Mathematical Journal of Okayama University

Volume 30, Issue 1

1988

Article 4

JANUARY 1988

Fixed rings of simple rings

Yoshimi Kitamura*

*Tokyo Gakugei University

Copyright ©1988 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Math. J. Okayama Univ. 30 (1988), 21-24

FIXED RINGS OF SIMPLE RINGS

Dedicated to Professor Hisao Tominaga on his 60th birthday

Yoshimi KITAMURA

Let A be a ring with identity and G a finite group of ring automorphisms of A. We denote by A^c the subring of A consisting of elements $a \in A$ such that $\sigma(a) = a$ for all $\sigma \in G$.

A need not be finitely generated over A^{G} even if A is a simple artinian ring as shown by Björk [1]. However, if the order of G is invertible in A, we can obtain the following result.

Theorem. If A is a finite direct sum of simple rings and if the order of G is invertible in A, then A is a Frobenius extension of A^{c} .

The purpose of this paper is to show the above result.

Throughout this paper, all rings, subrings, ring homomorphisms and modules are assumed to be unital.

According to Kasch [2], a ring extension A/B is called a Frobenius extension provided that A is finitely generated projective as a right B-module and $A \cong \operatorname{Hom}(A_B, B_B)$ as B-A-bimodules. As shown in Onodera [7], A/B is a Frobenius extension if and only if there exist a B-B-homomorphism h of A to B and a finite number of elements r_i 's, l_i 's in A such that $x = \sum_i r_i h(l_i x) = \sum_i h(xr_i) l_i$ for all $x \in A$. When this is the case, we shall call $(h; r_i, l_i)_i$ a Frobenius system for A/B.

The following is obvious from the definition of Frobenius extension.

Lemma 1. Let A_i/B_i (i = 1,...,n) be ring extensions. Then the finite product $A_1 \times \cdots \times A_n$ of rings is a Frobenius extension of $B_1 \times \cdots \times B_n$ if and only if each A_i/B_i is a Frobenius one.

The following is well-known (see [7]).

Lemma 2. Let A/B be a Frobenius extension. Then

- (1) For any Frobenius extension A'/A, A'/B is a Frobenius one.
- (2) Suppose B is contained in the center of A. For any algebra B' over B, $A \otimes_B B'/B' (\cong B \otimes_B B')$ is a Frobenius extension.

22 Y. KITAMURA

(3) For any left A-module X, $Hom(AX, AA) \cong Hom(BX, BB)$.

Lemma 3. Let A_0/B_0 be a Frobenius extension. Let $f_j: A_0 \to A_j$ (j = 1,...,m) be ring isomorphisms. Then the finite product $A = A_0 \times A_1 \times \cdots \times A_m$ of rings is a Frobenius extension of $B = \{(x, f_1(x), ..., f_m(x)); x \in B_0\}$.

Proof. Let $(h_0; r_i, l_i)_{1 \le i \le n}$ be a Frobenius system for A_0/B_0 . Let define a mapping h of A to B by

 $h(x_0, f_1(x_1), ..., f_m(x_m)) = (y, f_1(y), ..., f_m(y))$ for $x_0, x_1, ..., x_m \in A_0$, where $y = h_0(x_0 + x_1 + \cdots + x_m)$. Let $r_{J,i}$, $l_{J,i}$ $(0 \le j \le m, 1 \le i \le n)$ be the elements of A defined as follows:

$$r_{0,i} = (r_i, 0, ..., 0),$$
 $l_{0,i} = (l_i, 0, ..., 0)$
.....
 $r_{m,i} = (0, ..., 0, f_m(r_i)),$ $l_{m,i} = (0, ..., 0, f_m(l_i))$ $(i = 1, ..., n).$

Then one can see that $(h; r_{J,i}, l_{J,i})_{J,i}$ is a Frobenius system for A/B.

A ring A is simple if it has no proper two-sided ideals. Let G be a finite group of ring automorphisms of A. G is inner if every element σ of G is inner, that is, there exists a unit u in A such that $\sigma(a) = uau^{-1}$ for all $a \in A$, and G is outer if the identity element of G is the only inner automorphism in G.

The following result is due to Miyashita [4].

Lemma 4. If a ring A is simple and if G is outer, then A is a Frobenius extension of A^c .

Lemma 5. If a ring A is simple and if G is inner such that its order is invertible in A, then A is a Frobenius extension of A^c .

Proof. Let S be the algebra of G, that is $S = \sum_{\sigma \in G} J(\sigma)$, where $J(\sigma) = \{x \in A; xa = \sigma(a)x \text{ for all } a \in A \}$. Let C be the center of A. S is then a finite dimensional separable algebra over C(see, for example, [6], page 28). Further, the centralizer of S in A coincides with A^c . Let $S = S_1 \oplus \cdots \oplus S_n$ be a decomposition of S into simple rings. Let $T = A \otimes_c S^o$, $T_i = A \otimes_c S^o$, (i = 1, ..., n), where S^o and S^o denote the opposite rings of S and S_i respectively. We will show that when we consider A a left T-module by means of $(a \otimes s^o)x = axs$, A is a generator. Since S^o and S^o is are Frobenius extensions of C, T and T_i 's are so over A by Lemma 2(2). Hence, by Lemma 2(3), $\operatorname{Hom}(\tau_i Ae_i, \tau_i T_i) \cong \operatorname{Hom}(Ae_i, Ae_i, A) \neq 0$, where e_i denotes the identity element of S_i . Since T_i is simple, Ae_i is a generator over T_i , and so A is a

generator over T as desired. Thus $T \otimes_A A$ ($\cong T$) is isomorphic to a direct summand of a finite direct sum of copies of A as a left T-module. Therefore, recalling T/A a Frobenius extension, we have by Theorem 2.10 of [5] that $\operatorname{End}(_A A)/\operatorname{End}(_T A)$, or equivalently, A/A^6 is a Frobenius extension.

We are now in position to prove the theorem.

Proof of Theorem. We assume first A is simple, and show the theorem by induction on the order |G| of G. Let N be the normal subgroup of G consisting of inner automorphisms in G. By Lemmas 4, 5, we may assume that 1 < |N| < |G|. Let $T = A^N$, $\overline{G} = G/N$. \overline{G} acts as automorphisms on T. By our induction hypothesis, A is a Frobenius extension of T. We shall show that $T/T^{\overline{G}}$ is a Frobenius extension. By [3], T is a finite direct sum of simple rings. Let $T = T_0 \oplus T_1 \oplus \cdots \oplus T_m$ be a decomposition of T into simple rings. Since every element of \overline{G} induces a permutation of the finite set $|T_0, T_1, \ldots, T_m|$, we can assume by Lemma 1 that \overline{G} is transitive on the set. Let $\overline{\sigma_i}$ be elements of \overline{G} such that $\overline{\sigma_i}(T_0) = T_i(i = 1, \ldots, m)$, and let \overline{G}_0 be the set of $\overline{\sigma} \in \overline{G}$ such that $\overline{\sigma}(T_0) = T_0$. Then it is easy to see that $T^{\overline{G}} = |x + \overline{\sigma_1}(x) + \cdots + \overline{\sigma_m}(x)$; $x \in T_0^{\overline{G}_0}$. Since T_0 is a Frobenius extension of $T_0^{\overline{G}_0}$ by our induction hypothesis, T is so over $T^{\overline{G}}$ ($= A^G$) by Lemma 3. Hence A is a Frobenius extension of A^G by Lemma 2(1).

We shall next consider a general case. Let $A = A_0 \oplus A_1 \oplus \cdots \oplus A_m$ be a representation of A as a finite direct sum of simple rings. Let G_0 be the set of $\sigma \in G$ with $\sigma(A_0) = A_0$. Then A_0 is a Frobenius extension of $A_0^{G_0}$ from the first case, so that A is a Frobenius extension of A^G by the same argument as in proving T a Frobenius one over $T^{\overline{G}}$ above.

REFERENCES

- [1] J. E. BJÖRK: Conditions which imply that subrings of semiprimary rings are semiprimary, J. Algebra 19 (1971), 384-395.
- [2] F. KASCH: Projective Frobenius-Erweiterungen, Sitzungsber. Heidelberger Akad. Wiss. 1960/1961, 89-109.
- [3] V. K. KHARCHENKO: Galois subrings of simple rings, Math. Notes (transl.) 17 (1975), 533-536.
- [4] Y. MIYASHITA: Finite outer Galois theory of noncommutative rings, J. Fac. Sci. Hokkaido Univ. 19 (1966), 114-134.
- [5] Y. MIYASHITA: On Galois extensions and crossed products, J. Fac. Sci. Hokkaido Univ. 21(1970), 97-121.
- [6] S. MONTGOMERY: Fixed rings of finite automorphism groups of associative rings, Lecture Notes in Math. 818, Springer, Berlin-Heidelberg-New York, 1980.
- [7] T. ONODERA: Some studies on projective Frobenius extensions, J. Fac. Sci. Hokkaido Univ. 18 (1964), 89-107.

24 Y. KITAMURA

DEPARTMENT OF MATHEMATICS TOKYO GAKUGEI UNIVERSITY KOGANEI, TOKYO 184, JAPAN

(Received July 30, 1987)