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In [3], Herstein proved that if R is an associative ring with the
property that for each pair of elements x, y in R there exists an integer n =
n{x,y) > 1 such that xy—yx = (cy—yax)" then R is commutative. Putcha,
Wilson and Yaqub [6] attempted to weaken the assumption on R, and investi-
gated the structure of a ring R with center Z satisfying the condition that
for each pair of elements x, y in R there exists z = z(x,y) € Z and an
integer n = n(x,y) > 1 such that xy—yx = (xy —yx)"2z. They showed that
for such a ring R, R/J is a subdirect sum of division rings and (xy —yx)""
is in Z, where J denotes the Jacobson radical of R. They claimed also that
every generalized quaternion division algebra satisfies the condition. In this
paper, we shall show that such a ring R is a subdirect sum of a commutative
ring and central division algebras of degree 2. and the condition on R is
equivalent to that the commutator ideal of R is a strongly regular ring
satisfying the standard polynomial identity S, of degree 4. More generally,
we shall give some characterizations of a ring in which all commutators are
strongly regular, where an element a of a ring R is called strongly regular
if a € a’R N Ra’® (see [1]). Clearly, all commutators in the rings mentioned
above are strongly regular. Using a result of Fisher and Snider [2], we
shall prove that if all commutators in a ring R are strongly regular then the
commutator ideal of R is strongly regular, and R is a subdirect sum of
a commutative ring and division rings. Finally, we shall generalize [6,
Theorem 5] as follows : if R is a ring with center Z and if for each pair of
elements x, y in R there exists an element z = 2(x,y) in Z and an even
positive integer n = n(x, y) such that xy—yx = (xy —yx)"z, then R is
commutative.

Throughout this paper, R denotes an associative ring not necessarily
having a unity, Z(= Z(R)) the center of R, and [x,y] the commutator
xy—yx of x and y in R. The ideal of R generated by all commutators is
called the commutator ideal of R and is denoted by C(R ). An element a of R
is called left n-regular (resp. right m-regular) if there exists an x in R and

a positive integer n such that " = xa™*"' (resp. a” = a™'x). A left and
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right z-regular element is called strongly m-regular. Aring R is called left
n-regular if every element of R is left m-regular. In view of a theorem of
Dischinger-Zéschinger (see e.g., [5, Proposition 2]), every left r-regular
ring is strongly m-regular, that is, every element in R is strongly n-regular.

The following lemma has been proved in the proof of [2, Proposition
2.1].

Lemma 1. An element a of R is left (resp. right) m-regular if and only
if so is the natural homomorphic image of a in each prime factor ving of R.

Proposition 1. If every prime factor ring of R is commutative or
strongly m-regular, then commutator ideal C(R) is strongly n-regular.

Proof. Let a be an arbitrary element of C(R), and P an arbitrary
prime ideal of R. If R/P is commutative, then g2 = a+ P equals 0 (and
strongly z-regular) in R/P. Hence, by Lemma 1, a is strongly n-regular
in R. Now, it is easy to see that a is strongly m-regular in C(R).

For a ring satisfying a polynomial identity, we have

Corollary 1. If R is a Pl-ring. then the following are equivalent :
(a) C(R) is strongly m-regular.
(b) Every prime factor ring of R is commutative or Artinian simple.

Proof. It suffices to show that (a) implies (b). Let P be a prime ideal
of R, and suppose that R/P is not commutative., Then I = C(R/P) (=% 0)
is a strongly n-regular prime Pl-ring, and [7, Theorem 1.7.9] proves that
I coincides with the ring of central quotients of I, which is an Artinian
simple ring with unity e. Let r be an arbitrary element of R/P. Then
I(r—er) = 0. Since R/P is prime. we have r = er. Similarly, r = re.
Therefore, e is the unity of R. This implies that R/P = I, and so R/P is
Artinian simple.

The next is [1, Lemma 1].

Lemma 2. Let a be a strongly regular element of R. Then there exists
uniquely an element z in R such that az = za, o’z = a and a2z’ = z. More-
over, z commules with every element of R which commutes with a.

A ring R is called strongly regular if all elements of R are left regular,
or equivalently, strongly regular. As is well known, a ring R is strongly
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regular if and only if R is von Neumann regular and every idempotent in R
is central, Moreover, in view of Lemma 2, we can easily see that R is
strongly regular if and only if R is a strongly m-regular ring without non-
zero nilpotent elements.

A ring R is said to be N-irreducible if the intersection of any two non-
zero ideals of R is non-zero.

We shall characterize a ring R with C(R) strongly regular.

Theorem 1. The following are equivalent for a ring R :

(a) C(R) is strongly regular.

(b)  All commutators in R are strongly regular.

(c) Every N-irreducible factor ring of R is a commutative ring or a
division ring.

(d) R is a subdirect sum of a commutative ring and division rings, and
every prime factor ring of R is a commutative ring or a division ring.

Proof. (a) = (b). This is trivial.

(b) = (c). It suffices to show that if R is a non-commutative -
irreducible ring satisfying (b) then R is a division ring. First, we claim
that every idempotent of R is central. Let e be an idempotent in R and let
a € R. Then we have [e,ea—eae] € [e,ea—eae]’R = 0, that is, ea =
eae. Similarly, we have ge = eae, and so ea = ae ; e is central. Let x be
an arbitrary element of R not contained in Z. Then [x.y] # 0 for some y €
R. By our assumption and Lemma 2, there exists z € R such that [x,y] =
[x,y]z[x,y]. Since R is N-irreducible, the non-zero central idempotent
[x,y]z must be the unity of R, and so [x.y] is invertible. Then x[x,y] =
[x,xy] implies that x is invertible. Now, let ¢ be an arbitrary non-zero
element in Z. Then c¢[x,y] = [x,cy] implies that ¢ is invertible. Thus we
have shown that R is a division ring.

(c) = (d). Noting that every subdirectly irreducible ring and every
prime ring are N-irreducible, we can easily see that (c¢) implies (d).

(d) =>(a). By Proposition 1, C(R) is a strongly z-regular ring. Since
R is a subdirect sum of a commutative ring and division rings, we can easily
see that C(R) has no non-zero nilpotent elements. Thus, C(R) is strongly
regular.

As an immediate corollary to Theorem 1, we have

Corollary 2. Let R be a ring in which every commutator is strongly
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regular. If there exists no non-commulative division ring which is a homo-
morphic image of R, then R is commutative.

In [6], Putcha, Wilson and Yaqub investigated the structure of rings
satisfying the following condition :

(I) For every pair of elements x, y in R, there exists an integer n =
n(x,y) > 1 and an element z = 2(x,v) in Z such that [x.y] = [x,y]"2.

By making use of Theorem 1. we shall characterize a ring satisfying (I).

Theorem 2. The following are equivalent for a ring R :

(a) R satisfies (I).

(b) C(R) is a strongly regular ring satisfying the standard polynomial
identity Sy of degree 4.

(e) Every N-irreducible factor ring of R is a commutative ring or a
central division algebra of degree 2.

(d) R is a subdirect sum of a commutative ring and central division
algebras of degree 2. and every prime factor ring of R is a commutative ring
or a division ring.

Proof. Clearly, (c) implies (d), and Theorem 1 shows that (d) implies
(b).

(a) = (¢). In view of Theorem 1, it suffices to show that every non-
commutative division ring R satisfying (I) is a central division algebra of
degree 2. Let x, y be two elements of R. By (I), there exists an integer
n>1 and z € Z such that [x,y] = [x.y]"2. If [x.y] 0, then [x.y]"' =
2~' € Z. On the other hand, if [x.y] = 0 then [x,y] € Z trivially. There-
fore. by [4, Corollary 3.7], D is a central divison algebra of degree 2.

(b) = (a). By Theorem 1, R is a subdirect sum of a commutative ring
and division rings D, (A € A). Since each D, is a homomorphic image of
C(R), D, satisfies S,. Thus, each D, is a central division algebra of
degree 2 by [6, Theorem 1.5.16]. Let D be one of the D, and let K be a
maximal subfield of D. Then, regarding D as a subring of D @ K = M.(K),
by Cayley-Hamilton theorem we see that [x,y]? = tr([x, y]) [z, ]
—det([x,y]) = —det([x,y]) € Z(D) (x., y € D). Since R is a subdirect
sum of a commutative ring and the D,, we have [x,y]* € Zfor all x, y in R.

Now, let x, y be arbitrary elements of R, and put a = [x.y]. By
Lemma 2, there exists uniquely an element 2 € C(R) such that az = za.
a’z = a and az® = z. Then o'z’ = d® and a’2' = 2°. Since a* € Z. we
conclude 2* € Z by Lemma 2. Also, we can easily see that ¢ = a’z. Hence,
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R satisfies (I).

Corollary 3. If R contains no infinite set of orthogonal central idem-
potents, then the following are equivalent :

(a) R satisfies (I).

(b) R is a direct sum of a commutative ring and a finite number of
central division algebras of degree 2.

Proof. It suffices to show that (a) implies (b). By Theorem 2. every
idempotent of R is central. Hence, by hypothesis, C(R) is a finite direct
sum of central division algebras of degree 2 (Theorem 2), and C(R) is a
direct summand of R.

The following example shows that every ring satisfying (I) need not be
a direct sum of a commutative ring and a strongly regular ring.

Example. Let H" be the direct product of copies of the ring H of real
guaternions indexed by the set N of natural numbers, and H" the direct sum
of copies of H. Consider the subring R = Z-1+H" of H" generated by 1
and HY. Then, C(R) = H"™ is strongly regular, but R cannot be a direct
sum of a commutative ring and a strongly regular ring.

Finally, we consider the following condition :

(II)  For each pair of elements x. y in R, there exists an element z =
z(x,¥) in Z and an even positive integer n = n(x,y) such that [x,y]=
[z, y] ™.

We conclude this paper with the following corollary which generalizes

[6. Theorem 5].

Corollary 4. Every ring R satisfying (II) is commutative.

Proof. Let x, y € R. As was shown in the proof of Theorem 2, [x,y]’
€ Z, and therefore. by hypothesis, [x,y] € Z. Since any division ring
with this property is commutative, Theorem 2 proves that R is commutative.
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