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DUALITY THEOREM OF POINCARE TYPE
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Introduction. In the paper [10] we introduced the cobordism theory
with reality. The purpose of this paper is to form a bordism theory of
closed differentiable manifolds with a given real structure on the stable
tangent bundle,

In this paper, by a r-space (X, t) we mean a Hausdorff space X together
with an involution ¢ : X - X, and by a 7-map we mean an equivariant map
between r-spaces (which we called a real space and a real map in the
previous papers [10], {11]). By a z-manifold (M, t) we mean a compact
C~-manifold M together with a C™-involution ¢ : M — M.

In § 1 we consider weakly real structures on equivariant vector bundles
over r-spaces. In § 2 we introduce an R-structure on the r-manifold,
which is an equivalence class of the real structures on the stable tangent
bundle. The r-manifold with an R-structure is called an R-manifold. In
§ 3 we form the bordism groups of R-manifolds and in § 4 we show that
there is a duality of Poincaré type between the bordism groups and the
cobordism groups with reality.

1. Weakly real structures of equivariant vector bundles. By a r-
space (X, t) we mean a Hausdorff space X together with an involution
t =ty: X - X, and by a r-map we mean an equivariant map between -
spaces.

By an equivariant vector bundle ¢ = (E, p, X. r) over a r-space (X, t)
we mean a vector bundle (E, p, X) such that

i) the total space (E. t) is a r-space, and
ii) the projection p: E —» X is a r-map.

Furthermore, by a real vector bundle € = (E. p. X, J, z) over a -
space (X, 1) we mean an equivariant vector bundle (E, p, X, r) such
that

iii) J: E - E is a bundle automorphism such that J? = —id. J =
(—J)rand p( —J) = p. That is, the diagram
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X —|—X
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commutes, (E, p. X, J) is a complex vector bundle and the bundle map
r: E - E is an isomorphism from the complex vector bundle (E, J) to the
conjugate bundle (E, —J). (J. r) will be called a real structure of the
vector bundle ¢ = (E, p, X).

Let & = (E:, p:. X:. Ji, ) be a real vector bundle over a z-space
(X;. t) (i =1 or 2). Then a real vector bundle map f: & — & is a bundle
map f such that fry = =.f and fJ, = Jof. If (X, t,) =(X., t2) and f is
a bundle isomorphism, then the real bundle map f: & — & is said to be
an isomorphism of real vector bundles. When (X, t,) = (X, t.), we can
form a Whitney sum of the real vector bundles & and &, by defining

61 & fz =(E1 EBEz. p, X1‘ J1 @Jz. Ty &) 'C'z).

Let R™ be the n-dimensional Euclidean space and let R™® = R" XR°”.
Consider the standard involution crs on R™ defined by

CrslXieeensXry Y1vuen, ys) =(—xy. ..., —Xr, Yireeon Ys)

for (X1, .co.r, ¥11een, ys) € R™. Furthermore, consider the standard map
I,: R®™" - R™ defined by

for (xy,..c.xn, Y1veens ya) € R™. Then it holds a relation
CnIn:—InCn.

where cn = Cnn. That is, I, is the standard complex structure on R™"
(=R™ =C"), ¢, is the standard conjugation on R™" and (I, cn) is the
standard real structure on R™" in the sense of Atiyah [5].

Real vector bundles & = (E, p. X, J, ) and n =(E', p', X, J', ©') over
a r-space (X, t) are said to be stably equivalent if and only if there exist
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positive integers m, n and an isomorphism

ED(XXR™, pi, X, idXIn, t Xcn)
=7 ®(XXR™, p, X, id XIn, t Xcn)

of real vector bundles.

Let ¢ =(E. p. X, 7) be an equivariant vector bundle over a z-space
(X, t). When there exist positive integers r, s and a real structure
(J, 7 ® crs) of the vector bundle ¢ @ (X XR™, pi, X, t Xcrs), the real
structure (J, 7 @ crs) will be called a weakly real structure of the equi-
variant vector bundle £ Two weakly real structures (J,, v @ cpq) and
(Ja, T ® crs) of the equivariant vector bundle £ are said to be equivalent
if the real vector bundles (E®XXR?»%p, X, J,, 7 ® cpq) and (E®
XXR™, p, X, Jo, T @ crs) are stably equivalent.

Let € =(E, p, X, ) and n =(E', p', X, ') be equivariant vector
bundles over a tr-space (X, t) and let h: £ —» 7 an isomorphism of equi-
variant vector bundles. Let (J, ' & crs) be a weakly real structure of 7.
Then a weakly real structure (h*J. v @ crs) of € is induced by the iso-
morphism

h@id: € ®(XXR™, p,. X, tXcrs)
= ®(XXR™, pi, X, t Xcrs)

of equivariant vector bundles, where h*J =(h @ id)™'J(h @ id).

Often we denote the equivariant vector bundle (X XR™°, p,, X, t Xcrs)
simply by (R™, c,s) or R™, and denote the real vector bundle (X XxR™™,
pv, X, idXIn, t Xcn) simply by (R™, In, ¢n) or R™™.

2. R-manifolds. By an m-dimensional r-manifold (M, t) we mean an
m-dimensional compact C*-manifold M together with a C™-involutioni: M —
M. As for r-manifolds we have the following imbedding theorem.

Proposition 2.1. Any m-dimensional t-manifold (M, t) without boundary
can be equivariantly imbedded as a closed subsei of R™ for some positive
integer n.

This is deduced from a more general situation [6], Theorem 4.1, in
the category of C”-manifolds with G-action and equivariant C*-maps.

Furthermore, in virtue of the imbedding theorem, we have the collaring
theorem, approximation theorems and the straightening angles in our cate-
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gory.

Let (M, t) be a z-manifold of dimension m and let 7(M) be its tangent
bundle. When there exists a weakly real structure (J, dt @ crs) of the
equivariant vector bundle (M), an equivalence class ® = {(J, dt & crs)|
of the weakly real structure (J, dtf @ c,s) is called an R-structure of the
r-manifold (M, t). An R-manifold (M, &) is a pair consisting of a z-
manifold (M, t) and an R-structure @ of (M, t). Often we denote an R-
manifold (M. @) simply by M.

Let (M, ®) be an R-manifold and (J, dt @ crs) a representative of its
R-structure @. Then (J @& (—1,), dt ® crs ® c1,) is also a weakly real
structure of the tangent bundle z(M). Now, define —(M, @) by —¢ =
}(J @(—Il)- dt ®crs ® CI,I)I and _(M, o) =(M, _Q)-

Let (M, ®) be an R-manifold with boundary 9M and (J, dt @ crs)
a representative of its R-structure @. In virtue of the equivariant collaring
theorem, there exists an isomorphism of equivariant vector bundles

h:z(oM) & R™ - (M)| oM,

where the positive unit vector of R*' corresponds to an inward unit nor-
mal vector in 7(M)|3M by h. Hence (A*(J|3M), d(t|OM) & crs+1) is
a weakly real structure of v(oM). Let us define (M, @) by 99 =
[(A*(J[ M), d(t| M) & crss1)) and B(M, &) = (M, 20).

Proposition 2.2. If a r-manifold (M, t) of dimension m has an
R-structure @, then the fixed point set F of M by the involution t has
a uniform dimension.

Proof. Let (J, dt @ c+s) be a representative of @. For any x € F,
(z(M) ® R™)|x, J) is a complex vector space and dt @ c,s is a conju-
gate linear involution on it. Therefore the dimension of the fixed point set
of it is equal to m+7+s/2. Hence dim Fr(M)|x = m+r—s/2, where
Fz(M)|x means the fixed point set of z(M)|x. This depends only on the
class . q.e.d.

3. Bordism groups of R-manifolds. Let D,, denote the family of
all p+q dimensional R-manifolds with a weakly real structure of the type
(J, dt @ cqirper) for some integer r as a representative of the R-structure.

Fix a pair (X, A) consisting of a r-space X and a t-subspace A.
A (p, q)-singular R-manifold in (X, A) is a triple (M, &, f) consisting of
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a p+q dimensional R-manifold (M. @) in D,, and a r-map f: (M. M) -
(X. A). If A = ¢, then of course dM = ¢ also.

A (p, ¢)-singular R-manifold (M, @, f) in (X, A) is said to bord if and
only if there is a p+q+1 dimensional R-manifold (W, ¥) in D,q.1 and
a r-map F: W - X for which

i) M is contained in OW as a regular r-submanifold, and

ii) o¥|M = &, FIM = fand F(aW —M) C A.

From two (p, ¢)-singular R-manifolds (M,, &,, f1) and (M., ®,. f;) a dis-
joint union (M, UM,, & U &, fi U f.) is defined, where M, N M, = ¢,
® U &, |M; = @, and f, U f2|M; = f.. Define —(M, &, f) =M, — &, f).
A pair (M,, &,, f,) and (M., ®., f;) of (p, q)-singular R-manifolds in
(X, A) are bordant if and only if the disjoint union (M, U M,, &, U —@,,
fi U f2) bords in (X, A).

Lemma 3.1. Let (M, &) be an R-manifold in D,q. If two r-maps f,
g: (M, oM) - (X, A) are homotopic as t-maps, then (p, q)-singular
R-manifolds (M, &, f) and (M, &, g) in (X, A) are bordant.

Proof. There is a t-homotopy F : (M XI, oM XI) - (X, A) such
that F(ax, 0) = f(x) and F(x, 1) = g(x) for x € M, where the involution
acts trivially on I = [0, 1]. Let p: M XI - M be the projection. Then
there exists an isomorphism

A: e(MXI) »p*z(M) & R™

of equivariant vector bundles. Let (J, dt @ crs) be a representative of the
R-structure ®. Then a weakly real structure (J', d(t X1) @ cr41,s) of
(M XI) is induced by isomorphisms

1
(MxD) @R 28L ) o RV @R

L} p* T(M) @ ET,S @ El.l

where J' = (A @ 1) 'a '(p*J ® L)a(A @& 1). Now, let us define ¥ = {(J’,
d(t X1) @ cri15)]. Then we may show that

1) M UM is a regular r-submanifold of a(M XI),

2) F(oMxI)—Mx0 UMXx1) C A,

3) FIMx0 UMX1 =fUg. and

4) OU|MX0 = ¢ and AV |M X1 = —¢.
This shows that (M, &, f) and (M, ®, g) are bordant. q. e. d.
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By a parallel argument to the complex bordism theory we may show
that the bordism relation is an equivalence relation. Denote the bordism
class of (M, @, f) by [M, ®, f], and the collection of all such bordism
classes by MR, (X, A). Then MR, (X, A) is also an abelian group by
the disjoint union., Given a r-map ¢: (X, A) - (Y, B), there is asso-
ciated a natural homomorphism ¢ : MR, (X, A) - MR, (Y, B) given by
ox([M, &, f]) = [M, &, ¢f]. There is also a homomorphism 2 : MR, (X,
A) > MR,._.(A) given by (M, @, f]) =[oM, 09, f|aM]. Hence we
have

Theorem 1. For any integer p, MRox( , ) is a generalized homology
theory on the category of pairs of r-spaces and t-maps of pairs.

4. Poincare duality. Let (M, &), (N, ¥) be R-manifolds and (Jy,
dty ® cpq). (Jy, dty @ crs) representatives of @, ¥ respectively. Let

f:M->N

be a z-imbedding. A real structure (J, e) of the normal bundle v(f) is
called a proper real structure if and only if two real vector bundles (v(f),
J,e) ®(z(M) & R, Jy, ditn @ cp) and (f*z(N) @ R™, Ju, dty & crs)
are stably equivalent.

Proposition 4.1. Let (M, ®). (N, ¥) be R-manifolds and f: M - N
a t-imbedding. If there is a proper teal structure of v(f), then the real
structure is unique up to stable equivalence.

Proof. Let (Ji, e,) and (J,, e:) be two proper real structures of v(f).
Then there exist representatives (Jy, dity @ cpq) and (Jx, dix @ crs) of
@ and ¥ respectively, such that

(v(f). Ji, e)) ®(z(M) & R™, Jy, diy ® cpa)
=(f*z(N) ®R™, Jy, din ® crs)

(U(f), Ja, ez) @ (T(IM) & Ep'q, Ju, dty ® Cp.q)
= (f* Z‘(N) ) B_r's, J,\', diy & C'r‘s)

as real vector bundles. Since M is compact, there exist a real vector
bundle & over M and a positive integer k satisfying

(z(M) ® R™%, Ju, diy ® cpq) @ € = (R"**, I, cx)
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as real vector bundles (cf. [10], Prop. 1.4, 1.7). Hence we have
(v(f) ®R* . J, @ Ix. e1 @ cx) = (v(f) ®R* J, @ Ii. 2 D cs)

as real vector bundles. q. e. d.

Proposition 4.2. Let (M, &) and (N. ¥) be R-manifolds in ©,q and
Tmn respectively, and let f: M - N be a r-imbedding. If m—n = p—q.
then there is a positive integer k such that, for a r-imbedding

f':M > RFFXN
defined by f'(x) = (0, f(x)) for x € M, the normal bundle v(f') has a proper

real structure.

Proof. Since m—n = p—q by the assumption. we may choose (Ju,
diy ® Cqrspes) and (Jy, diy @ Cnyrmsr) satisfying m+r = p+s and n+r
= q+s as representatives of @ and ¥ respectively. In virtue of [10],
Propositions 1.4 and 1.7, there exist a real vector bundle £ = (E(€), Je,
ee) over M and a positive integer k such that

(E(f), Je. ee) @(T(JM) (S Bq+s.p+s‘ Jy, dty & Cq+s,p+s)
= (Bk'k, I, cx)

as real vector bundles. Then we have isomorphisms

v(f) = R™ @ v(f)
ZE¢) ® M) @R @ v(/f)
= E¢) & v(f) ® (M) ® R
= E(f) @f*r(‘rv) sy Bn+’r.m+'r

of equivariant vector bundles. Hence a real structure of v(f’) is induced
by the above isomorphisms from the real structure (Je & Jy, e @ diy @
Cnirmsr) Of E(€) ® f*t(N) @ R™™*". This real structure of v(f’) is

a proper real structure and the proposition follows. q. e. d.

Let (X, ¥) be an R-manifold without boundary and belong to D,.,. Let
MR™(X) be the real cobordism group introduced in [10]. A natural duality
homomorphism

Dy: MRy o(X) > MR™ 2" U(X)

is defined by the Pontrjagin-Thom construction as follows: Let [M, &, f]
be any element in MN,.(X). We may assume that f: M —» X is a C™-¢-
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map. In virtue of Proposition 2.1, there exists a r-imbedding
h:M - R™.
Then, defining a r-map
f M ->RY"XX

by f'(x) = (h(x), f(x)) for x € M, f' is also a z-imbedding.
Let us assume m—n =p—q (m—p = n—q). Then, by Proposition
4.2, there exists a positive integer k such that, for a r-imbedding

[ M > R xXR"xX
defined by f"(x) = (0, h(x), f(x)) for x € M, the normal bundle v(f") has

a proper real structure. Since the dimension of the real vector bundle
v(f") is k+!+n—q, there are a real bundle map

g . U(f") N 7k+l+n—q

and an induced map T(v(f")) - MU(k+!+n—q) of real Thom spaces (cf.
[10], Proposition 1.5). There is then the composite map d(f) given by

LA XY 5 RM X RYM X X/R* XRY X X —Int D(v(f"))
- T(v(f")) » MUk +!+n—q),

and d(f) represents an element of MR™ """ %(X), where D(v(f")) is the
total space of the associated unit disk bundle of v(f"). The correspondence
M, @, f] = |d(f)} is well defined and a homomorphism as usual.

In the case of m—n =+ p —q, we may choose two positive integers a and
b such that p—q = (m+a) —(n+b). Therefore, considering a z-map

fiM 5> R*®xX

defined by f(x) = (0, f(x)) for x € M instead of f, we can obtain a duality
homomorphism

Di: MR, 0(X) — MR™+o-2m+2-9( 3020 A X*) = MR™ > 9(X).

Generally the above homomorphism D is not isomorphic, however we
have the following theorem deduced from a general situation [13], lemma
3.2, on the equivariant transversal regularity.

Theorem 2. For any R-manifold (X, ¥) in Tp,n without boundary, the
duality homomorphism
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Dr: MR, (X) > MR™ P 9UX)
is an isomorphism whenever p > q and is an epimorphism whenever p = q.

Let MU« ) and MU*( ) be the complex bordism theory and co-
bordism theory, respectively. In these theories there exists the duality
isomorphism of Atiyah-Poincaré type

D:MU(X) - MU (X)

for any compact weakly complex s-manifold X without boundary.

Let

0% : 9J}mxs.Q(X) = MU, o(X)
0%+ MR™(X) - MU™™(X)

be the natural homomorphisms obtained by ignoring the involutions. Then,
for any R-manifold (X, ¥) in Dy, without boundary, we have the following
commutative diagram

MR,(X) 25 MR™-27-9(X)

o l o* l
MU, o(X) —IL MyUrnmPma(X),

Therefore, ker Dy is contained in ker px. Especially, in the case of
X =ptand p =¢q > 0, we have

ker Dy = ker px,
because p* : MR *(pt) —» MU **(pt) is isomorphic (cf. [2], Theorem

4.6). Hence we have

Proposition 4.4. For any integer p > 0, isomorphisms

Dy : MR, ,(pt)/ker px - MR >?(pt)
O ¢ ‘mfﬁp,p(Pt)/keT ox = MUzp(pt)

are induced by Dy and px, respectively.
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