Mathematical Journal of Okayama University

Volume 30, Issue 1

1988 January 1988 Article 16

Operations associated with the G-equivariant unitary cobordism theory

Michikazu Fujii*

*Okayama University

Copyright ©1988 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Math. J. Okayama Univ. 30 (1988), 161-175

OPERATIONS ASSOCIATED WITH THE G-EQUIVARIANT UNITARY COBORDISM THEORY

MICHIKAZU FUJII

Introduction. Let G be a compact abelian Lie group. In the previous paper [4] we have introduced a G-equivariant cohomology theory which is concerned with the G-equivariant unitary cobordism theory. In the equivariant cohomology theory there is the splitting principle and Chern classes are defined for complex G-vector bundles.

In this paper we shall study on cohomology operations in the equivariant cohomology theory. In §1 we consider Landweber-Novikov operations in our equivariant cohomology theory. And, in §2 we observe mod p Steenrod operations in the *G*-equivariant unitary cobordism theory and research on them in connection with the Landweber-Novikov operations introduced in §1.

1. Landweber-Novikov operations. Let G be a compact abelian Lie group. Let $U_6^*(-)$ and $K_6^*(-)$ be the G-equivariant unitary cobordism theory and the G-equivariant complex K-theory, respectively. By making use of Thom classes in K_6^* -theory, we can get a natural multiplicative transformation

$$\mu_{\mathcal{G}}: U_{\mathcal{G}}^{*}(-) \to K_{\mathcal{G}}^{*}(-)$$

of the cohomologies (cf. [3], [4]). We take up a multiplicative set T_{κ} consisting of all one dimensional representations in the representation ring $R(G) \cong K_{G}(\text{pt})$ and we consider a multiplicative system $T = \mu_{G}^{-1}(T_{\kappa})$ in U_{G}^{0} . Then our multiplicative *G*-equivariant cohomology theory $h_{G}^{*}(-)$ is defined by

$$h_{G}^{*}(-) = T^{-1}U_{G}^{*}(-),$$

where $T^{-1}U_{g}^{*}(-)$ means a ring localized by the multiplicative system T.

Using the local triviality of complex G-vector bundles [5] and Theorem 4.5 in [4] we obtain the following splitting principle:

Proposition 1.1. Let ξ be an n-dimensional complex G-vector bundle over a comapct G-space X. Then there exist a compact G-space $F(\xi)$, a G-map $\pi: F(\xi) \to X$ and n complex G-line bundles ξ_1, \ldots, ξ_n over $F(\xi)$ satisfying the following conditions:

- 1) $\pi^*: h^*_{\mathcal{G}}(X) \to h^*_{\mathcal{G}}(F(\xi))$ is a monomorphism.
- 2) $\pi^*\xi$ is isomorphic to the sum $\xi_1 \oplus \cdots \oplus \xi_n$.

Proposition 1.2. Let ξ and η be n and m-dimensional complex G-vector bundles over a compact G-space X, respectively. Then there exist a compact G-space F and a G-map $\pi: F \to X$ satisfying the following conditions:

1) $\pi^*: h^*_{\mathcal{G}}(X) \to h^*_{\mathcal{G}}(F)$ is a monomorphism.

2) $\pi^*(\xi)$ and $\pi^*(\eta)$ are isomorphic to the sums of n and m G-line bundles over F, respectively.

Furthermore we have G-equivariant Chern classes $c_i^G(\xi) \in h_G^{2i}(X)$, $0 \leq i \leq n (c_0^G(\xi) = 1)$, of an *n*-dimensional complex G-vector bundle ξ over a compact G-space X[4].

We now define Landweber-Novikov operations [1, 9] in the cohomology theory $h_c^*(-)$ and call up their basic properties. Let $t = (t_1, t_2, ...)$ be a sequence of indeterminates. Assigning deg $t_i = -2i$ for each $i \ge 1$, $U_c^*(-)[[t]]$ and $h_c^*(-)[[t]]$ become multiplicative *G*-equivariant cohomology theories.

Let ξ be an *n*-dimensional complex *G*-vector bundle over a compact *G*-space *X* and let $\pi: F(\xi) \to X$ and ξ_1, \ldots, ξ_n be ones of Proposition 1.1. Consider the following

$$\prod_{i=1}^{n} (1 + e(\xi_i)t_1 + \dots + e(\xi_i)^k t_k + \dots) \in U_G^*(F(\xi))[[t]]$$

and

162

(1)
$$\prod_{i=1}^{n} (1 + c_1^G(\xi_i)t_1 + \dots + c_1^G(\xi_i)^k t_k + \dots) \in h_G^*(F(\xi))[[t]],$$

where $e(\xi_i) \in U^2_c(F(\xi))$ is the Euler class of ξ_i and $c_1^c(\xi_i) = \frac{e(\xi_i)}{1} \in h^2_c(F(\xi))$ is the first Chern class of ξ_i .

Given an *n*-tuple $\iota = (i_1, \ldots, i_n)$ of non-negative integers, denote by

$$\sum x_1^{i_1}x_2^{i_2}{\cdots}x_n^{i_n}$$

the least symmetric polynomial in variables $x_1, ..., x_n$ which contains the term $x_1^{i_1} \cdots x_n^{i_n}$. The symmetric polynomial can be written as a polynomial $P_i(\sigma_1, ..., \sigma_n)$ in the elementary symmetric functions $\sigma_1, ..., \sigma_n$ of the variables $x_1, ..., x_n$:

OPERATIONS ASSOCIATED WITH THE G-EQUIVARIANT UNITARY COBORDISM THEORY 163

$$P_i(\sigma_1,...,\sigma_n) = \sum x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}.$$

As for the coefficient of $t_{i_1}t_{i_2}\cdots t_{i_n}$ in the sequence (1), by making use of the splitting principle, we get the equality

$$\sum c_1^G(\xi_1)^{i_1} c_1^G(\xi_2)^{i_2} \cdots c_1^G(\xi_n)^{i_n} = P_c(\sigma_1, \dots, \sigma_n)$$

= $\pi^* P_c(c_1^G(\xi), \dots, c_n^G(\xi))$

where $\sigma_k = \sigma_k(c_1^c(\xi_1), ..., c_1^c(\xi_n))$ is the k-th elementary symmetric function of the classes $c_1^c(\xi_1), ..., c_1^c(\xi_n)$.

Let us define the *total Chern class* $c_t(\xi)$ of ξ in the theory $h_{\mathfrak{s}}^*(-)[[t]]$ by

$$c_{t}(\xi) = \sum_{i} P_{i}(c_{1}^{c}(\xi), ..., c_{n}^{c}(\xi)) \ t_{i} \in h_{c}^{*}(X)[[t]]$$

where $t_i = t_{i_1}t_{i_2}\cdots t_{i_n}$. Then, in vertue of the naturality of Euler classes of G-line bundles, the splitting principle and the external product we obtain

Proposition 1.3. The total Chern classes satisfy the following properties:

(1) (naturality) $c_t(f^*(\xi)) = f^*(c_t(\xi)).$

(2) (multiplicativity)
$$c_i(\xi \times \eta) = c_i(\xi) \times c_i(\eta)$$
.

(3) (normality) $c(\varepsilon) = 1$,

where ε : pt $\times C \rightarrow$ pt is the trivial G-line bundle over a point.

(4) If ξ is a complex G-line bundle, then

$$c_{t}(\xi) = 1 + c_{1}^{G}(\xi)t_{1} + \dots + c_{1}^{G}(\xi)^{k}t_{k} + \dots$$

Let $T(\xi)$ be the Thom space of an *n*-dimensional complex G-vector bundle ξ over a compact G-space X. Then, by making use of the Thom isomorphism

 $\phi(\xi): h^*_{G}(X) \to \tilde{h}^{*+2n}_{G}(T(\xi)),$

we obtain the Thom isomorphism

$$\phi_{i}(\xi): h_{g}^{*}(X)[[t]] \to \tilde{h}_{g}^{*+2n}(T(\xi))[[t]],$$

which is defined by

$$\phi_{t}(\xi)(\sum a_{i_{1},\cdots,i_{k}}t_{1}^{i_{1}}\cdots t_{k}^{i_{k}})=\sum \phi(\xi)(a_{i_{1},\cdots,i_{k}})t_{1}^{i_{1}}\cdots t_{k}^{i_{k}}.$$

Put

$$s_{\mathfrak{c}}(\xi) = \phi_{\mathfrak{c}}(\xi)(c_{\mathfrak{c}}(\xi)) \in \widetilde{h}_{\mathfrak{c}}^{*}(T(\xi))[[t]].$$

Then we have

164

Proposition 1.4. The classes $s_i()$ satisfy the following properties :

- (1) (naturality) $s_t(f^*(\xi)) = f^*(s_t(\xi)).$
- (2) (multiplicativity) $s_t(\xi \times \eta) = s_t(\xi) \times s_t(\eta)$.
- (3) (normality) $s_t(\varepsilon) = t_h(\varepsilon) \in \tilde{h}^2_G(S^2).$
- (4) If ξ is a complex G-line bundle, then

$$s_{t}(\xi) = t_{h}(\xi) + t_{h}(\xi)^{2} t_{1} + \dots + t_{h}(\xi)^{k} t_{k-1} + \dots$$

where $t_h(\xi)$ is the Thom class of ξ in the theory $h_G^*(-)$.

Let γ_G^n be the universal complex G-vector bundle and denote by $M_n(G)$ the Thom space of γ_G^n . Let W be a complex G-module and $G_n(W)$ the Grassmann manifold of complex n-planes. Then γ_G^n and $M_n(G)$ are the limit of the canonical n-dimensional G-vector bundle

$$\gamma_{G}^{n}(W) = (E_{n}(W), \pi, G_{n}(W))$$

and the Thom space $M_n(W) = T(\gamma_6^n(W))$, respectively.

Let $x \in U_G^{2n}(X)$ be represented by $f: V^c \wedge X^+ \to M_{W_{1+n}}(W) \subset M_{W_{1+n}}(G)$, where $X^+ = X \cup \{\infty \mid (\text{disjoint union}), V^c \text{ means the one point compactification}$ of a complex *G*-module *V* and $||V|| = \dim_c V$. Defining

$$s_t \colon U^*_G(X) \to h^*_G(X)[[t]]$$

by

$$s_{t}(x) = \phi_{t}(V)^{-1} f^{*}(s_{t}(\gamma_{G}^{V^{V+n}}(W))),$$

we obtain a natural transformation

$$s_t\colon U^*_{\mathcal{G}}(-)\to h^*_{\mathcal{G}}(-)[[t]]$$

of G-equivariant cohomology theories.

Proposition 1.5. The natural transformation s, has the following properties :

(1) (naturality) $s_t(g^*(x)) = g^*(s_t(x))$.

(2) (multiplicativity) $s_t(xy) = s_t(x)s_t(y)$.

(3) (normality) i) $s_t(t(\xi)) = s_t(\xi)$ for the Thom class $t(\xi) \in \tilde{U}_G^{2n}$ ($T(\xi)$) of an n-dimensional complex G-vector bundle ξ , ii) $s_t(1) = 1$, and iii) $s_t(V) = t_h(V)$.

OPERATIONS ASSOCIATED WITH THE G-EQUIVARIANT UNITARY COBORDISM THEORY 165

Let $\omega = (\omega_1, \omega_2, ...)$ be a sequence of non-negative integers with $\omega_i = 0$ except for a finite number of terms, $|\omega| = \sum \omega_i$ and $\underline{t}^{\omega} = t_1^{\omega_1} t_2^{\omega_2} \cdots$. Put

$$s_t(x) = \sum_{\omega} s_{\omega}(x) \underline{t}^{\omega}$$

for $x \in U^*_{G}(X)$. Then, from the properties of s_t it follows

Theorem 1.6. For each sequence $\omega = (\omega_1, \omega_2, ...)$ there exists an operation

$$s_{\omega}: U_{c}^{*}(-) \rightarrow h_{c}^{*+2|\omega|}(-)$$

with the following properties :

(1) (natural)
$$s_{\omega}(g^*(x)) = g^*(s_{\omega}(x)).$$

(2) (multiplicative)
$$s_{\omega}(xy) = \sum_{\alpha+\beta=\omega} s_{\alpha}(x) s_{\beta}(y)$$

where $\alpha + \beta = (\alpha_1 + \beta_1, \alpha_2 + \beta_2, \ldots).$

(3) $s_0(x) = \frac{x}{1}$ for 0 = (0, 0, ...).

(4) (stable) $s_{\omega}\sigma(V) = \sigma_h(V) s_{\omega}$, where $\sigma(V)$ and $\sigma_h(V)$ are suspension isomorphisms in the theories $U_{\mathfrak{s}}^*(-)$ and $h_{\mathfrak{s}}^*(-)$.

(5) If ξ is 1-dimensional, then

$$s_{\alpha}(t(\xi)) = \begin{cases} t_{h}(\xi)^{\alpha_{i+1}} & \text{for } \alpha = (0, \dots, 0, \alpha_{i}, 0, 0, \dots) \\ 0 & \text{otherwise.} \end{cases}$$

2. Steenrod operations. In this section we observe the mod p Steenrod operations in the theory $U_c^*(-)$ and research on them in connection with the Landweber-Novikov operations which are introduced in the previous section.

Let G be a compact Lie group and Z_{ρ} a cyclic group of order p with a generator ρ . By a (G, Z_{ρ}) -space X we mean a Hausdorff space X having both actions of G and Z_{ρ} which commute. Let V be a complex G-module. Throughout this section we only treat finite dimensional complex G-modules. We consider the G-module V a (G, Z_{ρ}) -space with a Z_{ρ} action defined by $\rho^{k}v =$ $\exp \frac{2\pi\sqrt{-1} k}{p}v$ ($v \in V$). Then $S(V)^{+} = S(V) \cup \{\infty\}$ is a pointed (G, Z_{ρ}) space with a fixed base point ∞ , where S(V) is the unit sphere in V.

Example 1. For a pointed G-space X, the p-fold reduced join $\bigwedge^{p} X = X \wedge \cdots \wedge X$ is a pointed (G, \mathbb{Z}_{p}) -space with a \mathbb{Z}_{p} -action defined by $\rho(x_{1} \wedge \cdots \wedge X)$

 $(\wedge x_p) = x_2 \wedge \cdots \wedge x_p \wedge x_1$. We consider the *p*-fold product $X = X \times \cdots \times X$ a (G, Z_p) -space for a G-space X, too.

Example 2. Let $\xi: E \to X$ be a complex *G*-vector bundle and denote by $\stackrel{p}{\times} \xi$ the *p*-fold product bundle of ξ . Then the total space $E(\stackrel{p}{\times} \xi) = E \times \cdots \times E$ of $\stackrel{p}{\times} \xi$ is a (G, Z_p) -space with a Z_p -action defined by $\rho(v_1, \dots, v_p) = (v_2, \dots, v_p, v_1)$.

Let us define a G-space and a pointed G-space as follows:

$$E_{V}(X) = (S(V) \times X)/Z_{\rho}$$
 for (G, Z_{ρ}) -space X,

and

166

$$\tilde{E}_{v}(X) = (S(V)^{+} \wedge X)/Z_{\rho}$$
 for pointed (G, Z_{ρ}) -space X.

Then we have

Proposition 2.1. For $a(G, Z_p)$ -space X, there holds $\widetilde{E}_v(X^+) = E_v(X)^+.$

Proposition 2.2. For a complex G-vector bundle ξ over a compact G-space X

$$E_v(\overset{\rho}{\times}\xi): E_v(E(\overset{\rho}{\times}\xi)) \to E_v(\overset{\rho}{\times}X)$$

is a complex G-vector bundle.

Let $\mathscr{C}(G, \mathbb{Z}_p)$ be the category of pointed (G, \mathbb{Z}_p) -spaces and $\mathscr{C}(G)$ the category of pointed G-spaces. Then $\tilde{E}_v : \mathscr{C}(G, \mathbb{Z}_p) \to \mathscr{C}(G)$ is a covariant functor.

Forthermore we have

Proposition 2.3. If ξ is a complex (G, Z_{ρ}) -vector bundle over a compact (G, Z_{ρ}) -space X, then

$$E_v(\xi): E_v(E(\xi)) \to E_v(X)$$

is a complex G-vector bundle. And, as for the Thom spaces of them, it follows that

Fujii: Operations associated with the G-equivariant unitary cobordism

OPERATIONS ASSOCIATED WITH THE G-EQUIVARIANT UNITARY COBORDISM THEORY 167

$$T(E_v(\xi)) = \tilde{E}_v(T(\xi)).$$

Proposition 2.4. For a pair (X, A) of a (G, Z_{ρ}) -space and its subspace, there exist G-homeomorphisms

$$\tilde{E}_{v}(X/A) \approx E_{v}(X)/E_{v}(A) \approx \tilde{E}_{v}(X^{+})/\tilde{E}_{v}(A^{+})$$

Proposition 2.5. For a pointed G-space X with the trivial Z_{ρ} -action and a pointed (G, Z_{ρ}) -space Y, there exists a G-homeomorphism

$$\tilde{E}_{v}(Y \wedge X) \approx \tilde{E}_{v}(Y) \wedge X.$$

Proposition 2.6. For a pointed G-space X with the trivial Z_p -action and a G-module W, there exists a G-homeomorphism

$$\widetilde{E}_{v}((\bigwedge^{\rho} W^{c}) \wedge X) \approx T(E_{v}(\overset{\rho}{\times} W) \times X)/T(E_{v}(\overset{\rho}{\times} W) \times *_{x}),$$

where W^{c} means the one point compactification of W.

Proof. We have the following *G*-homeomorphisms

$$\widetilde{E}_{v}((\bigwedge^{\rho} W^{c}) \wedge X) \approx \widetilde{E}_{v}(\bigwedge^{\rho} W^{c}) \wedge X \qquad \text{(by 2.5)} \\
\approx \widetilde{E}_{v}((\bigwedge^{\rho} W)^{+}) \wedge X \\
\approx E_{v}(\bigwedge^{\rho} W)^{+} \wedge X \qquad \text{(by 2.1)} \\
\approx T(E_{v}(\bigwedge^{\rho} W)) \wedge X \qquad \text{(by 2.2)} \\
= T(E_{v}(\bigwedge^{\rho} W)) \wedge (X^{+}/*_{X}^{*}) \\
= T(E_{v}(\bigwedge^{\rho} W)) \wedge X^{+}/T(E_{v}(\bigwedge^{\rho} W)) \wedge *_{X}^{*} \\
= T(E_{v}(\bigwedge^{\rho} W) \times X)/T(E_{v}(\bigwedge^{\rho} W) \times *_{X}). \quad \text{q.e.d}$$

By the same way as in the non-equivariant case we have the following Thom isomorphism theorem of a pair (cf. [2]):

Theorem 2.7. For an n-dimensional complex G-vector bundle ξ over a compact G-space X and a closed G-subspace A of X, the Thom homomorphism

$$\phi: U_{G}^{*}(X, A) \to U_{G}^{*+2n}(T(\xi), T(\xi | A))$$

is an isomorphism.

In virtue of Proposition 2.3, for a G-module W and a pointed G-space

X with the trivial Z_{ρ} -action,

$$\overset{\rho}{\times} W: E_{v}((\overset{\rho}{\times} W) \times X) \to E_{v}((*,...,*) \times X)$$

is a G-vector bundle. Therefore, by making use of Theorem 2.7 and Propositions 2.4 and 2.6, we obtain a Thom isomorphism

$$\phi: \tilde{U}^*_{G}(\tilde{E}_{v}(X)) \to \tilde{U}^*_{G}(\tilde{E}_{v}((\bigwedge^{\rho} W^{c}) \wedge X)).$$

We now would like to define the external mod p Steenrod operation

$$P_{V}^{2k}: \widetilde{U}_{G}^{2k}(X) \to \widetilde{U}_{G}^{2pk}(E_{V}(X))$$

for each G-module V and a pointed G-space X.

Let $x \in U_G^{2k}(X)$ be represented by $f: W^c \wedge X \to M_{W_{I+k}}(U) \subset M_{W_{I+k}}(G)$. Consider the composition of *G*-maps

$$\begin{split} \tilde{E}_{\nu}(\bigwedge^{\rho} f) &: \tilde{E}_{\nu}(\bigwedge^{\rho} (W^{c} \wedge X)) \to \tilde{E}_{\nu}(\bigwedge^{\rho} M_{\mathsf{IWI}+k}(U)) \\ &= \tilde{E}_{\nu}(T(\bigotimes^{\rho} \gamma_{G}^{\mathsf{IWI}+k}(U))) \\ &= T(E_{\nu}(\bigotimes^{\rho} \gamma_{G}^{\mathsf{IWI}+k}(U))) \quad \text{(by 2.3)} \\ \xrightarrow{\mu_{\rho}} T(\gamma_{G}^{\rho(\mathsf{IWI}+k)}) &= M_{\rho(\mathsf{IWI}+k)}(G), \end{split}$$

where μ_{ρ} is the map of Thom spaces induced by the classifying map of the complex *G*-vector bundle $E_{v}(\overset{\rho}{\times} \gamma_{G}^{W_{1}+k}(U))$. The map μ_{ρ} represents the Thom class

$$[\mu_{\rho}] = t(E_{\nu}(\overset{\rho}{\times} \gamma_{G}^{W_{I}+k}(U))) \in \widetilde{U}_{G}^{2\rho(W_{I}+k)}(T(E_{\nu}(\overset{\rho}{\times} \gamma_{G}^{W_{I}+k}(U))).$$

Define a map $\tilde{d}: (\bigwedge^{\rho} W^{c}) \wedge X \to \bigwedge^{\rho} (W^{c} \wedge X)$ by $\tilde{d}((w_{1} \wedge \cdots \wedge w_{p}) \wedge x) = (w_{1} \wedge x) \wedge \cdots \wedge (w_{p} \wedge x)$. Then we get a *G*-map

$$\tilde{E}_{v}(\tilde{d}): \tilde{E}_{v}((\bigwedge^{p} W^{c}) \wedge X) \to \tilde{E}_{v}(\bigwedge^{p} (W^{c} \wedge X)).$$

Now we define $P_{V}^{2k}(x)$ by

$$P_{V}^{2k}(x) = \phi^{-1}\widetilde{E}_{V}(\widetilde{d})^{*}\widetilde{E}_{V}(\bigwedge^{\rho} f)^{*}(t(E_{V}(\bigvee^{\rho} \gamma_{G}^{W_{I+k}}(U)))).$$

And we have the following properties:

Proposition 2.8. For a G-module V there exists an operator

168

OPERATIONS ASSOCIATED WITH THE G-EQUIVARIANT UNITARY COBORDISM THEORY 169

$$P_v: U_g^*(-) \to U_g^*(E_v(-))$$

with the following properties:

(1) (naturality) $P_{v}^{2k}h^{*}(x) = E_{v}(h)^{*}P_{v}^{2k}(x).$

(2) (multiplicativity) For $x \in U_G^{2k}(X)$ and $y \in U_G^{2l}(Y)$

$$P_{v}^{2k+2l}(x \times y) = P_{v}^{2k}(x) \times P_{v}^{2l}(y).$$

(3) For the Thom class $t(\xi) \in \tilde{U}_{G}^{2k}(T(\xi))$ of a k-dimensional G-vector bundle ξ ,

$$P_{v}^{2k}(t(\xi)) = \tilde{E}_{v}(\tilde{d})^{*}(t(E_{v}(\overset{\nu}{\times}\xi))) = t(E_{v}(\xi)).$$

Let L be the canonical 1-dimensional Z_{ρ} -module and consider it a trivial G-module. Put

$$\Delta = L \oplus L^2 \oplus \cdots \oplus L^{p-1}.$$

Then we obtain

Proposition 2.9. Let ξ be a complex G-vector bundle over a compact G-space X. Consider the p-fold sum $\xi \oplus \cdots \oplus \xi$ a (G, Z_p) -bundle over X with a Z_p -action defined by $\rho(v_1, \ldots, v_p) = (v_2, \ldots, v_p, v_1)$ for $(v_1, \ldots, v_p) \in E(\xi \oplus \cdots \oplus \xi)$. Then it follows that

(1) the vector bundles $\xi \oplus \cdots \oplus \xi$ and $\xi \otimes (C \oplus \Delta)$ are (G, Z_{ρ}) -isomorphic, and

(2) the diagram

$$\begin{array}{c} \xi \xrightarrow{\hat{d}} \xi \oplus \dots \oplus \xi \\ & \searrow \\ i & & \downarrow \cong \\ \xi \otimes (C \oplus \Delta) \end{array}$$

is G-homotopy commutative, where \hat{d} is the diagonal map and i is the natural inclusion defined by $i(v) = v \otimes 1 \in \xi \otimes C$.

Proof. (1) Let us consider a (p, p)-matrix A and a unitary matrix $U = (u_{ij})$ such that

$$A = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 \\ 1 & \ddots & & \vdots \\ \ddots & \ddots & \ddots & \vdots \\ 0 & 1 & 0 \end{pmatrix}, \quad U^{-1}AU = \begin{pmatrix} 1 & 0 \\ \rho & 0 \\ \ddots & \\ 0 & \ddots \\ 0 & \rho^{p-1} \end{pmatrix}$$

Then a (G, Z_p) -bundle isomorphism

 $h: \xi \oplus \dots \oplus \xi \to \xi \otimes (C \oplus \Delta) = \xi \otimes C \oplus \xi \otimes L \oplus \dots \oplus \xi \otimes L^{p-1}$ and its inverse h^{-1} are given by

$$h(v_1,...,v_p) = \left(\sum_{j=1}^{p} u_{j1}v_j \otimes 1, \sum_{j=1}^{p} u_{j2}v_j \otimes 1, ..., \sum_{j=1}^{p} u_{jp}v_j \otimes 1\right)$$

and

170

$$h^{-1}(v_1 \otimes z_1, ..., v_p \otimes z_p) = (\sum_{j=1}^{p} u_{j1}^{'} z_j v_j, ..., \sum_{j=1}^{p} u_{jp}^{'} z_j v_j)$$

for $(v_1, ..., v_p) \in \xi \oplus ... \oplus \xi$ and $(v_1 \otimes z_1, ..., v_p \otimes z_p) \in \xi \otimes (C \oplus \Delta)$, where $U^{-1} = (u'_{ij})$.

(2) Since there holds $h\rho = \rho h$ for the generator $\rho \in Z_{\rho}$, it follows that

$$\begin{aligned} h\hat{d}(v) &= h\rho(v,...,v) = (\sum_{j=1}^{p} u_{j1}v \otimes 1,...,\sum_{j=1}^{p} u_{jp}v \otimes 1) \\ &= \rho(\sum_{j=1}^{p} u_{j1}v \otimes 1,...,\sum_{j=1}^{p} u_{jp}v \otimes 1) \\ &= (\sum_{j=1}^{p} u_{j1}v \otimes 1,\sum_{j=1}^{p} u_{j2}v \otimes \rho \cdot 1,...,\sum_{j=1}^{p} u_{jp}v \otimes \rho^{p-1} \cdot 1) \end{aligned}$$

Hence we have

$$(\sum_{j=1}^{p} u_{jk})(v \otimes 1) = \rho^{k-1}(\sum_{j=1}^{p} u_{jk})(v \otimes 1) \quad \text{in } \xi \otimes L^{k-1}.$$

This implies

$$\sum_{j=1}^{p} u_{jk} = 0 \ (k = 2, ..., p), \text{ that is,}$$
$$h\hat{d}(v) = (\sum_{j=1}^{p} u_{j1}v \otimes 1, 0, ..., 0).$$

Since (u_{j_1}) is an eigenvector for 1 of A, we have $u_{11} = \cdots = u_{p_1}$ and $|u_{11}| = \frac{1}{\sqrt{p}}$. Hence a G-homotopy connecting $h\hat{d}$ and i is given easily. q.e.d.

Proposition 2.10. For complex G-vector bundles ξ and η over a compact G-space X, let

OPERATIONS ASSOCIATED WITH THE GEQUIVARIANT UNITARY COBORDISM THEORY 171

$$i_{\boldsymbol{\xi}}: T(\boldsymbol{\xi}) \to T(\boldsymbol{\xi} \oplus \boldsymbol{\eta})$$

be an inclusion given by $i_{\xi}(v) = (v, 0)$ for $v \in T(\xi)$, and

$$\phi_{\boldsymbol{\epsilon}}: U^*_{\boldsymbol{\epsilon}}(X) \to \tilde{U}^*_{\boldsymbol{\epsilon}}(T(\xi))$$

the Thom isomorphism. Then there holds

$$i_{\boldsymbol{\xi}}^{*}(t(\boldsymbol{\xi} \oplus \boldsymbol{\eta})) = \phi_{\boldsymbol{\xi}}(e(\boldsymbol{\eta}))$$

for the Thom class $t(\xi \oplus \eta) \in \tilde{U}^*_{\mathfrak{c}}(T(\xi \oplus \eta))$ and the Euler class $e(\eta) \in U^*_{\mathfrak{c}}(X)$.

Proof. Consider the following commutative diagram

$$\begin{split} \tilde{U}^*_{\mathfrak{g}}(T(\xi)) &\otimes \tilde{U}^*_{\mathfrak{g}}(T(\eta)) \xrightarrow{\times} \tilde{U}^*_{\mathfrak{g}}(T(\xi) \wedge T(\eta)) \xrightarrow{\overline{d^*}} \tilde{U}^*_{\mathfrak{g}}(T(\xi \oplus \eta)) \\ & \downarrow 1 \otimes s^* \qquad \qquad \downarrow (1 \wedge s)^* \qquad \downarrow i_{\mathfrak{g}}^* \\ \tilde{U}^*_{\mathfrak{g}}(T(\xi)) \otimes \tilde{U}^*_{\mathfrak{g}}(X^+) \xrightarrow{\times} \tilde{U}^*_{\mathfrak{g}}(T(\xi) \wedge X^+) \xrightarrow{\overline{d^*}} \tilde{U}^*_{\mathfrak{g}}(T(\xi)), \end{split}$$

where $s: X^+ \to T(\eta)$ is the 0-section and $\overline{d}: T(\xi \oplus \eta) \to T(\xi \times \eta) = T(\xi)$ $\wedge T(\eta)$ is the map induced by the diagonal map. Then it follows that

$$i_{\boldsymbol{\xi}}^{*}(t(\boldsymbol{\xi} \oplus \boldsymbol{\eta})) = i_{\boldsymbol{\xi}}^{*} \overline{d}^{*}(t(\boldsymbol{\xi}) \times t(\boldsymbol{\eta}))$$

= $\overline{d}^{*}(t(\boldsymbol{\xi}) \times s^{*}(t(\boldsymbol{\eta}))$
= $\overline{d}^{*}(t(\boldsymbol{\xi}) \times e(\boldsymbol{\eta}))$
= $\phi_{\boldsymbol{\xi}}(e(\boldsymbol{\eta})).$ q.e.d.

Proposition 2.11. For an n-dimensional complex G-vector bundle ξ over a compact G-space X, there holds

$$P_{V}^{2n}(t(\xi)) = \phi_{E_{V}(\xi)}(e(E_{V}(\xi \otimes \Delta))).$$

Proof. By Proposition 2.8 we have

$$P_{v}^{2n}(t(\xi)) = \tilde{E}_{v}(\tilde{d})^{*}(t(E_{v}(\overset{\rho}{\times}\xi))).$$

Since the commutative diagram

$$T(\xi) \xrightarrow{d} T(\xi \oplus \dots \oplus \xi)$$

$$\downarrow \overline{d}$$

$$T(\xi \times \dots \times \xi)$$

induces $\tilde{E}_{v}(\tilde{d})^{*} = \tilde{E}_{v}(\hat{d})^{*}\tilde{E}_{v}(\tilde{d})^{*}$, we get

$$\begin{split} \widetilde{E}_{v}(\widetilde{d})^{*}(t(E_{v}(\widecheck{\times}\xi))) &= \widetilde{E}_{v}(\widehat{d})^{*}(t(E_{v}(\xi \oplus \dots \oplus \xi))) \\ &= \widetilde{E}_{v}(i_{\xi})^{*}(t(E_{v}(\xi \oplus \xi \otimes \Delta))) \quad (\text{by 2.9}(2)) \\ &= i_{E_{v}(\xi)}^{*}(t(E_{v}(\xi) \oplus E_{v}(\xi \otimes \Delta))) \\ &= \phi_{E_{v}(\xi)}(e(E_{v}(\xi \otimes \Delta))) \quad (\text{by 2.10}) \quad \text{q.e.d.} \end{split}$$

Let us consider a connection of the operations P_v with the Landweber-Novikov operations introduced in §1. Therefore, let us assume the compact Lie group G abelian hereafter.

Let $V = L_1 \oplus \cdots \oplus L_m$ and $W = L'_1 \oplus \cdots \oplus L'_n$ be complex *G*-modules, where L_i and L'_j are 1-dimensional complex *G*-modules. Let P(V) be the complex projective space for the *G*-module *V* and $\eta(V; C)$ the canonical complex *G*-line bundle over P(V). Then, according to [4, Theorems 4.2 and 4.5] we see that

$$h_{G}^{*}(P(V) \times P(W)) = h_{G}^{*}(\operatorname{pt})[x_{v}, y_{w}] / (\theta_{v}(x_{v}), \theta_{w}(y_{w}))$$

where $x_v = e_h(\eta(V; C) \otimes 1)$ and $y_w = e_h(1 \otimes \eta(W; C))$ are the Euler classes of the G-line bundles, and $(\theta_v(x_v), \theta_w(y_w))$ is an ideal generated by polynomials $\theta_v(x_v) = (x_v - e_h(L_1)) \cdots (x_v - e_h(L_m))$ and $\theta_w(y_w) = (y_w - e_h(L_1)) \cdots (y_w - e_h(L_n))$. As usual we put

$$h_{G}^{*}(P_{\infty} \times P_{\infty}) = \lim h_{G}^{*}(P(V) \times P(W))$$

where the limit depends on the inverse system defined by inclusion maps of G-modules. Then we get

$$h_{\mathcal{G}}^{*}(P_{\infty} \times P_{\infty}) = h_{\mathcal{G}}^{*}(\mathrm{pt})[[x, y]].$$

As usual, by commutativity and associativity of tensor products of G-vector bundles, we obtain a commutative formal group

$$F(x, y) = \sum a_{ij} x^i y^j \in h^2_G(P_\infty \times P_\infty)$$

such that $F(x, y) | P(V) \times P(W) = e_h(\eta(V; C) \otimes \eta(W; C))$ and $a_{10} = a_{01} = 1$. And, for G-line bundles ξ and η over a compact G-space X, we have

$$e_h(\xi \otimes \eta) = F(e_h(\xi), e_h(\eta)) = e_h(\xi) + e_h(\eta) + higher \ terms$$

Lemma 2.12. For an n-dimensional complex G-vector bundle ξ over a compact G-space X, there holds

$$s_0 P_{\mathcal{V}}^{2n}(t(\xi)) = \sum_{|\alpha| \le n} e_h(E_{\mathcal{V}}(\Delta))^{n-\alpha} b_{\alpha}(\mathcal{V}) s_{\alpha}(t(\xi))$$

12

172

where $v = e_h(E_v(L))$, $|\alpha| = \sum \alpha_i$ for each sequence $\alpha = (\alpha_1, \alpha_2, ...)$ and $b_\alpha(v) \in h^*_{\mathcal{G}}(\operatorname{pt})[[v]]$ is a power series.

Proof. By Proposition 2.11 we have

$$s_0 P_{V}^{2n}(t(\xi)) = s_0 \phi_{E_V(\xi)}(e(E_V(\xi \otimes \Delta)))$$

= $\phi(E_V(\xi))(e_h(E_V(\xi \otimes \Delta))).$

1) When ξ is a sum of G-line bundles ξ_1, \dots, ξ_n , it follows that

$$e_{h}(E_{v}(\xi \otimes \Delta)) = e_{h}(E_{v}(\xi_{1} \otimes \Delta \oplus \dots \oplus \xi_{n} \otimes \Delta))$$

= $e_{h}(\xi_{1} \otimes E_{v}(\Delta) \oplus \dots \oplus \xi_{n} \otimes E_{v}(\Delta))$
= $e_{h}(\xi_{1} \otimes E_{v}(\Delta)) \dots e_{h}(\xi_{n} \otimes E_{v}(\Delta)).$

For each k we have

$$e_{h}(\xi_{k} \otimes E_{v}(\Delta)) = e_{h}(\xi_{k} \otimes E_{v}(L) \oplus \dots \oplus \xi_{k} \otimes E_{v}(L^{p-1}))$$

$$= e_{h}(\xi_{k} \otimes E_{v}(L)) \cdot \dots \cdot e_{h}(\xi_{k} \otimes E_{v}(L^{p-1}))$$

$$= F(e_{h}(\xi_{k}), e_{h}(E_{v}(L))) \cdot \dots \cdot F(e_{h}(\xi_{k}), e_{h}(E_{v}(L^{p-1})))$$

$$= \prod_{l=1}^{p-1} (e_{h}(E_{v}(L^{l})) + \sum_{j \ge 1} a_{j}(v) e_{h}(\xi_{k})^{j})$$

$$= e_{h}(E_{v}(\Delta)) + \sum_{j \ge 1} b_{j}(v) e_{h}(\xi_{k})^{j},$$

where $a_j(v)$ and $b_j(v)$ are formal power series of v. Hence we have

$$e_h(E_v(\xi \otimes \Delta)) = \prod_{k=1}^n (e_h(E_v(\Delta)) + \sum_{j \ge 1} b_j(v) e_h(\xi_k)^j)$$
$$= \sum_{|\alpha| \le n} e_h(E_v(\Delta))^{n-|\alpha|} b_\alpha(v) c_\alpha(\xi)$$

where $c_{\alpha}(\xi) = \sum e_{h}(\xi_{1})^{\alpha_{1}} \cdots e_{h}(\xi_{n})^{\alpha_{n}}$ and $b_{\alpha}(v)$ is a formal power series of v. Therefore we have

$$s_0 P_V^{2n}(t(\xi)) = \phi(E_V(\xi))(\sum_{|\alpha| \le n} e_h(E_V(\Delta))^{n-|\alpha|} b_\alpha(v) c_\alpha(\xi))$$
$$= \sum_{|\alpha| \le n} e_h(E_V(\Delta))^{n-|\alpha|} b_\alpha(v) s_\alpha(\xi).$$

2) General case is shown by making use of the splitting principle in the theory $h_{g}^{*}(-)$. q.e.d.

Now we obtain an h_{G}^{*} -theoretic version of [15, Proposition 3.17].

Theorem 2.13. Let $x \in \tilde{U}_{c}^{2n}(X)$ be represented by a map $f: W^{c} \wedge X \to M_{W^{1+n}}(U) \subset M_{W^{1+n}}(G)$. Then there holds

$$e_h(E_v(\Delta))^{\mathsf{W}}s_0P_v^{\mathsf{2n}}(x) = \sum_{|\alpha| \leq \mathsf{W}| + n} e_h(E_v(\Delta))^{n + \mathsf{W}| - |\alpha|} b_\alpha(v) s_\alpha(x),$$

where $b_{\alpha}(v) \in h_{G}^{*}(pt)[[v]]$ is a well defined power series.

Proof. There holds $x = \sigma_w^{-1} f^*(t(\gamma_G^m(U)))$, where m = ||W|| + n and σ_w is the suspension isomorphism. Hence, by the previous lemma, the naturality of s_{ω} and P_v^{2m} and the stability of s_{ω} , we have

$$s_{0}P_{V}^{2m}(f^{*}(t(\gamma_{G}^{m}(U)))) = \tilde{E}_{V}(f)^{*}(s_{0}P_{V}^{2m}(t(\gamma_{G}^{m}(U))))$$

$$= \tilde{E}_{V}(f)^{*}(\sum_{|\alpha| \leq m} e_{h}(E_{V}(\Delta))^{m-|\alpha|}b_{\alpha}(v)s_{\alpha}(t(\gamma_{G}^{m}(U))))$$

$$= \sum_{|\alpha| \leq m} e_{h}(E_{V}(\Delta))^{m-|\alpha|}b_{\alpha}(v)s_{\alpha}(f^{*}(t(\gamma_{G}^{m}(U))))$$

$$= \sum_{|\alpha| \leq m} e_{h}(E_{V}(\Delta))^{m-|\alpha|}b_{\alpha}(v)s_{\alpha}(\sigma_{W}x)$$

$$= \sum_{|\alpha| \leq m} e_{h}(E_{V}(\Delta))^{m-|\alpha|}b_{\alpha}(v)\sigma_{W}s_{\alpha}(x).$$

On the other hand we have

$$s_0 P_V^{2m}(\sigma_W x) = s_0 P_V^{2m}(\sigma_W(1) \times x)$$

= $s_0 P_V(\sigma_W(1)) \times s_0 P_V(x).$

Since $\sigma_W(1) = t(W)$, by the previous lemma, we have

$$s_0 P_{v}(\sigma_{w}(1)) = \sum_{|\alpha| \leq 1W_1} e_h(E_v(\Delta))^{1W_1 - i\alpha_1} b_{\alpha}(v) s_{\alpha}(\sigma_{w}(1)).$$

Here

$$s_{\alpha}\sigma_{w}(1) = \sigma_{w}s_{\alpha}(1) = \begin{cases} \sigma_{w}(1) & \text{for } \alpha = 0\\ 0 & \text{otherwise.} \end{cases}$$

Thus we have

$$s_0 P_v^{2m}(\sigma_w x) = e_h(E_v(\Delta))^{1w_1} \sigma_w s_0 P_v^{2n}(x).$$

This completes the proof.

Acknowledgement. The author wishes to express his thanks to Professor M. Kamata for his kind advices and discussions.

References

- J. F. ADAMS: P. S. Novikov's work on operations on complex cobordism, mimeographed, Univ. of Chicago, 1967.
- [2] T. BRÖCKER und T. tom-DIECK : Kobordismentheorie, Lecture Notes in Math. 178, Springer-

14

q.e.d.

174

OPERATIONS ASSCIATED WITH THE G-EQUIVARIANT UNITARY COBORDISM THEORY 175

Verlag, 1970.

- [3] P. E. CONNER and E. E. FLOYD: The relation of cobordism to K-theories, Lecture Notes in Math. 28, Springer-Verlag, 1966.
- [4] M. FUJII and M. KAMATA: On the completion of the G-equivariant unitary cobordism rings of G-spaces, Publ. R. I. M. S., Kyoto Univ. 19 (1983), 577-600.
- [5] M. FUJII and S. KÖNO: A note on the local triviality of G-vector bundles, Yokohama Math. J. 30 (1982), 49-52.
- [6] T. tom-DIECK: Kobordismen-Theorie und Transformations-Gruppen, Preprint Series, Aarhus Univ., (1968/69).
- [7] T. tom-DIECK: Bordism of G-manifolds and integrality theorems, Topology 9 (1970), 345-358.
- [8] T. tom-DIECK: Steenrod-Operationen in Kobordismen-Theorien, Math. Z. 107 (1968), 380-401.
- [9] P. S. LANDWEBER: Cobordism operations and Hopf algebras, Trans. Amer. Math. Soc. 129 (1967), 94-110.
- [10] M. NAKAOKA : Characteristic Classes with values in complex Cobordism, Osaka J. Math. 10 (1973), 521-543.
- [11] P. S. NOVIKOV: The method of algebraic topology from viewpoint of cobordism theories (Russian), Izv. Akad. Nauk SSSR 31 (1967), 855-951.
- [12] C. OKONEK: Der Conner-Floyd-Isomorphismus fur Abelsche Gruppen, Math. Z. 179 (1982), 201-212.
- [13] C. OKONEK: Die äquivariante unitäre Kobordismentheorie und ihre äquivariante formale Gruppe, Arch. Math. 40 (1983), 208-220.
- [14] D. QUILLEN: On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298.
- [15] D. QUILLEN: Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971), 29-56.

OKAYAMA UNIVERSITY

(Received February 15, 1988)