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A NOTE ON THE DIFFERENTIAL EQUATIONS
WITH RELAY-HYSTERESIS

MASATAKA YORINAGA

§ 1. Introduction.

In many cases the control mechanisms contain elements which have
the nonlinearities with relay-type characteristics, and consequently the
characteristic function ¢(s) of them has the discontinuities at switching
points where ~ is the so-called feedback signal. On several occasions, for
the convenience of treatment, this characteristic function ¢(s) is given by
a step function as Fig. 1.
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In practical questions, the relays do not behave to work on switching
accurately as in Fig. 1, and they have somewhat inclination to work in
retard. Namely, when ¢ is increasing from some negative value of +, the
relay operates switching after the lapse of some time-interval, rather than
in an instant of passing through the prepared switching point, inversely
when «+ is decreasing from some positive value of &, the same phenomenon
is observed. Such being the circumstance, we may characterize such in-
clination as the so-called relay-hysteresis (Fig. 2). Beside his phenomenon,
we often encounter the questions of physical systems with relay-hysteresis
(see 1. 3. IMbmkun [5]).

Strictly speaking, the characteristic function ¢(s) with relay-hystere-
sis is not a single-valued function in the mathematical sense, so we must
define its meaning, Recently, B. A, fIky6oBiy [6] treated this problem
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and he defined the hysteresis function ¢(s) as a family of operators which
transform a continuous function «(f) to a piece-wise continuous function
¢lo; ¢o): where ¢, denotes an initial value of hysteresis-curves. Moreover,
J. André and P. Seibert [1, 2] discussed the differential equations with
discontinuous right hand in connection with the discontinuous control sys-
tem and they systematically classified the points on the switching lines.

In this note, we are mainly concerned with the behavior of the solutions
of differential equations with relay-hysteresis in the neighborhood of the
switching lines, so that we prefer to consider that several regions on the
phase plane, on each of which differential equations are defined, are
connected with the switching lines and the path is continued across the
switching line to another region so as the path is continuous in the whole.
Especially, we shall try to extend the theory due to J. André and P. Seibert
to our problem and apply it to certain differential equations with relay-
hysteresis.

§ 2. Construction of the phase plane,

In the following, we consider the system of two differential equations
with relay-hysteresis as follows :
x=X(x, v, ¢lo)),
(2.1) y=Y(x, 3, ¢(o)),
o =clx, y)
where X(r, y, p) and Y(x, y, p) are continuously differentiable functions
with respect to (%, y, p)ER? o(x,») is a twice continuously differentiable
function with respect to (¥, y)ER® and ¢(e¢) is a hysteresis function. For
simplicity, we consider the relay-type hysteresis function ¢(s) with one
loop of the width of hysteresis §—a>>0 as in Fig. 3. Therefore, the graph
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of ¢(s) consists of two curves C, and C, which are prescribed by conti-
nuously differentiable functions p=¢\(s) for a<s<+oo and p=¢.s)
for —oo<<r<{8 respectively. We call the points s=« and =73 on the
o-line the switching points. In many cases, the graph of ¢(s) has disconti-
nuities at the switching points.
Now, we consider the meaning of solutions of such differential equa-

tions. We divide the phase plane into three regions, namely,

f Q={(x); 3=Za(x, 9},

R={(x, 9); aZalx, NS,

\ Qﬁ: {(x7 y) ’ '7(xa y)ga} .
In the following, we call the curves H,:qs(x, y)=c and H,:a{x, y)=3 in
the phase plane the switching lines. Moreover, we assume that », and 4,

do not vanish simultaneously on the switching lines.
Here, we put

{ Si=@,\UR,.
Ss= Qz |V R,
then the regions S, and S; are overlapped on the layer R. Therefore, we
consider that the differential equations (2.1) have the meaning as follows:
On the region S, there are defined differential equations
{ x=X(z 3, ¢:(a(x, y))),
y=Y(x, 5, ¢:alx, )
and on the region S, there are defined differential equations

(2.2)

{ =X (%, 3, ¢xalx, 9))),

y=Y(x, 3, ¢alx, ),

and we assume that a path on S, is only continued across the switching
line H, into the region S, in the other hand, a path on S, is only con-
tinued across the switching line H, into the region S,

In the sequel, we may consider that the phase plane consists of two
sheets S, and S, overlapped on the layer R and the representative point
on S; is only possible to pass through across the boundary H, to the other
sheet S., inversely, the representative point on S, is only possible to enter
through across the boundary H. to the sheet S, (Fig. 4).

In what follows, we shall limit our considerations to the class of the
system (2.1) satisfying the following conditions :

1° Any critical point of the differential equations of (2.2) and (2.3)
does not lay itself on the switching lines H, and H..

2° Each of paths only isolatedly meets with the switching lines H,
and H,, in other words, there no exists any accumulation point of the inter-

(2.3)
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section of paths with the switching lines.
Such a system we may call admissible.

§ 3. Behavior of paths on the sheet S,

For the later discussion, it is convenient to consider a region S, which

contains the region S,, say,

S ={(x, 9); a(z, ) Zx—¢, >0} DS,
and we assume that the given differential equations of (2.2) are defined in
the extended region S..

In the following, -we investigate what happens in the neighborhood
of the switching line H,, when the path ; on S, approaches to a point
P(x, ) on the line H, at a finite time.

On such a question, J. André and P. Seibert discussed in detail and
they classified the points on the switching lines. In the following, we make
researches on the aspect of paths by the method due to them.

Let

{ x=2(t, %o, ¥o);
Y=yt %o, 30)
be the solution of the equations (2.2), which are defined in the extended
region .§1, with the initial values x=x, y =y, at the time #=0 where
(0 yo)EH,. Since our system is admissible, the following limits
e, =1im0 sgn{s (f)—a},
{ e2=:ﬁr:{} sgn {m()—a}

always exist where

(3' 1) ‘Tl(t)=”(x1(t: xl)’ J’o): J’l(t, xo, yﬂ))
and sgn ¢ is the signum function defined by
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lel for 0 5=0,
sgn ¢ = G
0 for ¢=0.

In the region S,—H,, the values of «(x, y)—« are positive and in the
region S,—S, the values of (%, y)—« are negative, so that we often call
the region S,—H, the (= )—side of the sheet S, with respect to the line
H, and we call the region S,—S, the (—)—side of S, with respect to H..

Under these assumptions, according to the values of ¢, and e, there
occur four cases.

Case (A):e,=+1 and e;=—1.

In this case, for a sufficiently small time-interval I: —¢,<<t<<0, the
path 7 is contained in the (4-)—side of S, and it tends to the point P (%, 3.)
at ¢ tends to O increasingly and after the touching with the point P, the
path passes over the line H, to the (—)—side of the regions S, as f is
increasing (Fig. 5).

Case (B):e,=—1 and e,=-1,

In this case, the same as the case (A) occurs but as ¢ changes to —¢
(Fig. 6).

Case (C):e,=-1 and e,==-+1.

In this case, the path for —¢,<<#<<0 which is contained in the (+)—side

~of S, tends to the point P as f tends to O increasingly and after the

=) S

]’11 Sx ”; S‘

Fig. 5. Fig. 6.

touching the path y remains to stay in the (-+) side of S, without travers-
ing the line H, (Fig. 7).

Case (D):e,=—1 and e,=—1.

In this case, the aspect is the same as the case (C) except that the
path ; is contained in the (—)—side of S, for ¢#5+0. Therefore, the
solution corresponding to y is not a solution of the initial equations defined
on the region S; with the exception of the point P (Fig. 8).

Now, we consider the conditions under which the above cases occur.
We put as follows :
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{ Fl(xr J’)ZX(x: J’, ?](G(x, J’))),
Gy, 9)=Y(x, y, ¢:(a (x, ))),
and we have

{{7,(0)=0',;F1 +¢TyG1 z=2,

V=,
01 (0) =02 F} + 20, F\ G,V 5, G}
+”x(FlmF1+Flle)+‘71/(G1:5F1'1' Glycl) z=1,
=Y
Then, easily we obtain the following criterion due to J. André and P. Sei-
bert.

CRITERION : For the point P(x ) on the line H,,
1° if a(0)<<0, then the case (A) occurs,
2° if a,(0)>0, then the case (B) occurs,
3° when 7(0)=0, if a,(0)>0(0r <<0), then the case (C) (or the case
(D)) occurs.
Analogously, the same fact is considered for the equations
{ r=X(x, y, ¢:(0(x, ¥))) = Fi(x, y)
y=Y (&, 3, ¢:(a(x, ) = Gix, y),
which are defined on the sheets S, with respect to the same switching

line H, But in this time, since the line H; is not a boundary for the
sheet S,, we need not extend the region S; as in the case for the sheet

S
On the switching line H, the same holds too. But in this case, the

situation of the relation of S; with S, is in the opposite position. There-
fore, we are convenient to consider that the cases (4) and (B), (C) and (D)
are alternated respectively.

§ 4. Classification of the points on the switching lines.

In this section, we investigate the behavior of the paths in the neigh-

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 13/iss2/9



Yorinaga: A note on the differential equations with relay-hysteresis

DIFFERENTIAL EQUATIONS WITH RELAY-HYSTERESIS 189

borhood of the switching lines H; and H,, when the two sheets S; and S,
are combined with the lines H, and H, in the way as stated in § 3. In the
following, we shall classify the possibilities of occurence of the aspects of
paths by combinations of the cases on S; with the cases on S,. By combi-
nation of cases, there yield sixteen cases for each of H; and H, but we
can take up five cases as typical ones by classification under the principle
that how many paths passing through the point on the switching lines H,
and H, there exist into the future, and how many paths there exist into
the past.

The notation, say, (A)—(B) denotes that in the region S, there occurs
the case (A4), and the case (B) occurs in the region S, with respect to H..
(For H, the same thing goes on satisfactorily by alternation of S, and S,
(A) and (B), and (C) and (D).)

1°: (A)—(A). In this case, there exists the unique path y; passing
through the point P& H, into the future, but there are two paths y; and
77 into the past. The path y; on S, is continued to the path ;7, which
is contained in the (—)—side of S,, after the touching of the point P as
¢ increases. We call such a point a transition point (Fig. 9). The case
(A)— (D) belongs to this class.

2°: (A)—(B). In this case, there exists the unique path y; passing
through the point P into the future, but there are two paths y; and y;
into the past tco. The path ;v on S, is continued to the path y;, which
is contained in the (4-)—side of S, after the touching of the point P as
¢t increases. We call such a point a reflecting point (Fig. 10). The case (A)
—(C) belongs to this class.

Fig. 9. Fig. 10.
3°: (B)—(A). In fhis case, these exist two paths y; and y; passing

through the point P into the future, but there is only one path y; into
the past which is contained in S,. But the path ;I only passes across H,
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remaining to stay in S,, since any path does not enter from S, to S,
traversing H,. We call such a point a maintaining point (Fig. 11). The
cases (B)—(B), (B)—(C) and (B)—(D) belong to this class.

4°: (C)—(A). In this case, there exist two paths yi and y; passing
through the point P into the future and there also exist two paths yi and
vz into the past. We call such a point an ambiguous point (Fig. 12). The
cases (C)—(B), (C)—(C) and (C)—(D) belong to this class.

5°: (D)—(A). In this case, there exists the unique path j; passing
through the point P into the future and there exists the unique path jy
into the past. We call such a point a degeneration point. The cases (D)—
(B), (D)—(C) and (D)—(D) belong to this class.

P
S H, H,
Fig. 11. Fig. 12.

In conclussion, we have:

“For the differential equations (2.1) under the assumptions above
stated, the existence of solutions always guaranteed. Moveover, if there
is no any ambiguous point on the two switching lines, then for the path
starting from a point which is off the switching lines, the uniqueness of
the solution into the future is also guaranteed’.

Remark 1. In general, the continuity property on the initial point of
the path does not hold. It is easily convinced by considering the behavior
of paths in the neighborhood of the ambiguous point.

Remark 2. When we need not recognize the distinction between tran-
sition points and reflecting points, we may call the point of these classes
the confluent point. On the contrary, we may call the maintaining point
the apparently bifurcation point. Moreover, we may call the ambiguous
point the complex point by considering as the compound of the above.

§ 5. The nonadmissible cases.
When the system is not admissible, we can find various aspect even
for the elementary critical points. In the following we pick up some typical
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cases. Although we do not state the definitions in detail, all of them are
self-explaining.

1° When the point on H, is a stable node for the differential equations
defined on the extended region §1> and is an ordinary point for the equations
on S,, then the point is a confluent point, that is, the infinitly many paths
gather in this point and only one path goes out of this point.

2° When the point on H, is an unstable node for the equations on S,
and is an ordinary point of the equations on S,, then the point is an ap-
parently bifurcation point, that is, there is one path approaching to this
point and there are infinitly many paths going out of this point. But the
path approaching to this point is not continued to the paths going out of
this point except the path staying on S..

3° When the point on H, is a saddle point for the equations on §1
and at least two separatorices of it are contained in S,—H,, then the point
is a complex point.

4° When the point on H, is a center for the equations on 5, and is
an ordinary point for the equations on S,, then the point is a degeneration
point.

5° When the point on H, is a stable node for the equations on S, and
is a point of the case (A) on S,, then the point is an end point, that is,
all of the paths approach to this point but they cease continuing into the
future after touching.

6° When the point on H, is a stable node for the equations on S, and
is a point of the case (B) on S,, then the point is an apparently confluent
point.

7° When the point on H, is an unstable node for the equations on S,
and is a point of the case (4) on S,, then the point is a bifurcation point.

8° When the point on H, is an unstable node for the equations on S,
and is a point of the case (B) on S, then the point is a starting point,
that is, all of paths start from this point.

9° When the point on H, is a center for the equations on S, and is
also a center for the equations on S, then the point is a stagnation point,
that is, the path consists of only one point.

When the switching line H, is coincident with a part of the path of
the equations on S, or S.,, we can take up two typical cases.

1° When the part of the path on S, is coincident with H, then the
point is an ambigous point.

2° When the part of the path on S, is coincident with H, then the
point is considered as the congruent case of the reflecting point and transi-
tion point, therefore, it is confluent point.
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§ 6. Chattering zone for the special case.

Now, we consider the case where we can construct the region G
contained in R overlapped by S, and S, as follows: The boundary of
the region G consists of four arcs, namely, two subarcs of the switching
lines H, and H, and two certain arcs as in Fig. 13. The points on the arcs
AD and BC are reflecting points and all paths passing through the point
on the other two arcs AB and CD
enter into the region G. Moreover,
in this region G. there no exists
any critical point. In this time, if
the path once enters into this region
G, then it cannot go out of this
region G and the path repeat to go
and return between two switching
lines H, and H,. The path starting
from a point P on the arc AD in-
cluding both endpoints again return Fig. 13.
to some point AD after being reflect
ed by the arc BC. Therefore, we have a continuous point-transformation
from AD to AD. Since the arc AD is homeomorphic to the segment [0,
1], hence, from Brower’s fixed point theorem, we conclude that, if we can
find such a region G— called a chattering zone —, then there exists an
oscillatory motion, namely, a periodic solution (In practical problem, this
oscillation, which generally has very high frequency, is well known as the
chattering in relays). Especially, in the following special case, we can
discuss to construct the chattcring zone in a concrete form.

Now, we consider the following equations

.'i: = a1x+ bly -I—pgﬂ(o'),
(6.1) y=ax+by+qe(s),
\ o=cx-+dy,
where a;, b, (i=1,2), p,q,c and d are constants and ¢(s) is a symmet-
ric relay-hysteresis function with the half-width of hysteresis 0>>0 and the
output of two constant states +1 (Fig. 14).

In this time, on the sheet S,:o(x, ¥)=cx+dy==—4d, the equations of

(6.1) are equivalent to
i=ax+by+p,

(6.2) { : 1 Wy p
y=a,x-+b,y-+gq,

and on the sheet S,:cx+dy<s, (6.1) is equivalent to
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x=ax+by—p,
(6.3) { ax’1' 1%y 7
y=ax=by—q.
If
(6.4) c b1 p‘ +d p () %I:f) (3 bll
b; q q a, a, b,

then, the system (6.1) is admissible.

Indeed, if, on the switching line H,: cx+-dy=4 or H.:cx+dy=—d,
there is a critical point P(x,, y,) of the equations of (6.2) or (6.3), then it
must be that the determinant of the coeffiecients of the following equations

a;xg‘{‘ bly()i_p:O,
agxo':— bgyoiqzo,
\ cxot-dy,t6=0
vanishes.
Moreover, if the part of path of (6.2) or (6.3) is coincident with the

switching line H, or H. then, when d==0, for some interval I of 1z,
the function

(6.5) y=i%—%x forxe I
is a solution of the following differential equation
d @:x+by+
(6.6) Ei:—,: ajx+bji3)'
Therefore, substituting (6.5) into (6.6), we have
(day—cby)x+dg+0b,
(da,—cb)x*+dp+éb,

hence, the determinant of the coefficients must vanish. This proves (6.4).
Put

= const. forxe I,

s(x, )=c(ax+by)-+d(a.x+-b.y)
=(ca,*+-day)x+(ch,+-db.,)y.
If
4= |ca,+da, cb,+db, | =0,
c d
then the switching line H, and straight line L, : s(x, )= —(cp-+dp) traverse
each other. We denote the point of intersection of H; with L, by A. Since

the switching line H, is parallel to H,, L, intersects with H, at the point
B.

Similarly we consider a straight line L,: s(z, y)=cp-+-dq and we denote
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the points of intersection of the line L. with two lines H, and H, by D
and C respectively. Then we obtain a parallelogram ABCD (Fig. 15).

Now, we investigate the directions of paths on each side of the para-
llelogram ABCD.

f

+1

|
<

I

)
I S

|
-

Iig. 14. Fig. 15.

In order that any point on AD is a reflecting point, it is sufficient
that for the path defined by (6.2) 4:<<0, and ¢.>0 for the path defined
by (6.3) where

ci=o (O)=%t£(xi(t, % ), vt %, 90 [, _q (i=1, 2)
for (x,y)EH,.
Therefore, for the paths of (6.2), it must be
clax+b,y-1-p)+d(a.x-+b,y-+q)<0,
hence, we have
(6.7) s(x, y)=(ca,+da,)x+(cb,+db)y <<—(cp-+dp).
Similarly, for the paths of (6.3), we have
(6.8) s(x, y)=(ca,+day)x~+(cb,+db,)y>(cp+dq).
If ¢p+dg<<0, then the segment of H, given by both inequalities (6.7)
and (6.8) has nonempty intersection. In the sequel, we have that if cp+
dg<<0, then the point on AD is reflecting point, The same discussion is
valid for the side BC and we obtain the same inequality.
Let H, be the straight line:
H,:0(x, y)=cx--dy=y (—o<y<<a),
then the coordinates of the point of intersection of - H, with L, are

x= (i (cby+dby) - dlcpt-dg),
(6.9)

NN

y=={y(ca,-+das)-+clcp--dq)}.
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Firstly, from the conditon posed on the segment AB and negaitiveness of
cp+dg, it must be that, along the path of (6.2), s=s(x, y) is decreasing
at (x,y)e AB. Hence,

(6.10) s'=(ca,+da)ax+by+p)+(ch+db.)ax+by+g)<O.
Substituting (6.9) into (6.10) and rearranging, we have the following in-
equality :

(6.11) Up+V<W (—0<y<<d)
where

U=a\b:—a:b,,
V= —(al"l‘bs)(CP'l‘d(I):
W= — {(ca,~+da)p-+{chb +dby)q}
Similarly, from the condition posed by path of (6.3), we have

(6.12) Uy+V<—~W (—o<<y <o)

The same discussion is valid for the side CD and we obtain the same in-
equalities as (6.11) and (6.12).

Moreover, the parallelogram ABCD does not contain any critical
point of the equations of (6.2) or (6.3). Obviously, the critical point lay
itself on the lines L, or L.. Since, on the segments AB and CD, the
direction of path is exactly determined, there no exists any critical point
on the segment AB and CD.

And we find that the condition (6.11) iucludes the condition (6.4).

Summarizing the above, we have:

“For the admissible system (6.1), when A0, the parallelogram
ABCD can be coustructed and moreover, if cp+dqg<<0 and \U|s-1-V<
— | W|, then the parallelogram ABCD is a chattering zone.”

§ 7. Example.

Now, we consider the following equations

7.1) { x=—kxt+¢lo)

d=cx—py(a)
where %, ¢ and p are positive constants and ¢(s) is a symmetric relay-
hysteresis function with the half-width of hysteresis §>0 and the output

of two states =M (M =>0).
Put

{ Sl= {(x) ﬂ') H 0'2"‘()})
S;={(*,0); 6 =4},
In the sheet S,, the equations of (7.1) are equivalent to
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(7.2) {

s=cx—pM.
Since these equations are linear equations with constant coefficients, we

easily obtain explicitly their solution which passes through the point P (%,
—0) on the line H,:6=—4 at the time #=0. Namely, we have

%:(2) =%’(1 —e ™) +xpe™,

on®) =Sty 1— ) + ML~ )t s,

as long as (x,, o) €S,
Similarly in the sheet S,, the equations of (7.1) are equivalent to
x=—kx— M,
7.3 {°
e=cx-+p M.
And we obtain the solution of (7.3) such that the path passes through the
point P(#x, ) on the line H,:s=4 at the time #=0. Namely, we have:

%)= %J(e"“ —1)+xe*,
a(2) =%(x0+ %4)(1 —e ") — M( %— P+,

as long as (%, a2) € Se.

Therore, if pk>>c¢, then the aspect of paths on each of the sheets S,
and S, is as in Fig. 16.

In this case, it is easily seen that this system (7.1) is admissible if
pks~5c, and, by checking the criterion on the chattering zone stated in the
preceding section, or as is easily seen intuitively from Fig. 16, we find
that the parallelogram ABCD is a chattering zone. Therefore, there exists
a periodic motion in ABCD.

On the other hand, if pk<Ce, then we can similarly draw the aspect
of paths. But in this case, there is only apparent chattering zone, of which
all of paths eventually go out.

If the half-width of hysteresis ¢ tends to zero, the chattering zone
clearly degenerates to a rest interval (=a set of end points). Therefore,
the existence property into the future is broken off by the limiting process
and there yields some gap between the case; 4>0 and the limiting case
d=0. But if we interpret the meaning of solutions for the case 6=0 by
the definition due to A, ®. Puaunnop [3], then we can supply this gap to
a certain extent.

In this case, our problems reduce to the problems of differential equa-
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tions with discontinuous right members, and various facts are known (see
S. Lefschetz [4]).
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