?*. The symmetric polynomial can be written as a polynomial
P(o,,...,0x) in the elementary symmetric functions o, ..., o, of the variables

XyyeoryXpl
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P(o1.....00) = 2, xix-

As for the coefficient of t,t;, --;, in the sequence (1), by making use of the
splitting principle, we get the equality

2 cf(&) " ci(£:) - ci(€n)" = Plon...., on)
= 7*P(c§(§),....ca( ),

where gx = ox(ci(£1),...,cT(€n)) is the k-th elementary symmetric function
of the classes c{(§&;),.. ,c,(En)

Let us define the total Chern class c(€) of £ in the theory hZ(—)[[t]]
by

ol €) = S P(cS(€). e ci(8)) 1, € REX)[¢]]

where t, = t;t;,---t;,. Then, in vertue of the naturality of Euler classes of
G-line bundles, the splitting principle and the external product we obtain

Proposition 1.3. The total Chern classes satisfy the following proper-
ties :

(1) (naturality) c{f*(€)) = f*(cd€)).

(2) (maultiplicativity) c{€Xn) = c{€)Xcdn).

(3) (normality) cfe) =1,
where € : pt XC — pt is the trivial G-line bundle over a point.

(4) If € is a complex G-line bundle, then

cd &) = 14+ci(E)ti+---+cS(E) tet+--

Let T(£) be the Thom space of an n-dimensional complex G-vector bundle
¢ over a compact G-space X. Then. by making use of the Thom isomorphism

#(¢) : RE(X) = REVT(T(E)),
we obtain the Thom isomorphism
¢ &) : REXO[[¢]] = RE*HT(EN[ ],
which is defined by
P EN 2 ap e int' - = 22 g(E)an, ) b1
Put

s{&) = ¢.(E)c(8) € RHT(E))[[¢]].
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Then we have

Proposition 1.4. The classes s{ ) satisfy the following properties :
(1) (naturality) s(f*(€)) = f*(s(€)).

(2)  (multiplicativity) s(£X7) = s(€)Xsdn).

(3) (normality) s(e) = t,(e) € Ri(S?).

(4) If € is a complex G-line bundle, then

s €) = talE) +tn(E) 4+ 1,(E) tymr+ o
where t,(€) is the Thom class of & in the theory h¥(—).

Let 7 be the universal complex G-vector bundle and denote by M,(G)
the Thom space of yZ. Let W be a complex G-module and G.(W) the Grass-
mann manifold of complex n-planes. Then 7% and M,(G) are the limit of the
canonical n-dimensional G-vector bundle

72(W) = (En(W)v T, Gn(VV))

and the Thom space M,(W) = T(y2(W)), respectively.

Let x € UM X) be represented by f: VEA X* = Myl W) C Myun(G),
where X* = X U | oo | (disjoint union), V °means the one point compactification
of a complex G-module Vand | V| = dim¢ V. Defining

se: USX) - hEX)[[¢]]
by
sdx) = ¢ V) s (7HW))),
we obtain a natural transformation
se: U¥(=) = hE(—)[[¢]]
of G-equivariant cohomology theories.
Proposition 1.5. The natural transformation s, has the following prop-
erties:
(1) (naturality) s{g*(x)) = g*(s{x)).
(2)  (multiplicativity) sfxy) = sda)sy). _
(3) (normality) 1) s{i(€)) = s(&) for the Thom class t(§) € U

(T(E)) of an n-dimensional complex G-vector bundle &, ii) s(1) =1, and
iii) s(V) = to(V).
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Let w = (awn, we,...) be a sequence of non-negative integers with w; = 0
except for a finite number of terms, |w| = 2, w;and t* = t¥'#52.... Put

sdx) = 20 sufx)t”

for x € U¥(X). Then, from the properties of s, it follows

Theorem 1.6. For each sequence w = (wy. ws,...) there exists an
operation

so: US(=) = hEH(—)
with the following properties :

(1) (natural) sfg*(x)) = g*(sx)).
(2) (multiplicative) sJxy) = %= selx) se(y)

a+

where a+f8 = (a,+ 5. as+ 2. ...).

(3) s4(x) = % for 0 =(0.0,...).

(4) (stable) s,0(V) = 0n(V) s, where o(V) and 0,(V) are suspen-
sion isomorphisms in the theories UE{(—) and h¥(—).

(5) If € is 1-dimensional, then
th(£)e! Jor ¢=1(0.....0, ;,0,0....)

seltl§)) = 0 otherwise.

2. Steenrod operations. In this section we observe the mod p Steenrod
operations in the theory Ug(—) and reseach on them in connection with the
Landweber-Novikov operations which are introduced in the previous section.

Let G be a compact Lie group and Z, a cyclic group of order p with a
generator p. By a (G, Z,)-space X we mean a Hausdorfl space X having both
actions of G and Z, which commute. Let V be a complex G-module. Through-
out this section we only treat finite dimensional complex G-modules. We
consider the G-module V a (G, Z,)-space with a Z, action defined by p*v =

exp 22V —1E ”;lkv (v EV). Then S(V)* = S(V) U || is a pointed (G, Z,)-

space with a fixed base point ©, where S(V) is the unit sphere in V.

Example 1. For a pointed G-space X, the p-fold reduced join /p\ X=
X AN---N\ X is a pointed (G, Z,)-space with a Z,-action defined by p(x, A---
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N xp) =2, Aov A xp A xy. We consider the p-fold product >,< X=XX
X X a(G, Z,)-space for a G-space X, too.

Example 2. Let £: E— X be a complex G-vector bundle and denote
by >’( £ the p-fold product bundle of £. Then the total space E(>p< £) =
EX...XEof >,< £is a (G, Z,)-space with a Z,-action defined by p(v1,....v,)

= (v3, .00, Vp, ¥1).
Let us define a G-space and a pointed G-space as follows :
E(X)=(S(V) X X)/Z, for (G, Z,)-space X,
and
EfX)=(S(V)* AN X)/Z, for pointed (G, Z,)-space X.
Then we have

Proposition 2.1. For a (G, Z,)-space X, there holds

E(X*) = E/X)".

Proposition 2.2. For a complex G-vector bundle & over a compact G-
space X

Ef(X £ : EAE(X §)) - EX X)
is a complex G-vector bundle.

Let #(G, Z,) be the category of pointed (G, Z,)-spaces and #(G) the
category of pointed G-spaces. Then E,: ®(G, Z,) = ®(G) is a covariant
functor.

Forthermore we have

Proposition 2.3. If £ is a complex (G, Z,)-vector bundle over a com-
pact (G, Z,)-space X, then
EJ(§): EA{E(¢)) » El(X)

is a complex G-vector bundle. And, as for the Thom spaces of them, it
Jfollows that

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 30/iss1/16
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Proposition 2.4. For a pair (X, A) of a (G, Z,)-space and its sub-
space, there exist G-homeomorphisms

EJX/A) = EAX)/E{A) = EJ{X*)/E{A").

Proposition 2.5. For a pointed G-space X with the trivial Zp-action
and a pointed (G, Z,)-space Y, there exists a G-homeomorphism
E{YAX)=E(Y) A X.
Proposition 2.6. For a pointed G-space X with the trivial Z,-action
and a G-module W, there exists a G-homeomorphism
~ N P o
EL(AW) ANX)= T(E{XW) X X)/T(E(X W) X %),
where W€ means the one point compactification of W.

Proof. We have the following G-homeomorphisms

EAA W) AX) = EAAWS A X (by 2.5)
= EA(XW)*) A X
= ELXW)" A X (by 2.1)
= T(EAX W)) A X (by 2.2)

= T(E,(X W) A (X*/%)
= T(EAX W) A X*/T(ELX W) A #
= T(E(X W) X X)/TELKW) X %0, q.ed.
By the same way as in the non-equivariant case we have the following
Thom isomorphism theorem of a pair (cf. [2]):

Theorem 2.7. For an n-dimensional complex G-vector bundle & over a
compact G-space X and a closed G-subspace A of X, the Thom homomorphism
¢: UEX. A) > UE™T(§), T(£|A))

is an isomorphism.

In virtue of Proposition 2.3, for a G-module W and a pointed G-space
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X with the trivial Z,-action,

>,,< W: EV((>p< W) X X) = Ed(%,...,%) X X)

is a G-vector bundle. Therefore, by making use of Theorem 2.7 and Propo-
sitions 2.4 and 2.6, we obtain a Thom isomorphism

¢: UHE(X)) - UNE(A W) A X)).
We now would like to define the external mod p Steenrod operation
P UH(X) - U¥5(E(X))

for each G-module V and a pointed G-space X.
Let x € U*(X) be represented by f: W A X = Mune(U) C Mywrar
(G). Consider the composition of G-maps

~ p ~ L2

EAAf): EAAN(WEA X)) - E .</"\ Muwnn(U))
T(X 785(1)))
— T(E,(X 7¥™5(U))) (by 2.3)
£8 T(y8"%) = Moynren( G),
where 4, is the map of Thom spaces induced by the classifying map of the

complex G-vector bundle E, >< y&"*(U)). The map u, represents the Thom
class

[us) = UECX 785(U))) € T T(E(X 75 5(U))).

Define a map d: (A W) A X > A(WEA X) by d(wi A/ wp) A
x) =(wy A x) A--A (wp A x). Then we get a G-map

Eud) : E(CA W) A X) > EXA (W A X))
Now we define P3*(x) by

Pia) = ¢ Bdd) *ELA DX HELK 78 5U))).

And we have the following properties:

Proposition 2.8. For a G-module V there exists an operator

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 30/iss1/16
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P,: Ué‘(—) - U:(E|(_))

with the following properties :
(1) (naturality) P3*h*(x) = E\(h)*Pi*(x).
(2) (multiplicativity) For x € Ui (X) and y € U¥(Y)

P x X y) = Pi*x) X Pi(y).

(3) For the Thom class #(£) € UX(T(€)) of a k-dimensional G-vector
bundle &,

P(E)) = EAd)HUELX €))) = HEL£)).

Let L be the canonical 1-dimensional Z,-module and consider it a trivial
G-module. Put

A=L® L*®..-® L.

Then we obtain

Proposition 2.9. Let & be a complex G-vector bundle over a compact
G-space X. Consider the p-fold sum € @@ € a (G, Z,)-bundle over X with
a Zy-action defined by p(vi,...,v,) = (va,...,vp, vy) for (vy,...,v,) € E(£ ®
@ ¢). Then it follows that

(1) the vector bundles £ ®.® ¢ and £ ® (C® A) are (G, Z,)-
isomorphic, and

(2) the diagram

~

e 4o ¢

‘ E®(CD A)

is G-homotopy commutative, where d is the diagonal map and i is the natural

inclusion defined by i(v) = v ® 1 € ¢ ® C.

Proof. (1) Let us consider a (p, p)-matrix A and a unitary matrix
U = (u,;) such that

(| JEERERREES 01 1 0

U'AU =

0 10 O ....‘p‘o-l

Produced by The Berkeley Electronic Press, 1988



Mathematical Journal of Okayama University, Vol. 30[1988], Iss. 1, Art. 16

170 M. FUJII

Then a (G, Z,)-bundle isomorphism
h: 6D DE-ERICODA)=EQRCHDERLD.--® £R® L
and its inverse h™' are given by
2 P D
h(v;,...,’Vp) == (jgl Unv; ® 1,);1 U2V ® 1,'”,,;1' UspV; ® 1)
and
-1 2 2 i
h (1’1 ® 21,...,'Vp® Zp) = (J;l -u}lz,-vj,....é u“,zjvj)
for (vi,..0,v,) € ED---® € and (v, ® 24,...,1v, R 2,) € £ R (C & A),
where U™' = (uy;).

(2) Since there holds ho = ph for the generator p € Z,, it follows
that

hd(v) = ho(w,...,v) = (i:, ujv ® 1,...,12:, u;pv ® 1)
. P p
= ,o(ng unv ® 1,...,;;, u;pr ® 1)
p b2l p
= (jgl Unv &® 1,]; Uj2V ® p‘l,..., JZ'_l U, pV ® pp“.l)‘
Hence we have
(ji:‘ u,k)(v ® 1) = pk_](ii ujk)('v ® 1) in S ® Lk_l.
This implies
jﬁl uy =0 (k= 2,...,p), that is,
hd(v) = (gpl upw ® 1,0,...,0).

Since (u,,) is an eigenvector for 1 of A, we have u,,;=+"=u, and | uy, |

= L. Hence a G-homotopy connecting hd and i is given easily. q.e.d.

VP

Proposition 2.10. For complex G-vector bundles & and 7 over a compact
G-space X, let

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 30/iss1/16
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ie: T(€) > T(§ & )
be an inclusion given by ig(v) = (v, 0) for v € T(¢). and
e : UXX) » UXT(8))
the Thom isomorphism. Then there holds
ie*(1(€ @ 1)) = ¢le(n))

for the Thom class (¢ ® ) € UX(T(& ® 7)) and the Euler class e(n) €
U¥X).

Proof. Consider the following commutative diagram

TXT(E) ® TXT(n) 2> THTE) A T(n) > TXT(E ® 1)

ll@s* J(l/\S)* lie*
~ ~ X = d* -~
US(T(§) ® UXX*) — UHT(&) N X*) — UKT(§)),
where s : X* = T(7) is the O-section and d: T(£ ® ) — T(£é X ) = T(§)
A T(7) is the map induced by the diagonal map. Then it follows that

i€ ® 7)) = i*d* (&) X 7))
= d*(H&) X s¥n))
= d*(t(¢) X e(n))
= ¢«e(n)). q.e.d.

Proposition 2.11. For an n-dimensional complex G-vector bundle & over
a compact G-space X, there holds
P (H(€)) = deue(e(E(E @ A))).
Proof. By Proposition 2.8 we have
PK(8) = EAD*HELX §)).

Since the commutative diagram

T(¢) T ©---& §)

|7
T(E XX €)

induces E,(d)* = EJ{d)*E/(d)*, we get

|
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E(d)XHEUX 8))) = EAd)XUES(¢ & @ §)))
= E(i )N UE(E @ ¢ ® A))) (by 2.9(2))
= iEy{é)*(t(EV(f) ® Ev(f ® A)))
= ¢EV{L‘)(€(EV(E ® A4))) (by 2.10) q.e.d.

Let us consider a connection of the operations P, with the Landweber-
Novikov operations introduced in § 1. Therefore, let us assume the compact
Lie group G abelian hereafter.

Let V=L &.--® Ly and W =L, ®---® L, be complex G-modules,
where L; and L) are l-dimensional complex G-modules. Let P(V) be the
complex projective space for the G-module V and 7(V; C) the canonical
complex G-line bundle over P(V). Then, according to [4, Theorems 4.2
and 4.5] we see that

hg‘(P( V) X P(W)) = h?(pt)[xv, yw]/( 3!’(-'5"), HW(;VW))

where xv = en(7(V: C) ® 1) and yy = en(l ® p(W; C)) are the Euler
classes of the G-line bundles, and (8,(xy), 8w(vw)) is an ideal generated by
polynomials 8u{xy) = (xv—en(L)) -(xy—en(Ln)) and Oulyw) = (yy—en
(L1))--{yw—en(Lyn)). As usual we put

hE(P. X P.) = limhEP(V) X P(W))

where the limmit depends on the inverse system defined by inclusion maps of
G-modules. Then we get

h¥(P. X P.) = h¥pt)[[x, ¥1].

As usual, by commutativity and associativity of tensor products of G-vector
bundles, we obtain a commutative formal group

F(xv y) = Zai)'xiyj € hz(Pm X Pcn)

such that F(x, y) | P(V) X P(W) = e,(»(V; C) ® n(W; C)) and a,, = aan
= 1. And, for G-line bundles £ and 7 over a compact G-space X, we have

en(E ® 1) = Fen(€), en(n)) = en(€)+en(n)+higher terms.

Lemma 2.12. For an n-dimensional complex G-vector bundle & over a
compact G-space X, there holds

soPY(2(€)) = 'Z en(E(A))" " %bo(v) salt(§))

aisn

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 30/iss1/16 12
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where v = en(EVL)), |a| =2 a; for each sequence a = (a1, a.,...) and
bolv) € REpt)[[v]] is a power series.

Proof. By Proposition 2.11 we have

soPY{H(£)) = sodepele(E(E ® A)))
= $(EAE)) en(EE ® A))).

1) When £ is a sum of G-line bundles &, ..., &g, it follows that

eh(Ev(S ® A)) = eh(E\r(El ® A @"'@ §n® A))
= enl£, ® E(4) @@ £, ® Ei4))
= eh(Sl ® Ev(ﬂ)) """ eh(fn ® Et(A))

For each & we have

eh(f& é’ Ew(A)) = eh(f;c ® E\(L) D...D & ® EV(L.D—I))
= en(£x ® EV(L)) -+ -en(éx ® ELLP™))
= Flen(€x). en(Ed(L)) - Flen(£), eal EAL"™))

=TT (ealEAL)) + 33 () en( £0)
= eh(Ev(A))'l‘g biv)en(£x),

where a,(v) and b,(v) are formal power series of v. Hence we have

==

eh(Ev(f & A)) = K (eh(Ev(A>)+§ b.i(,")en( fk)j)
= eh(EV(A))n_Imba(V)Ca(§)

aisn

1

n

where co(€) = 2 en(&)® - -en(€n)? and bo(v) is a formal power series
of v. Therefore we have

SoPPHE)) = HELON T, en EA)™bolw)eal£))
= E eh(E\'(A))n_lmba('V)Sa(f)-

taisn

2) General case is shown by making use of the splitting principle in
the theory A%(—). g.e.d.

Now we obtain an A¥-theoretic version of [15, Proposition 3.17].

Theorem 2.13. Let x € UX(X) be represented by a map f: WE A X
= Munen(U) C Mywrin(G). Then there holds
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en(EA)™sePiMx) = 3 en(EAA))"""@by(v)sala),

isiwi+n
where bo(v) € h¥(pt)[[v]] is a well defined power series.
Proof. There holds x = o%'f*(t(yZ(U))), where m = |W |+n and oy

is the suspension isomorphism. Hence, by the previous lemma, the naturality
of s, and Pi™ and the stability of s.. we have

sePY(f*(H(yB(U)) = Edf)*(soPT(H(y2())))
EdN)* I en(EAA)™ba(v)sa(t( 7E(U))))

w(Ev(A))" " %bo(v) sol f*¥(H(73(U))))
h(El’(A))m-mlba('V )‘Sa( owx)
eh(EV(A))m_Imba('V ) Ull'sa( 1‘).

I

e
e

2
lalsm
2
lal=m
2
laism

On the other hand we have

soP{"(owx) = sePi™(ow(1) X x)
== Son(O'w(l)) X suP.,-(x).

Since ow(1) = t{W), by the previous lemma, we have

sePlow(1)) = 25 en(E(A))"™ " ba(v) salaw(1)).

1wl

Here

0’w(1) fOI' O'=0

saow(1) = owso(l) = 0 otherwise

Thus we have
SoP%‘m(UWI) = eh(Elr‘(A))IWIUWSOP:'n(x)'
This completes the proof. g.e.d.

Acknowledgement. The author wishes to express his thanks to Profes-
sor M. Kamata for his kind advices and discussions.

REFERENCES
[1] J.F. ApaMs: P. S. Novikov's work on operations on complex cobordism, mimeographed,

Univ. of Chicago, 1967.
[2] T.Brocker und T. tom-DIECK : Kobordismentheorie, Lecture Notes in Math. 178, Springer-

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 30/iss1/16



(3]
(4]
[5]
(6]
(7]

[8]
(el

[10]
(11]
[12]
[13]
(14]

(15]

Fujii: Operations associated with the G-equivariant unitary cobordism

OPERATIONS ASSCIATED WITH THE G-EQUIVARIANT UNITARY COBORDISM THEORY 175

Verlag, 1970.

P. E. ConNER and E. E. FLoyD : The relation of cobordism to K-theories, Lecture Notes in
Math. 28, Springer-Verlag, 1966.

M. Fuunt and M. KAMATA @ On the completion of the G-equivariant unitary cobordism rings of
G-spaces, Publ. R. I. M. S., Kyoto Univ. 19 (1983), 577 —600.

M. Fusit and S. K6NO : A note on the local triviality of G-vector bundles, Yokohama Math,
J. 30 (1982), 49 —52.

T. tom-DIECK : Kobordismen- Theorie und Transformations-Gruppen, Preprint Series, Aarhus
Univ., (1968/69).

T. tom-DIECK : Bordism of G-manifolds and integrality theorems, Topology 9 (1970), 345 —
358.

T. tom-DikcK :  Steenrod-Operationen in Kobordismen-Theorien, Math. Z. 107 (1968), 380 —401.
P. S. LANDWEBER : Cobordism operations and Hopf algebras, Trans., Amer. Math. Soc. 129
(1967), 94—110.

M. NAKAOKA : Characteristic Classes with values in complex Cobordism, Osaka J. Math. 10
(1973), 521 —543.

P. S. Novikov : The method of algebraic topology from viewpoint of cobordism theories
(Russian), [zv. Akad. Nauk SSSR 31 (1967), 855—951.

C. OKONEK : Der Conner-Floyd-Isomorphismus fur Abelsche Gruppen, Math. Z. 179 (1982),
201—212,

C. OKONEK : Die #quivariante unitire Kobordismentheorie und ihre iHquivariante formale
Gruppe, Arch. Math. 40 (1983), 208—220.

D. QUILLEN : On the formal group laws of unoriented and complex cobordism theory, Bull.
Amer. Math. Soc. 75(1969), 1293—1298.

D. QuILLEN : Elementary proofs of some results of cobordism theory using Steenrod opera-
tions, Advances in Math. 7 (1971), 29—56.

Oxkayama UNIVERSITY

(Received February 15, 1988)

Produced by The Berkeley Electronic Press, 1988

15



