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ON FINITENESS, COMMUTATIVITY, AND
PERIODICITY IN RINGS

HowarD E. BELL! and ABRAHAM A. KLEIN

Let R be an associative ring; let N be the set of nilpotent elements
of R; and let P be the set of potent elements, i.e.

P = {z € R| there exists n = n(z) > 1 such that z” = z}. Call R
periodic if for each z € R there exist distinct positive integers m and n for
which 2™ = z™; and as in [8], define R to be weakly periodicif R = P+ N.
It is known that all periodic rings are weakly periodic [1], but whether the
converse holds is an open question.

In this paper we first present new proofs for two known finiteness
theorems, and we then present some finiteness results for prime rings. In
the final section, making use of our results for prime rings, we establish
sufficient conditions for finiteness, commutativity, or periodicity of weakly
periodic rings.

1. Preliminaries. Throughout the paper, Z will denote the ring of
integers and Z* the set of positive integers. For the ring R, Z will be the
center and D the set of (not necessarily two-sided) zero divisors. If Y is
either an element or a subset of R, then A,(Y), A,(Y), and (Y) will denote
the left and right annihilators of Y and the subring generated by Y. The
symbol P(R) will denote the maximal periodic ideal of R, the existence of
which was established in [5].

The following results will be needed in our proofs.

Theorem 1.1 (Laffey, [10]). If R is a ring in which every commu-
tative subring is finite, then R is finite.

Theorem 1.2 (Chacron [6]). Let R have the property that for each
z € R, there exists n € Zt and p(t) € Z[t] for which z™ = z"*1p(z). Then

R is periodic.

Theorem 1.3 (Herstein [9]). If R is a periodic ring with N C Z,
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then R is commutative.

Theorem 1.4 (Bell and Guerriero [4]). If R is a periodic ring in
which every proper noncentral subring of zero divisors is finite, then R is
etther finite or commultative.

Theorem 1.5 (Bell and Tominaga [2]). If R is a weakly periodic ring
in which N is commutative, then R is periodic.

2. Two finiteness proofs. We give first a new and simpler proof
of a theorem of Putcha and Yaqub.

Theorem 2.1 ([13]). If R # N and R\N is finite, then R is finite.

Proof. Since R\ is finite and power closed, it must contain an idem-
potent e # 0; and we can write

(1) R=eR+ A.(e)=eRe+eRN Ay(e) + A,(e).

Now the mapping * — e 4 z is one-to-one on R; and it maps A,(e) into
R\N,forif z € A.(e), e(fe + ) = e and hence e + 2 € N. Thus A.(e) is
finite, and likewise Ay(e). By (1), therefore, we need only show that eRe
is finite. But e is an identity in eRe, so if z € eRe N N, e + z is invertible
in eRe. It follows that # — e + z maps eReN N into R\ N, hence eReN N
is finite. Since eRe\N is finite by hypothesis, e Re is finite.

We now give a new proof of a well-known theorem of Szele [14]. Our
proof is not necessarily shorter or more elementary than Szele’s; but it
avoids the use of structure theory and fits better into the general context
of finiteness theorems.

Theorem 2.2. If the ring R has both ascending chain condition and
descending chain condition on subrings, then R is finite.

Proof. Since {(z) D (z%) D (z*) D --- must become stationary, there
exists n such that 22" € (z2"*'); therefore R is periodic by Theorem
1.2, and every potent element has finite additive order. We now show by
induction on index of nilpotence that nilpotent elements are also of finite
additive order.

If 2 = 0, then the subring (z) is a zero subring on a cyclic group.
Since the infinite cyclic group does not have dec on subgroups, {(z) must be
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finite. Proceeding under the appropriate inductive hypothesis, note that
if 2" = 0, » > 3, then 22 has index < n, hence is of finite order k. Then
(kz)? = 0, hence kz is of finite order and so is z.

As mentioned earlier, every element of a periodic ring is a sum of a
potent element and a nilpotent element, hence (R, +) is a torsion group.
Consider now an arbitrary commutative subring § of R, which inherits the
chain conditions on R. By acc, § is finitely generated as a ring; and since
S is also periodic with (S, +) a torsion group, S is finite. By Theorem 1.1
it follows that R is finite.

Our proof actually yields a bit more than Szele’s theorem — specif-
ically, if R has acc on commutative subrings and dcc on monogenic sub-
rings, then R is finite. We mention that the symmetric condition — acc
on monogenic subrings and dcc on commutative subrings — also implies
finiteness; this can be seen from an argument in [11].

3. Finiteness results for prime rings. Our first lemma is an
application of an interesting result of Lewin on subrings of finite index.

Lemma 3.1. If R is an infinite prime ring, then for any ¢ € R\{0},
the right ideal cR is infinite.

Proof. 1If c¢R is finite, the kernel of the map ¢ — cz has finite index
in R. This kernel is clearly a subring of R, hence by a result of Lewin
[12] contains an ideal I of finite index. Since R is infinite, I # {0},
contradicting the fact that in a prime ring the left annihilator of a nonzero
ideal is trivial.

Corollary 3.2. Any nonzero one-sided ideal of an infinite prime ring
is infinite.

Theorem 3.3. An infinite prime ring which is not a domain con-
tains an infinite zero subring.

Proof. 1t is well known that a prime ring R which is not a domain
contains nonzero nilpotent elements, hence a nonzero element a with a? =
0. Assume that every zero subring is finite. Then aRa is finite, and the
kernel K of the map z — aza is an additive subgroup of finite index.
Thus we have R = U™ (K + b;) for suitable elements by, b2,---, b, € R.
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Now aKa = {0}, so the subring aRak is a zero subring, hence is finite.
Moreover, aRab; is finite for each ¢ = 1, 2,--+, n; and since aRaR =
aRa(U (K +8;)) C aRaK + X% ;aRab;, we conclude that aRaR is finite.
But aRa # {0} because R is prime; hence, for ¢ € aRa\{0}, we get cR
finite, contrary to Lemma, 3.1.

4. Weakly periodic rings. We begin by extending Theorem 1.4
to weakly periodic rings.

Theorem 4.1. If R is a weakly periodic ring in which every proper
noncentral subring of zero divisors is finite, then R is either finite or com-
mutative.

The proof will require several lemmas.

Lemma 4.2. If R is a weakly periodic ring with N=D, then R is
periodic.

Proof. We need only show that N is an ideal, for in that case for
each r € R we have n = n(z) > 1 for which z — 2™ € N, so that R is
periodic by Theorem 1.2.

We may assume that R # N. Thus, there exist nonzero potent el-
ements, hence nonzero idempotents, all of which are regular. There is
therefore a unique nonzero idempotent, which must be an identity ele-
ment 1; and every nonzero potent element is invertible. Letting U be the
set of units, we complete the proof by showing that R = UU N, a condition
which is known to imply that N is an ideal.

Accordingly let a € R\ N, and write @ = u + b, where u # 0 is potent
andb€ N. Nowu € U and v~ 'b€ D = N, hence 1 +u~1b € U and hence
a=u(l+u"lb)eU.

Lemma 4.3. If R is a weakly periodic ring in which every proper
noncentral subring is finite, then R is either finite or commutative.

Proof. If R is not commutative and z € R\Z, then (z, Z) is proper
and noncentral, hence finite. Therefore Z is finite, and R is finite by
Theorem 1.1.

Lemma 4.4. If R is a weakly periodic ring in which D\N C Z, then
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every subring of zero divisors is periodic.

Proof. Let w € D\N and write w = y + b, with 4* = y, £ > 1, and
be N. Since w € Z, [y, b] = 0; hence w* — w € N. The same condition
is satisfied by all w € N, hence Theorem 1.2 shows that every subring of
zero divisors is periodic.

Proof of Theorem 4.1. By Lemma 4.2 and Theorem 1.4, we may
assume that N # D. If D\N ¢ Z, then for d € (D\N)\Z, (d) is a
proper noncentral subring of zero divisors, hence is finite. On the other
hand, if D\N C Z, Lemma 4.4 shows that (d) is periodic for any choice of
d € D\N. Thus, in any case we get a nonzero idempotent zero divisor e,
which we may assume to be a right zero divisor.

Write R = eR + A,(e). Now A,(e) # R; and if eR = R, our theorem
follows by Lemma 4.3. Thus, we assume that eR and A,(e) are both proper
subrings of zero divisors, so that each is finite or central. If both are finite,
then R is finite; and if both are central, R is commutative. Therefore we
assume that one of eR and A.(e) is finite and noncommutative and the
other is central; and we denote these by F' and C respectively. Since F is
noncommutative, Theorem 1.3 gives y € FFN N which is not in Z. Suppose
v* =0 # y*~1. Since CF = {0}, we have vy*~! = 0 for all v € C; hence
(y, C) is a proper noncentral subring of zero divisors. Thus C is finite and
R is finite.

Corollary 4.5. If R satisfies the hypotheses of Theorem 4.1, then R
is periodic.

Proof. By Theorem 1.5, commutative weakly periodic rings are pe-
riodic.

Corollary 4.6. If R is any weakly periodic ring with only finitely
many noncentral zero divisors, then R is either finite or commutative.

Proof. Suppose R has proper noncentral subrings of zero divisors.
Let S be any such subring, andlet d € S\Z. If 2 € SNZ, thend+z € D\Z,
hence there are only finitely many such & and S is therefore finite. By
Theorem 4.1, R is either finite or commutative.

As noted in [3], the finiteness hypothesis in Corollary 4.6 cannot be
weakened to the condition that R has only finitely many noncentral nilpo-
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tent elements. However, we do have the following result, which may be
regarded as an extension of Theorem 1.5.

Theorem 4.7. If R is a weakly periodic ring with only finitely many
noncentral nilpotent elements, then R is periodic.

A fundamental difficulty with weak periodicity is that it is not obvi-
ously inherited by subrings; indeed, if we knew that commutative subrings
of weakly periodic subrings are weakly periodic, it would follow by Theo-
rem 1.5 that all weakly periodic rings are periodic. However, the following
lemma gets us around this difficulty in the proof of Theorem 4.7.

Lemma 4.8. If R is a weakly periodic ring, every ideal I of R is
weakly periodic.

Proof. Let b€ I and write b=a+u,a € P,u € N, v* = 0. We
prove by induction that for ¢ = 0, 1,---, k, any product of 7 a’s and k — ¢
u’s is in I. For i = 0, this is just the statement that u* = 0 € I. To
proceed from 7 to 7+ 1, consider any product 7 of i+ 1 a’s and k — (¢ + 1)
u’s, and write 7 = vaw where vw is a product of ¢ a’s and k — 7 — 1 u’s.
By the inductive hypothesis, vuw € I; hence 7 = vbw — vuw € I, and the
induction is complete.

The case ¢ = k gives a* € I; and sincea € P,a€ Tandu=b—a € I.
Thus, I is weakly periodic.

We also require

Lemma 4.9. Let R be any ring and I a periodic ideal. Then any
nilpotent element of R/I is of the form u + I for some nilpotent element
u € R.

Proof. Suppose z + I is nilpotent in R/I. Then z*¥ € I for some
k € Z*, hence there exist distinct m, n € Zt with n < m and z*F™ = z¥n,
It is easily shown that u = z — z1t*(m=7n) ¢ N: and since z'**(m-7) ¢ J,
we have z + I = u + I.

Proof of Theorem 4.7. Assume there is a counterexample R, which
by Theorem 1.5 must have noncentral nilpotent elements. For z € N\Z
andy € NNZ,z+y € N\Z; hence NN Z is finite and N is finite. We may
suppose, therefore, that R is a counterexample with a minimal number of
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nilpotent elements.

Consider R = R/P(R), where P(R) is the maximal periodic ideal.
Clearly R is weakly periodic, and by Lemma 4.9 it has no more noncentral
nilpotent elements than R has. Moreover, R is not periodic, since otherwise
we could use Theorem 1.2 to get R periodic. Replacing R by R, we assume
that R has no nonzero periodic ideals.

Let I be any nonzero ideal of R. Since I is weakly periodic, it must
contain nonzero nilpotent elements; otherwise it would be a nonzero pe-
riodic ideal. If I contained some but not all of the nonzero nilpotent
elements of R, our minimality assumption would force I to be periodic;
therefore I contains all nonzero nilpotent elements of R. It follows that R
is subdirectly irreducible.

Now the heart H of a subdirectly irreducible ring is either a simple
ring or a zero ring [7, Lemma 75|; and under our assumption, H must
be simple. Thus, H is a simple counterexample with only finitely many
nilpotent elements, contrary to Theorem 3.3. This completes the proof.

REFERENCES

[1] H. E.BELL: A commutativity study for periodic rings, Pacific I. Math. 70(1977),
29-36.

[2] H. E. BELL and H. ToMINAGA: On periodic rings and related rings, Math. J.
Okayama Univ. 28(1986), 101-103.

[3] H. E. BELL: Some conditions for finiteness of a ring, Int. J. Math. Math. Sci.
11(1988), 239-242.

[4] H. E.BELL and F. GUERRIERO: Some conditions for finiteness and commutativity
of rings, Int. J. Math. Math. Sci. 13(1990), 535-544.

[5] H. E. BELL and A. A. KLEIN: On rings with Engel cycles. Canad. Math. Bull.
34(1991), 295-300.

[6] M. CHACRON: On a theorem of Herstein, Canad. J. Math. 21(1969), 1348-1353.
[7] N. J. Divinsky: Rings and Radicals, Univ. of Toronto Press, 1965.
[8] J. Grosen, H. TOMINAGA and A. YAQUB: On weakly periodic rings, periodic

rings and commutativity theorems, Math. J. Okayama Univ. 32(1990), 77—
81.

[9] I. N. HERSTEIN: A note on rings with central nilpotent elements, Proc. Amer.
Math. Soc. 5(1954), 620.

[10] T. J. LAFFEY: On commutative subrings of infinite rings, Bull. London Math.
Soc. 4(1972), 3-5.

[11] T. J.LAFFEY: Infinite rings with all proper subrings finite, Amer. Math. Monthly
81(1974), 270-272.

[12] I. LEWIN: Subrings of finite index in finitely-generated rings, J. Algebra 5(1967),

84-88.

Produced by The Berkeley Electronic Press, 1993



Mathematical Journal of Okayama University, Vol. 35[1993], Iss. 1, Art. 13

188 H. E. BELL and A.A. KLEIN

[13] M. S. PuTcHA and A. YAQUB: Rings with a finite set of non-nilpotents, Int, J.
Math. Math. Sci. 2(1979), 121-126.

[14] T. SzeLE: On a finiteness criterion for modules, Publ. Math. Debrecen 3(1954),
253-256,

HowarpD E. BELL
DEPARTMENT OF MATHEMATICS
BROCK UNIVERSITY
ST. CATHARINES, ONTARIO
CANaDA L2S 3A1

ABRAHAM A. KLEIN
SACKLER FACULTY OF EXACT SCIENCES
ScHOOL OF MATHEMATICAL SCIENCES
TEL Aviv UNIVERSITY
RAMAT Aviv
69978 TEL-Aviv
ISRAEL

(Received August 5, 1992)

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 35/iss1/13



