Mathematical Journal of Okayama **University**

Volume 52, *Issue* 1 2010 *Article* 11

JANUARY 2010

A GENERAL INEQUALITY FOR DOUBLY WARPED PRODUCT SUBMANIFOLDS

Andreea Olteanu[∗]

[∗]Faculty of Mathematics and Computer Science, University of Bucharest

Copyright ©2010 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

A GENERAL INEQUALITY FOR DOUBLY WARPED PRODUCT SUBMANIFOLDS

Andreea Olteanu

Abstract

In this paper, we consider doubly warped product manifolds and we establish a general inequality for doubly warped products isometrically immersed in arbitrary Riemannian manifolds. Some aplications are derived.

KEYWORDS: Doubly warped product, Laplacian, mean curvature, generalized Sasakian space form, Sasakian space form, C-totally real submanifold

Math. J. Okayama Univ. 52 (2010), 133–142

A GENERAL INEQUALITY FOR DOUBLY WARPED PRODUCT SUBMANIFOLDS

Andreea Olteanu

ABSTRACT. In this paper, we consider doubly warped product manifolds and we establish a general inequality for doubly warped products isometrically immersed in arbitrary Riemannian manifolds. Some aplications are derived.

1. INTRODUCTION

Let (N_1, g_1) and (N_2, g_2) be two Riemannian manifolds and let $\sigma_1 : N_1 \rightarrow$ $(0, \infty)$ and $\sigma_2 : N_2 \to (0, \infty)$ be differentiable functions.

The doubly warped product $N =_{\sigma_2} N_1 \times_{\sigma_1} N_2$ is the product manifold $N_1 \times N_2$ endowed with the metric

$$
g = \sigma_2^2 g_1 + \sigma_1^2 g_2.
$$

More precisely, if $\pi_1 : N_1 \times N_2 \to N_1$ and $\pi_2 : N_1 \times N_2 \to N_2$ are natural projections, the metric q is defined by

$$
g = (\sigma_2 \circ \pi_2)^2 \pi_1^* g_1 + (\sigma_1 \circ \pi_1)^2 \pi_2^* g_2.
$$

The functions σ_1 and σ_2 are called warping functions. If either $\sigma_1 \equiv 1$ or $\sigma_2 \equiv 1$, but not both, then we obtain a warped product. If both $\sigma_1 \equiv 1$ and $\sigma_2 \equiv 1$, then we have a Riemannian product manifold. If neither σ_1 nor σ_2 is constant, then we have a non-trivial doubly warped product.

Let $x :_{\sigma_2} N_1 \times_{\sigma_1} N_2 \to \widetilde{M}$ be an isometric immersion of a doubly warped product $\sigma_2 N_1 \times_{\sigma_1} N_2$ into a Riemannian manifold M. We denote by h the second fundamental form of x and by $H_i = \frac{1}{n_i}$ $\frac{1}{n_i}$ trace h_i the partial mean curvatures, where $traceh_i$ is the trace of h restricted to N_i and $n_i = \dim N_i$ $(i = 1, 2)$.

The immersion x is said to be mixed totally geodesic if $h(X, Z) = 0$, for any vector fields X and Z tangent to D_1 and D_2 , respectively, where D_i are the distributions obtained from the vectors tangent to N_i (or more precisely, vectors tangent to the horizantal lifts of N_i).

In [3], B. Y. Chen proved the following general optimal result:

Mathematics Subject Classification. Primary 53C40; Secondary: 53C25.

Key words and phrases. Doubly warped product, Laplacian, mean curvature, generalized Sasakian space form, Sasakian space form, C-totally real submanifold.

Theorem 1. Let $x : N_1 \times_f N_2 \to \widetilde{M}(c)$ be an isometric immersion of an *n-dimensional warped product* $N_1 \times_f N_2$ *into an m-dimensional Riemannian* $manifold \tilde{M}(c)$ *of constant sectional curvature c. Then:*

(1.1)
$$
\frac{\Delta f}{f} \le \frac{n^2}{4n_2} ||H||^2 + n_1 c,
$$

where $n_i = \dim N_i$, $i = 1, 2$, and Δ *is the Laplacian operator of* N_1 . More*over, the equality case of* (1.1) *holds if and only if* x *is a mixed totally geodesic immersion and* $n_1H_1 = n_2H_2$ *, where* H_i *,* $i = 1, 2$ *, are the partial mean curvature vectors.*

Later, B. Y. Chen and F. Dillen extended this inequality to multiply warped product manifolds in arbitrary Riemannian manifolds $(see [4])$. The purpose of this article is to extend inequality (1.1) for doubly warped product submanifolds into arbitrary Riemannian manifolds.

2. Preliminaries

In this section, we recall some definitions and basic formulas which we will use later.

Let N be a Riemannian *n*-manifold isometrically immersed in a Riemannian *m*-manifold \widetilde{M}^m .

We choose a local field of orthonormal frame $e_1, ..., e_n, e_{n+1}, ..., e_m$ in \overline{M}^m such that, restricted to N, the vectors $e_1, ..., e_n$ are tangent to N and $e_{n+1},..., e_m$ are normal to N.

Let $K(e_i \wedge e_j), 1 \leq i < j \leq n$, denote the sectional curvature of the plane section spanned by e_i and e_j . Then the scalar curvature of N is given by

(2.1)
$$
\tau = \sum_{1 \leq i < j \leq n} K\left(e_i \wedge e_j\right).
$$

Let L be a subspace of T_pN of dimension $r \geq 2$ and $\{e_1, ..., e_r\}$ an orthonormal basis of L. The scalar curvature $\tau(L)$ of the r-plane section L is defined by

(2.2)
$$
\tau(L) = \sum_{1 \leq \alpha < \beta \leq r} K\left(e_{\alpha} \wedge e_{\beta}\right).
$$

Let h be the second fundamental form and R the Riemann curvature tensor of N.

Then the equation of Gauss is given by

(2.3)
$$
\tilde{R}(X, Y, Z, W)
$$

= $R(X, Y, Z, W) + g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W))$

for any vectors X, Y, Z, W tangent to N.

The mean curvature vector H is defined by

(2.4)
$$
H = \frac{1}{n} \text{trace} h = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i).
$$

As is known, M is said to be minimal if H vanishes identically. Also, we set

(2.5)
$$
h_{ij}^r = g(h(e_i, e_j), e_r), i, j \in \{1, ..., n\}, r \in \{n+1, ..., m\}
$$

the coefficients of the second fundamental form h with respect to $e_1, ..., e_n$, $e_{n+1},...,e_m$, and

(2.6)
$$
||h||^2 = \sum_{i,j=1}^n g(h(e_i, e_j), h(e_i, e_j)).
$$

Let M be a Riemannian p-manifold and $\{e_1, ..., e_p\}$ be an orthonormal basis of M. For a differentiable function f on M, the Laplacian Δf of f is defined by

(2.7)
$$
\Delta f = \sum_{j=1}^p \{ \left(\nabla_{e_j} e_j \right) f - e_j e_j f \}.
$$

We recall the following general algebraic lemma of Chen for later use.

Lemma 2. [3]. Let $n \geq 2$ and $a_1, a_2, ..., a_n$, b real numbers such that

(2.8)
$$
\left(\sum_{i=1}^{n} a_i\right)^2 = (n-1)\left(\sum_{i=1}^{n} a_i^2 + b\right).
$$

Then $2a_1a_2 \geq b$ *, with equality holding if and only if*

 $a_1 + a_2 = a_3 = ... = a_n$.

3. Doubly warped product submanifolds in arbitrary Riemannian manifolds

Theorem 3. *Let* x *be an isometric immersion of an* n*-dimensional doubly* $wapped\ product\ N =_{\sigma_2} N_1 \times_{\sigma_1} N_2$ *into an m-dimensional arbitrary Riemannian manifold* \widetilde{M}^m *. Then:*

(3.1)
$$
n_2 \frac{\Delta_1 \sigma_1}{\sigma_1} + n_1 \frac{\Delta_2 \sigma_2}{\sigma_2} \leq \frac{n^2}{4} ||H||^2 + n_1 n_2 \max \widetilde{K},
$$

where $n_i = \dim N_i$, $n = n_1 + n_2$, Δ_i *is the Laplacian operator of* N_i , $i = 1, 2$ and $\max \widetilde{K}(p)$ denotes the maximum of the sectional curvature function of \widetilde{M}^m *restricted to* 2*-plane sections of the tangent space* T_pN *of* N *at each*

point p *in* N*. Moreover, the equality case of* (3.1) *holds if and only if the following two statements hold*

- (1) x *is a mixed totally geodesic immersion satisfying* $n_1H_1 = n_2H_2$, *where* H_i , $i = 1, 2$, are the partial mean curvature vectors of N_i .
- (2) at each point $p = (p_1, p_2) \in N$, the sectional curvature function \widetilde{K} *of* \widetilde{M}^m *satisfies* $\widetilde{K}(u, v) = \max \widetilde{K}(p)$ *for each unit vector* $u \in T_{n_1}N_1$ *and each unit vector* $v \in T_{p_2}N_2$ *.*

Proof. Let $N =_{\sigma_2} N_1 \times_{\sigma_1} N_2$ be a doubly warped product submanifold into an arbitrary Riemannian manifold \widetilde{M}^m . Since $\sigma_2 N_1 \times_{\sigma_1} N_2$ is a doubly warped product, then

(3.2)
$$
\begin{cases} \nabla_X Y = \nabla_X^1 Y - \frac{\sigma_2^2}{\sigma_1^2} g_1(X, Y) \nabla^2 (\ln \sigma_2), \\ \nabla_X Z = Z (\ln \sigma_2) X + X (\ln \sigma_1) Z, \end{cases}
$$

for any vector fields X, Z tangent to N_1 and N_2 , respectively, where ∇^1 and ∇^2 are the Levi-Civita connections of the Riemannian metrics q_1 and q_2 , respectively (see [5], [8]). Here, $\nabla^2(\ln \sigma_2)$ denotes the gradient of $\ln \sigma_2$ with respect to the metric q_2 .

If X and Z are unit vector fields, it follows that the sectional curvature $K(X \wedge Z)$ of the plane section spanned by X and Z is given by

$$
(3.3) \qquad K(X \wedge Z) = \frac{1}{\sigma_1} \{ \left(\nabla_X^1 X \right) \sigma_1 - X^2 \sigma_1 \} + \frac{1}{\sigma_2} \{ \left(\nabla_Z^2 Z \right) \sigma_2 - Z^2 \sigma_2 \}.
$$

We choose a local orthonormal frame $\{e_1, ..., e_{n_1}, e_{n_1+1}, ..., e_n\}$ such that $e_1, ..., e_{n_1}$ are tangent to $N_1, e_{n_1+1}, ..., e_n$ are tangent to N_2 and e_{n+1} is parallel to the mean curvature vector H.

Then, using (3.3), we get

(3.4)
$$
\sum_{\substack{1 \le j \le n_1 \\ n_1 + 1 \le s \le n}} K(e_j \wedge e_s) = n_2 \frac{\Delta_1 \sigma_1}{\sigma_1} + n_1 \frac{\Delta_2 \sigma_2}{\sigma_2}.
$$

From the equation of Gauss, we have

(3.5)
$$
2\tau(p) = n^2||H||^2(p) - ||h||^2(p) + 2\tilde{\tau}(T_pN), \ p \in N,
$$

where $n_i = \dim N_i$, $n = n_1 + n_2$, $||h||^2$ is the squared norm of the second fundamental form h of N in \widetilde{M}^m and $\widetilde{\tau}(T_pN)$ is the scalar curvature of the subspace T_pN in \widetilde{M}^m .

We set

(3.6)
$$
\delta = 2\tau - \frac{n^2}{2} ||H||^2 - 2\tilde{\tau} (T_p N).
$$

Then, (3.5) can be written as

(3.7)
$$
n^2||H||^2 = 2(\delta + ||h||^2).
$$

With respect to the above orthonormal frame, (3.7) takes the following form:

$$
\left(\sum_{i=1}^n h_{ii}^{n+1}\right)^2 = 2\left[\delta + \sum_{i=1}^n \left(h_{ii}^{n+1}\right)^2 + \sum_{i \neq j} \left(h_{ij}^{n+1}\right)^2 + \sum_{r=n+2}^m \sum_{i,j=1}^n \left(h_{ij}^r\right)^2\right].
$$

If we put $a_1 = h_{11}^{n+1}$, $a_2 = \sum_{i=2}^{n_1} h_{ii}^{n+1}$ and $a_3 = \sum_{t=n_1+1}^{n_1} h_{tt}^{n+1}$, the above equation becomes

$$
\left(\sum_{i=1}^{3} a_i\right)^2 = 2\left[\delta + \sum_{i=1}^{3} a_i^2 + \sum_{1 \le i \ne j \le n} \left(h_{ij}^{n+1}\right)^2 + \sum_{r=n+2}^{m} \sum_{i,j=1}^{n} \left(h_{ij}^r\right)^2 - \sum_{2 \le j \ne k \le n_1} h_{jj}^{n+1} h_{kk}^{n+1} - \sum_{n_1+1 \le s \ne t \le n} h_{ss}^{n+1} h_{tt}^{n+1}.
$$

Thus a_1, a_2, a_3 satisfy the Lemma of Chen (for $n = 3$), i.e.,

$$
\left(\sum_{i=1}^{3} a_i\right)^2 = 2\left(b + \sum_{i=1}^{3} a_i^2\right),
$$

with

$$
b = \delta + \sum_{1 \le i \neq j \le n} \left(h_{ij}^{n+1} \right)^2 + \sum_{r=n+2}^m \sum_{i,j=1}^n \left(h_{ij}^r \right)^2
$$

-
$$
\sum_{2 \le j \neq k \le n_1}^n h_{jj}^{n+1} h_{kk}^{n+1} - \sum_{n_1+1 \le s \neq t \le n}^n h_{ss}^{n+1} h_{tt}^{n+1}.
$$

Then $2a_1a_2 \geq b$, with equality holding if and only if $a_1 + a_2 = a_3$. In the case under consideration, this means

(3.8)

$$
\sum_{1 \le j < k \le n_1} h_{jj}^{n+1} h_{kk}^{n+1} + \sum_{n_1+1 \le s < t \le n} h_{ss}^{n+1} h_{tt}^{n+1} \ge
$$

$$
\ge \frac{\delta}{2} + \sum_{1 \le \alpha < \beta \le n} \left(h_{\alpha\beta}^{n+1} \right)^2 + \frac{1}{2} \sum_{r=n+2}^m \sum_{\alpha,\beta=1}^n \left(h_{\alpha\beta}^r \right)^2.
$$

Equality holds if and only if

(3.9)
$$
\sum_{i=1}^{n_1} h_{ii}^{n+1} = \sum_{t=n_1+1}^{n} h_{tt}^{n+1}.
$$

Using again the Gauss equation, we have

(3.10)
$$
n_2 \frac{\Delta_1 \sigma_1}{\sigma_1} + n_1 \frac{\Delta_2 \sigma_2}{\sigma_2} = \tau - \sum_{1 \le j < k \le n_1} K(e_j \wedge e_k) - \sum_{n_1 + 1 \le s < t \le n} K(e_s \wedge e_t) = \tau - \tilde{\tau}(D_1) - \sum_{r=n+1}^m \sum_{1 \le j < k \le n_1} \left(h_{jj}^r h_{kk}^r - (h_{jk}^r)^2 \right) - \tilde{\tau}(D_2) - \sum_{r=n+1}^m \sum_{n_1 + 1 \le s < t \le n} \left(h_{ss}^r h_{tt}^r - (h_{st}^r)^2 \right).
$$

Combining (3.8) and (3.10) and taking account of (3.4) , we obtain

$$
n_{2} \frac{\Delta_{1}\sigma_{1}}{\sigma_{1}} + n_{1} \frac{\Delta_{2}\sigma_{2}}{\sigma_{2}} \leq \tau - \tilde{\tau}(TN) + \sum_{1 \leq s \leq n_{1}} \sum_{n_{1}+1 \leq t \leq n} \tilde{K}(e_{s}, e_{t}) -
$$

$$
- \frac{\delta}{2} - \sum_{\substack{1 \leq j \leq n_{1} \\ n_{1}+1 \leq t \leq n}} \left(h_{jt}^{n+1} \right)^{2} - \frac{1}{2} \sum_{r=n+2}^{m} \sum_{\alpha,\beta=1}^{n} \left(h_{\alpha\beta}^{r} \right)^{2} +
$$

$$
+ \sum_{r=n+2}^{m} \sum_{1 \leq j < k \leq n_{1}} \left(\left(h_{jk}^{r} \right)^{2} - h_{jj}^{r} h_{kk}^{r} \right) + \sum_{r=n+2}^{m} \sum_{n_{1}+1 \leq s < t \leq n} \left(\left(h_{st}^{r} \right)^{2} - h_{ss}^{r} h_{tt}^{r} \right) =
$$

$$
= \tau - \tilde{\tau}(TN) + \sum_{1 \leq s \leq n_{1}} \sum_{n_{1}+1 \leq t \leq n} \tilde{K}(e_{s}, e_{t}) - \frac{\delta}{2} - \sum_{r=n+1}^{m} \sum_{j=1}^{n_{1}} \sum_{t=n_{1}+1}^{n} \left(h_{jt}^{r} \right)^{2} -
$$

$$
- \frac{1}{2} \sum_{r=n+2}^{m} \left(\sum_{j=1}^{n_{1}} h_{jj}^{r} \right)^{2} - \frac{1}{2} \sum_{r=n+2}^{m} \left(\sum_{t=n_{1}+1}^{n} h_{tt}^{r} \right)^{2} \leq
$$

$$
(3.11) \leq \tau - \tilde{\tau}(TN) + n_{1}n_{2} \max \tilde{K} - \frac{\delta}{2} = \frac{n^{2}}{4} ||H||^{2} + n_{1}n_{2} \max \tilde{K},
$$

which implies the inequality (3.1) .

If the equality sign of (3.1) holds, then all of inequalities in (3.11) become equalities. That means we have statements 1 and 2 as well.The converse statement is straightforward.

Corollary 4. *Let* x *be an isometric immersion of an* n*-dimensional doubly warped product* $N =_{\sigma_2} N_1 \times_{\sigma_1} N_2$ *into a Riemannian* m-manifold $R^m(c)$ of *constant curvature* c*. Then:*

(3.12)
$$
n_2 \frac{\Delta_1 \sigma_1}{\sigma_1} + n_1 \frac{\Delta_2 \sigma_2}{\sigma_2} \le \frac{n^2}{4} ||H||^2 + n_1 n_2 c,
$$

where $n_i = \dim N_i$, $n = n_1 + n_2$, Δ_i *is the Laplacian operator of* N_i , $i = 1, 2$. *Moreover, the equality case of* (3.12) *holds if and only if* x *is a mixed totally geodesic immersion satisfying* $n_1H_1 = n_2H_2$ *, where* H_i *,* $i = 1, 2$ *, are the partial mean curvature vectors of* N_i .

4. Doubly warped product submanifolds in generalized Sasakian space forms

Recently, P. Alegre, D. E. Blair and A. Carriazo have introduced the notion of generalized Sasakian space form (see [1]).

If we change the ambient space with generalized Sasakian space forms, applying Theorem 3, we get some interesting results.

Remark 5. *In an earlier paper* [7]*, the present author established a general inequality for warped products isometrically immersed in generalized Sasakian space forms.*

A $(2m + 1)$ -dimensional Riemannian manifold (\widetilde{M}, g) is said to be an almost contact metric manifold if there exist on M a $(1, 1)$ tensor field ϕ , a vector field ξ (called the structure vector field) and a 1-form η such that $\eta(\xi) = 1, \, \phi^2(X) = -X + \eta(X)\,\xi$ and $g(\phi X, \phi Y) = g(X, Y) - \eta(X)\,\eta(Y),$ for any vector fields X, Y on \widetilde{M} . In particular, on an almost contact metric manifold we also have $\phi \xi = 0$ and $\eta \circ \phi = 0$.

We denote an almost contact metric manifold by $(\widetilde{M}, \phi, \xi, \eta, g)$.

A generalized Sasakian space form is an almost contact metric manifold $(\widetilde{M}, \phi, \xi, \eta, g)$ whose curvature tensor is given by (see [1])

 (4.1) $\widetilde{R}(X,Y)Z = f_1\{q(Y,Z)X - q(X,Z)Y\} +$ $+f_{2}{q(X, \phi Z)\phi Y - q(Y, \phi Z)\phi X + 2q(X, \phi Y)\phi Z} +$ $+f_3\{\eta(X)\eta(Z)Y-\eta(Y)\eta(Z)X+$ $+q(X,Z)\eta(Y)\xi-q(Y,Z)\eta(X)\xi$

where f_1, f_2, f_3 are differential functions on \widetilde{M} . In such a case, we will write $M(f_1, f_2, f_3).$

Theorem 6. *Let* x *be a isometric immersion of an* n*-dimensional doubly warped product* $\sigma_2 N_1 \times_{\sigma_1} N_2$ *into an* $(2m + 1)$ *-dimensional generalized Sasakian space form* $M(f_1, f_2, f_3)$ *, such that* $\sigma_2 N_1 \times_{\sigma_1} N_2$ *is an anti-invariant submanifold normal to* ξ*. Then:*

(4.2)
$$
n_2 \frac{\Delta_1 \sigma_1}{\sigma_1} + n_1 \frac{\Delta_2 \sigma_2}{\sigma_2} \leq \frac{n^2}{4} ||H||^2 + n_1 n_2 f_1,
$$

where $n_i = \dim N_i$ *and* Δ_i *is the Laplacian operator of* N_i , $i = 1, 2$ *. Moreover, the equality case of* (4.2) *holds if and only if* x *is a mixed totally geodesic immersion and* $n_1H_1 = n_2H_2$ *, where* H_i *,* $i = 1, 2$ *, are the partial mean curvature vectors.*

Remark 7. *If either* $\sigma_1 \equiv 1$ *or* $\sigma_2 \equiv 1$ *, then the inequality* (4.2) *is exactly the inequality from* [7] *for warped products.*

As applications, we derive certain obstructions to the existence of minimal anti-invariant doubly warped product submanifolds normal to ξ in generalized Sasakian space forms.

Corollary 8. Let $_{\sigma_2}N_1 \times_{\sigma_1} N_2$ be a doubly warped product into a general*ized Sasakian space form* $M(f_1, f_2, f_3)$ *, such that* $\sigma_2 N_1 \times_{\sigma_1} N_2$ *is an antiinvariant submanifold normal to* ξ . If the warping functions σ_1 and σ_2 are *harmonic, then* $\sigma_2 N_1 \times_{\sigma_1} N_2$ *admits no minimal immersion into a generalized Sasakian space form* $M(f_1, f_2, f_3)$ *with* $f_1 < 0$ *.*

Proof. Assume σ_1 is a harmonic function on N_1 , σ_2 is a harmonic function on N_2 and $\sigma_2 N_1 \times_{\sigma_1} N_2$ is an anti-invariant submanifold normal to ξ which admits a minimal immersion into a generalized Sasakian space form $M(f_1, f_2, f_3).$

Then, the inequality (4.2) becomes $f_1 \geq 0$.

Corollary 9. If the warping functions σ_1 and σ_2 of an anti-invariant dou*bly warped product submanifold* $\sigma_2 N_1 \times_{\sigma_1} N_2$ *normal to* ξ *in a generalized Sasakian space form* $\widetilde{M}(f_1, f_2, f_3)$ *are eigenfunctions of the Laplacian on* N_1 and N_2 , respectively, with corresponding eigenvalues $\lambda_1 > 0$ and $\lambda_2 > 0$, respectively, then $\sigma_2 N_1 \times_{\sigma_1} N_2$ *admits no minimal immersion in a generalized Sasakian space form* $\widetilde{M}(f_1, f_2, f_3)$ *with* $f_1 \leq 0$ *.*

Corollary 10. Let $_{\sigma_2}N_1 \times_{\sigma_1} N_2$ be an anti-invariant doubly warped product *submanifold normal to* ξ *in a generalized Sasakian space form* $M(f_1, f_2, f_3)$ *. If one of the warping functions is harmonic and the other one is an eigenfunction of the Laplacian with corresponding eigenvalue* $\lambda > 0$ *, then* $\sigma_2 N_1 \times \sigma_1$ N2 *admits no minimal immersion into a generalized Sasakian space form* $M(f_1, f_2, f_3)$ *with* $f_1 \leq 0$ *.*

Next we will derive corresponding results for doubly warped product submanifolds in Sasakian space forms.

A Sasakian space form $\overline{M}(c)$ can be viewed as a generalized Sasakian space form $\widetilde{M}(f_1, f_2, f_3)$ with $f_1 = \frac{c+3}{4}$ $\frac{+3}{4}$ and $f_2 = f_3 = \frac{c-1}{4}$ $\frac{-1}{4}$.

We want to mention that a submanifold N normal to ξ in a Sasakian space form $M(c)$ is anti-invariant, i.e., ϕ maps any tangent space of N into the normal space, that is $\phi(T_p N) \subset T_p^{\perp} N$, for every $p \in N$.

Such a manifold is said to be a C-totally real submanifold.

Corollary 11. *Let* x *be a C-totally real isometric immersion of an* n*dimensional doubly warped product* $\sigma_2 N_1 \times_{\sigma_1} N_2$ *into an* $(2m+1)$ *dimensional Sasakian space form M(c). Then:*

(4.3)
$$
n_2 \frac{\Delta_1 \sigma_1}{\sigma_1} + n_1 \frac{\Delta_2 \sigma_2}{\sigma_2} \leq \frac{n^2}{4} ||H||^2 + n_1 n_2 \frac{c+3}{4},
$$

where $n_i = \dim N_i$ *and* Δ_i *is the Laplacian operator of* N_i , $i = 1, 2$ *. Moreover, the equality case of* (4.3) *holds if and only if* x *is a mixed totally geodesic immersion and* $n_1H_1 = n_2H_2$ *, where* H_i *,* $i = 1, 2$ *, are the partial mean curvature vectors.*

Remark 12. *If either* $\sigma_1 \equiv 1$ *or* $\sigma_2 \equiv 1$ *, then the inequality* (4.3) *is exactly the inequality from* [6] *for warped products.*

By using the above corollary (Corollary 11), we can obtain some important consequences:

Corollary 13. Let $_{\sigma_2}N_1 \times_{\sigma_1} N_2$ be a doubly warped product whose warping *functions are harmonic. Then* $_{\sigma_2}N_1 \times_{\sigma_1} N_2$ *admits no minimal C-totally real immersion into a Sasakian space form* $\widetilde{M}(c)$ *with* $c < -3$ *.*

Proof. Assume σ_1 is a harmonic function on N_1 , σ_2 is a harmonic function on N_2 and $\sigma_2 N_1 \times_{\sigma_1} N_2$ admits a minimal C-totally real immersion in a Sasakian space form $M(c)$. Then, the inequality (4.3) becomes $c \geq -3$.

Corollary 14. If the warping functions σ_1 and σ_2 of a doubly warped prod $uct_{\sigma_2} N_1 \times_{\sigma_1} N_2$ are eigenfunctions of the Laplacian on N_1 and N_2 , respec*tively, with corresponding eigenvalues* $\lambda_1 > 0$ *and* $\lambda_2 > 0$ *, respectively, then* $\sigma_2 N_1 \times_{\sigma_1} N_2$ *admits no minimal C-totally real immersion in a Sasakian space form* $M(c)$ *with* $c < -3$ *.*

Corollary 15. Let $_{\sigma_2}N_1 \times_{\sigma_1} N_2$ be a doubly warped product. If one of the *warping functions is harmonic and the other one is an eigenfunction of the Laplacian with corresponding eigenvalue* $\lambda > 0$, then $\sigma_2 N_1 \times_{\sigma_1} N_2$ *admits no minimal C-totally real immersion into a Sasakian space form* $M(c)$ *with* $c < -3$.

Acknowledgement. The author thanks Professor I. Mihai for very useful discussions and valuable suggestions and referee of this paper for some pertinent suggestions which have improved it.

REFERENCES

- [1] P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian space forms, Israel J. Math. 141 (2004), 157-183.
- [2] B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. **60** (1993), 568-578.
- [3] B. Y. Chen, On isometric minimal immersions from warped products into real space forms, Proc. Edinburgh Math. Soc. 45 (2002).
- [4] B. Y. Chen and F. Dillen, Optimal inequalities for multiply warped product submanifolds, International Electronic Journal of Geometry, Vol. 1 (2008), 1-11.
- [5] K. Matsumoto, Doubly warped product manifolds and submanifolds, Global Analysis and Applied Mathematics: International Workshop on Global Analysis, AIP Conference Proceedings, Vol. 729 (2004), 218-224.
- [6] K. Matsumoto and I. Mihai, Warped product submanifolds in Sasakian space forms, SUT Journal of Mathematics 38 (2002), 135-144.
- [7] A. Olteanu, Legendrian warped product submanifolds in generalized Sasakian space forms, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 25 (2009), 137-144.
- [8] B. Unal, *Doubly warped products*, PhD thesis, University of Missouri Columbia (2000).

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE University of Bucharest STR. ACADEMIEI 14 011014 BUCHAREST, ROMANIA e-mail address: andreea d olteanu@yahoo.com

> (Received May 26, 2008) (Revised December 1, 2008)