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SOME TORSION-FREE SUBGROUPS
IN GROUP RINGS

Toru FURUKAWA

Introduction. Let RG be the group ring of a group G over a
commutative ring R with identity. We denote by Ag(G) the augmen-
tation ideal of RG and by Agr(G,N) the kernel of the natural map
RG — R(G/NY) if N is a normal subgroup of G. Note that Ag(G,N) =
RGAR(N). Also, for any ideal I of RG, we write U(1 + I) = {u €
U(RG)|u—1 € I}, where U(RG) is the unit group of RG. Clearly, U(1+1)
is a normal subgroup of U(RG).

The purpose of this note is to prove the following two theorems.

Theorem A. Let R be a commutative ring with identily. Let N be a
nilpotent p-group of bounded exponent for some prime p, let A be a central
subgroup of N and suppose that p is not a zero divisor in R. Then, for an
additive subgroup I of RN,

IS AR(N)AR(N, 4), pI S I” = I S 25" AR(N, A).

Theorem B. Let R be an integral domain of characteristic 0 in
which no rational prime is invertible. Let N be a nilpotent normal subgroup
of a group G and let A be an abelian normal subgroup of G with N 2 A.
Assume that one of the following two conditions holds:

(a) N is periodic,

(b) N is finitely generated.

Then, U(1 4+ Ar(G,N)AR(G, A)) is torsion-free.

Theorem A was proved by Kmet and Sehgal [7, Theorem 2] for the
case R = Z, the ring of rational integers. Also they [7, Theorem 1] proved
Theorem B for the case where R = Z and N is periodic. The essential
result in our arguments is Lemma 1.3 which states that if N 2 A 2 B are
normal subgroups of G with A abelian, then there holds

Ar(G, N)AR(G, ANAR(G, B) = Ar(G.N)Ar(G, B)
17
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for any integral domain R of characteristic 0. This is well-known for R = Z.
Owing to this lemma, our proofs can be done, as in [7].

Let N be a normal subgroup of G and let D, r(N) = NN(1+Ar(N)")
be the n-th dimension subgroup of N over R. As an application of Theorem
B, we show (Proposition 3.2) that if R = Z and if NV is periodic or finitely
generated, then for each n 2> 1 the factor group

U(l+ Ar(G,N)")/U(1+ Ar(G, D, r(N)))

is torsion-free. This is known [2] for the case where G = N (G is arbitrary)
and R is an integral domain of characteristic 0.

In this note, unless otherwise stated, R denotes a commutative ring
with identity and G denotes an arbitrary group.

The author would like to thank Professor K. Tahara for his helpful
suggestions.

1. Augmentation ideals. In this section, we state some prelimi-
nary lemmas concerning augmentation ideals. Let H be a subgroup of G
and let T" be a right transversal for H in G with 7' 3 1. Then each element
g of G can be written uniquely in the form g = th,t € T,h € H. Setting
8(g) = h and extending R-linearly, we have an R-linear map # : RG — RH.
It is easy to check that 8 is a right R H-homomorphism and an identity map
on RH; that is, 8(8a) = 8(f)a and 6(a) = a for « € RH, 8 € RG. From
the definition of 8, clearly 8( Ar(G)) = Ar(H). We write § = 6(G, H,T).
Recall that the (natural) projection map 7 : RG — RH, which is defined
by 7(X,ec @(9)9) = Xgem @(9)g, is also a right RH-homomorphism and
an identity map on RH. Note that for any ideal I of RG, I € RG=(I)

(see [9, p.6)).

Lemma 1.1. Suppose that N 2 A 2 B are normal subgroups of G.
Then the following conditions are equivalent.

(a) Agr(A)*NAr(A,B) = Ar(A)Ar(A, B).

(b) ARr(G,N)Ar(G,A)NAR(G,B) = Ar(G, N)Ar(G, B).

Proof. (a) = (b). We need only to prove that the left-hand side is
contained in the right-hand side, the reverse inclusion being obvious. Let
7n : RG — RN be the projection map and write I for the left-hand side
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of (b). Then we have

(1) € 7N (AR(G, N)AR(G, A)) NN (AR(G, B))
Ar(N)AR(N, A)NAR(N, B).

Since I € RGry(I), it suffices to show that
Ar(N)AR(N, AYNAR(N, B) € Ar(N)Ar(N, B).

To this end, let a € Agr(N)Agr(N,A)NAR(N, B) and let T be a transversal
for Ain N with T 3 1. Then « can be written as a finite sum of the form
a = Y e toy with oy € RA, and taking the projection map 7 : RN — RA
we see that

a; = n(t"'a) € 7(ARr(N, B)) = Agr(A, B)

for all t € T. Furthermore, under the right RA-homomorphism 6 =
6(N,A,T): RN — RA, it follows that

S i = 8(a) € H(AR(N)AR(N, A))NO(AR(N, B))
teT

= AR(AY’NAR(A. B) = Ar(A)AR(A, B).

So we have a = 3_;er(t — 1)as + e 0 € AR(N)AR(N, B) which com-
pletes the proof.

(b) = (a). We have only to verify that the left-hand side is contained
in the right-hand side. Let # = 8(G,N,T1) : RG — RN be the right RN-
homomorphism obtained by a transversal T3(3 1) for N in G. Also, let
w=0(N,A,T;): RN — RA be the right RA-homomorphism obtained by
a transversal 72(3 1) for A in N. Then for any a € Ar(A)*NAR(A, B),

a = 0(a) € 8(AR(G,N)AR(G, B)) = Ar(N)AR(N, B).
Thus we have
a = ¢(a) € p(AR(N)AR(N, B)) = Ar(A)Ag(A, B),

and hence the result follows.

The next lemma is well-known as “modular law”, which will be fre-
quently in the subsequent argument.
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Lemma 1.2. Let X, Y, Z be three subgroups of an additive group.
Then
X2Y=XNY +2)=Y +(XN2).

Lemma 1.3. Let R be an integral domain of characteristic 0 and
suppose that N 2 A 2 B are normal subgroups of G with A abelian. Then

Ar(G,N)AR(G, A)NAR(G, B) = Ar(G, N)AR(G, B).

Proof. By Lemma 1.1, it suffices to verify that
Ar(APNAR(A, B) € AR(A)Ap(4, B).

We prove this inclusion by considering some special cases.

First assume that A/B is cyclic. Let  : RA — R(A/B) be the
natural map. Then A = (@) for some a € A, so Agr(A) = RA(@—1). Thus
we have Ap(A) = Ar(A,B) + RA(a — 1) and hence

ARr(A)? = Ap(A)AR(A, B) + Ap(A)(a - 1).
Because Agr(A, B) 2 Ar(A)AR(A, B), we see from Lemma 1.2 that
Ar(AY’NAR(A, B) = AR(A, B)N(AR(A)AR(A, B) + Ar(4)(a — 1))
= AR(A)ARr(A, B) + (Ar(A, B)NAR(A)(a - 1)).
Thus it remains to show that
Ar(A, B)NAR(A)(a — 1) € Ar(A)AR(A, B).

To do this, let @ € Ar(A4, B)NAR(A)(a —1). Then a = 3(a — 1) for some
3 € Ap(A) and 0 = 3(@ — 1). Therefore, 3 is in the annihilator [(Ag(A))
of Agp(A4) in RA. In case A is infinite, /(Ar(A)) = 0 so that 3 = 0 (see
(10, p.95]). Thus 3 € Ag(A, B) and so we have o € Agp(A)Agr(A, B). In
case A is finite,

I(AR(A)) = RA(L+a+---+a* 7)),
where |A| = 7, and so we can write 3 as

B=v(1+a+---+a""1)+6(y€ RA6 € Ap(A, B)).
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Then, under the augmentation map € : RA — R we have 0 = £(¥)n, and

by the hypothesis on R, e(y) = 0i.e. v € Ar(A). Since a™ € B, we obtain
a=7(a"-1)+6(a—1) € Ap(A)ARr(A, B)

and the result follows here.
Next assume that A is finitely generated. Then since A/B is finitely
generated, A has a series

A=A 2A4,2---24A,1 =B
of subgroups of A with each A;/A;4; cyclic. By the foregoing,
Ar(A)’NAR(AL A1) = AR(ADAR(A;, Aitr)
and hence, by Lemma 1.1, we deduce that
Ap(A)AR(A, A)NAR(A, Ait1) = ArR(A)AR(A, Aig1) for 1 < i < m.
Now we use induction on ¢ to show that
Ar(AYNAR(A, B) C Ap(A)AR(A, A;) for 1 < i< n+1,

the case ¢ = 1 being obvious. Suppose that this inclusion holds for some i
with 1 < i< n+ 1. Then we have

AR(APNAR(A,B) € Ap(A)AR(A, A)NAR(A, B)
€ Ar(A)AR(A, A:))NAR(A, Aig1)
= Ar(A)AR(A, Ait1)

and hence the induction is complete. Consequently the result follows be-
cause Apy1 = B.

Finally, let A be arbitrary, and let @ € Agr(A4)’NAR(A,B). Then
clearly there exists a finitely generated subgroup A* of A and a subgroup
B~ of A* such that a € Ag(A*))NAR(A*, B*). Thus by the previous case
we conclude that

a € Ap(A")AR(A", B*) C Ap(A)AR(A, B).
This completes the proof of the lemma.

We note that the above argument also proves the following result.
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Lemma 1.4. Suppose that N 2 A 2 B are normal subgroups of G.
If A is an abelian p-group for some prime p and p is not a zero divisor in
R, then

Ar(G,N)AR(G, ANAR(G, B) = Ar(G, N)Ar(G, B).

The proof of the next lemma is straightforward.

Lemma 1.5. Let .o be a set of normal subgroups of G such that
Ni1NN2 € . whenever Ny, No € .97 Then

ﬂ Ar(G,N) = Ag(G, ﬂ N).
Ne. Ne.o¥

Proof. 1t is clear that the right-hand side is contained in the left-
hand side. To show the reverse inclusion, let & € Ny o7Ar(G, V) and
set M = [y o#N. Then, choosing a transversal T for M in G, a can
be written uniquely in the form o = ¥, t;a;, a; € RM, t; € T. By the
property of .2/, we may pick some N € .o/ with {t]'t;|1 <i < n}ON =
{1}. Then, under the projection map 7 : RG — RN, we have

)] = W(tl_la) € ﬁ(AR(G,lV)) = AR(JV)’

so a; € Ap(N)NRM = Agr(M). Similarly, we see that all e;’s are in
ARp(M) so that o € Ar(G, M). This completes the proof.

2. Proofs of Theorem A and B. In order to prove our theorems
we need furthermore a few lemmas. For a subgroup H of G, we denote by
HS = (g 'Hg |g € G) the normal closure of H in G.

Lrmma 2.1. Let H be a subgroup of G and suppose that HS is
nilpotent. If H is of bounded exponent, then so is HC.

Proof. Clearly, HC /42(H®) is of bounded exponent, where y2( H%)
is the derived subgroup of HE. Since HC is nilpotent, we see that HC is
of bounded exponent, too (see e.g. [5, p.266, 2.13 Satz]).

Lemma 2.2. Let N be a normal subgroup of G. If N is a nilpotent

p-group of bounded exponent for some prime p, then (o2, Ar(G,N)* C
P (RG) for all 1> 1.
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Proof. Letusfix!> 1andsetS = R/p'R. Then, since N2,p"S = 0,
it follows from [4, Theorem E] that 72, As(N)™ = 0 (see also [8, p. 84,
2.11 Theorem]). Let f : RG — SG be the ring homomorphism induced by
the natural homomorphism R — S. Then

FIMRZ1AR(G, N)™) E ML, As(G. V)" = SG(NGL,As(N)™) = 0.
Since Ker f = p'(RG), the result follows.

We denote by T'G the set of torsion elements in G. Also, for a prime p,
T,(G) denotes the set of p-elements in G. We say here that R is G-adapted
if R is an integral domain of characteristic 0 in which no element g # 1 of
G has order invertible. The next result is an extension of [7, Lemma 3].

Lemma 2.3. Let p be a prime and let N be a nilpotent normal sub-
group of G such that T,(N) = {1}. Assume that one of the following two
conditions holds:

(a) R is an integral domain of characteristic 0 in which no rational
prime is invertible.

(b) G is polycyclic-by-finite and R is G-adapted.

Then T,(U(1+ Agr(G,N))) = {1}.

Proof. Assume first (b). Let u = 3° cqu(g)g € T(1 + Ar(G,N)).
We have only to show that u = 1 if v» = 1. Consider the natural map
~ : RG — R(G/TN). Then, @ € TU(1 + Ar(G,N)). However, since
N is torsion-free nilpotent, we know from [3, Lemma 1.2] that TU(1 +
ARr(G,N)) = {1}. Thus, @ = 1ie u—1¢€ Agr(G,TN). Therefore we
may assume that N is periodic. Since u — 1 € Ag(G, N), we can write
u — 1 in the form

©w—1= Z Aigi(z; — 1) (M € R,g; € G,z; € N).

=1

Then, setting H = (z1,-++,2,), wesee that u — 1 € AR(G’,HG). Because
H is finite, HC is of bounded exponent by Lemma 2.1. Thus we may fur-
ther assume that N is of bounded exponent. We proceed by induction on
the exponent exp(N) of N. The cace exp(N) = 1is trivial, solet ezp(N) >
1 and let ¢ be a prime divisor of ezp(N). Then we get N = T,(N) x N,
so that exp(N/Ty(N)) < exp(N). Since R is also G/T,(N)-adapted, by
considering R(G/To(N)), we have u — 1 € Ap(G,T4(N)) by induction.
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Now, set B = Ty(N) and I = RG(u— 1)RG. Then I € Ag(G,B), and
we obtain pI € I?, since p(u — 1) € (u — 1)’ RG (see e.g. the proof of [1,
Lemma 3.4]). On the other handythgadgitive group Ag(B)/ARr(B)? is
a g-group and hence, so is each Ap(G,B)*/Ap(G, B)**! (see [6, p. 23]).
Therefore, I & Ag(G, B)" for all n 2 1, because p # q. Thus by Lemma
2.2, 1 € q(RG) so that u(1) — 1 € qR. Since ¢ is a nonunit in R, we have
u(1) # 0 and so it follows from [10, p. 45, Corollary 1.4] that u = 1.

Under condition (a), any element « of TU (1 + Ag(G)) with u(1) # 0
is necessarily the identity ([10, p.45, Corollary 1.2]). Thus by the same
argument as above, the result follows.

Lemma 2.4. Let A be a normal subgroup of a group N. Suppose that
A is a nilpotent p-group of bounded erponent for some prime p and that p
is not a zero divisor in R. Then. for an additive subgroup I of Ap(N, A),

pl CIP, I C pAR(N) = I Cp'AR(N,A) forall 121

Proof. We have I C Ap(N,A)pAr(N) = pAp(N,A) and pl C
I? C pPAR(N, A)P, so that I € pAR(N, A)? since p is not a zero divisor in
R. Hence by induction on n, we see that I C pAgr(N, A)" for all n 2 1. So,
by Lemma 2.2, I C p!(RN) for all I 2 1. Thus the result follows, because
I C AR(N, AP (RN) = p'AR(N, A).

We are now in a position to prove our theorems.

2.5. Proof of Theorem A. In view of Lemma 2.4, it suffices to
prove that I € pAR(/N,A). To do this, we first assume that A is finite and
proceed by induction on the order of A. The case |A| = 1 is trivial, so let
|A] > 1. Then there exists a subgroup W of A with |[W| = p. Let
RN — R(N/W) be the natural map. Then, clearly, I C Ap(N)Agr(N, A)
and pl c 17, Hence by induction, we have 7 - pAR(N, Z) So it follows
from Lemma 2.4 that I C p!Ag(N,A) i.e. I S Ap(N, W)+ p'Ar(N,A)
for all { 2 1. Now, let |A| = p'. Then p'Agr(N,A) S AR(N)AR(N,A) (see
e.g. [6, p.23]). Thus by Lemma 1.2 and Lemma 1.4,

IS AR(N)AR(N, A)YAR(N, W) + p'Ar(N, A))
= (AR(N)AR(N, ANAR(N, W) + p'Ar(N, A)
= AR(N)AR(N, W) + p'Ag(N, A).
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We use induction on n to show the following:

(%) I C AR(N)*"Ap(N,W)+ pAgr(N) foralln 2 1.

The case n = 1 is assured by the foregoing, so assume that (*) holds for
some n > 1. Note here that since |W| = p, Ap(N,W)P = pAgr(N, W) (see

[1, Lemma 3.4]). Furthermore, W is central in iV, and therefore it follows
that

3
~
N NN

]

~

P C (AR(N)"AR(N, W)+ pAg(N))F
AR(NY*AR(N, W) + pAp(N)"P AR(N, W) + p*Ap(N)
pAR(NY"FTAR(N, W) + p*Ar(N).

Thus, I € Ap(N)"tTAR(N,W)+pAr(N) and hence (*) is established. By
considering ( R/pR)N, we deduce from Lemma 2.2 and () that 7 € p(RN).
Hence, I C Ag(N,A)Np(RN) = pAr(N,A).

Next, let A be infinite, and let .%»” be the set of all subgroups of
finite index in A. Then the previous case shows that for any B € .9
I C pAR(N,A) under the natural map ~ : RN — R(N/B), and hence
I € Agr(N,B) 4 pAr(N,A). Thus, under the natural homomorphism
f:RN — SN where S = R/pR, we have f(I) C Agr(N, B). Since .2 has
a property that B1[\B; € .% for any B;, By € . it follows from Lemma
1.5 that

fye () As(N,B)=As(N, () B).
Be.”w Be.w
However, since A is an abelian group of bounded exponent, it is a direct
sum of finite cyclic groups, and so we readily see that (z. ovB = {1}.
(That is, A is residually finite.) Hence f(I) =0, so I C p(RN). Thus we
conclude that I C pAg(N,A), which completes the proof.

2.6. Proof of Theorem B. We first claim that it suffices to con-
sider the case where A is central in N. Assume the theorem to be true
in this case. For the general case, we set (A,; ¥) = (A, N) and, induc-
tively, (A, N) = ((A,n—1 N), N) for n 2 2, where for any two subgroups
X and Y of G, (X.,Y) is the subgroup generated by all commutators
7y 2y, 2 € X, y € Y. Then, (4,, N) = {1} for some n > 1, be-
cause N is nilpotent. We proceed by induction on n. The case n = 1
is assured by our hypothesis, so let n 2 2. Set B = (A,,—1 N) and let
~ : RG — R(G/B) be the natural map. Then (A4,,_; N) = {1} and
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hence U(1+ A R(E, N)A r(G, Z)) is torsion-free by induction. Therefore,
if u € TU(1+ Ar(G,N)AR(G,A)), then w = 1, that is, u— 1 € Ag(G, B).
So it follows from Lemma 1.3 that

u—1¢ AR(G, 1V)AR(G,A)HAR(G,B) = AR(G, .'V)AR(G,B).

Since (A,, N) = {1}, B is central in N and thus, by our hypothesis, U(1+
AR(G,N)AR(G, B)) is torsion-free. Therefore u = 1. This substantiates
our claim.

Now, turning the proof of the theorem, we assume (a). Then, by
the above argument, we may assume that A is central in N. Let u =
> sec w(9)g € U(1 + Ar(G, N)AR(G, A)). It suffices to show that u = 1
if uP = 1 for some prime p. Because N is a periodic nilpotent group, we
have ¥ = N; X N; where Nj is a p-group and N, is a p’-group. Then the
natural map  : RG — R(G/N,) vields a group homomorphism

f : U(l + AR(G’ "N)AR(Ga A)) - U(l + AR(—éa ﬁ)AR(a Z))

and since Ker f C U(1 + Ag(G,N3)), we obtain T,(Ker f) = {1} by

Lemma 2.3. Therefore, replacing N by N, we may assume that N is a
p-group. Observe that u — 1 can be written in the form

n
u—1=3Y Xgi(zi — 1)(a; — 1) (A € R,g; € G,2; € N,a; € A),
=1

and as in Lemma 2.3, set H = (z1,---,Zpn,a1,+*, @n). Then
u—1¢€ AR(G,H°)AR(G, H°NA)

and HC is of bounded exponent by Lemma 2.1. Thus we may assume here
that ¥ is a nilpotent p-group of bounded exponent. Set I = RG(u—1)RG
so that p/ C I?, and let 7 : RG — RN be the projection map. Then since
I is an ideal of RG, it is readily verified that = (I*) C n(I)" for all n 2 1.
Hence we have

pr(I) = 7(pI) € 7(I?) € x(I).

Since 7(I) € AR(N)AR(N,A), we deduce from Theorem A that I C
RGn(I) € p(RG). Thus u—1 € p(RG) so that u(1) # 0. Therefore, v = 1
by [10, p.45, Corollary 1.2].

Next assume (b). Then N is a finitely generated nilpotent group
and hence is polycyclic. We argue by induction on the Hirsch number

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 35/iss1/2
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R(N) of N. If R(N) = 0, then N is finite and the result is assured by
the case (a). Let A(N) > 0. Then N is infinite, and so there exists a
characteristic infinite torsion-free abelian subgroup B of N (see [9, p.425]).
Let u € TU(1 + Ar(G, N)AR(G, A)) and consider the natural map ~ :
RG — R(G/B). Then since h(N) < h(N), we have @ = 1 by induction.
So u—1 € Ar(G, B). Furthemore, TU(1+Ag(G, B)) = {1} by [3, Lemma
1.2], and hence u = 1. This completes the proof of the theorem.

3. Application. We shall omit the subscript Z from Az(G) and
Az(G,N), which are denoted by A(G) and A(G, N), respectively. Also,
we write D,(G) for the n-th dimension subgroup of G over Z, that is,

D,.(G) = GN(1 + A(G)™). (We do not know whether the next lemma
holds in a more general coefficient ring.)

Lemma 3.1. Let N be a normal subgroup of G and suppose
Dn(N) = {1} for some n 2 2. Then

A(G, N)"NA(G, Dn-1(N)) = A(G, N)A(G, Dn_y(N)).

Proof. We have only to verify that the left-hand side is contained
in the right-hand side, the oppsite inclusion being trivial. Denote by [
the left-hand side and let * : RG — RN be the projection map. Then
7(I) S A(NY'NA(N,Dp—1(N)) and so it suffices to prove that

A(NY'NA(N,D,—1(N)) € A(N)A(N,D,,—1(N)).
To this end, let @ € A(N)*NA(N,D,—1(N)). Then, as is well-known,
a=z-1(mod A(N)A(N,D,—1(N))) for some z € D,_1(N) (see [10, p.
76]). However, since a € A(N )", we have z — 1 € A(N)" so that z = 1.
Therefore, @ € A(N)A(N, Dyp-1()), as required.

Proposition 3.2. Let N be a periodic or finitely generated normal
subgroup of G. Then for each n 2 1 the factor group

U1+ A(G, N)")/U(1+ A(G, Da(N)))

is torsion-free.
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Proof. By considering G/D,(N), it suffices to prove that if D,(N) =
{1} then TU(1 + A(G,N)*) = {1}. To do this, we proceed by in-
duction on n, the case » = 1 being trivial. Let n 2 2 and let
T 1 ZG — Z(G/Dy_1(N)) be the natural map. Then, D,_;(N) = {1}
and so TU(1 + A(G,N)*!) = {1} by induction. Therefore, if u €
TU(1+ A(G,N)™), then we obtain @ =1 so that

u—1€ A(G,N)*NA(G, Du_1(N)).

Moreover, since D,(N) = {1}, u—1 € A(G, N)A(G, D,—1(N)) by Lemma
3.1. Note here that NV is nilpotent and that D,_,() is central in N. Thus
by Theorem B, we have u = 1, which completes the proof.
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