Mathematical Journal of Okayama University

Volume 19, Issue 1

1976

Article 11

DECEMBER 1976

Note on the maximal quotient ring of a Galois subring

Yoshimi Kitamura*

*Tokyo Gakugei University

Copyright ©1976 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

NOTE ON THE MAXIMAL QUOTIENT RING OF A GALOIS SUBRING

YOSHIMI KITAMURA

Let A be a ring with identity, G a finite group of automorphisms of A, and A'' the subring of A consisting of all elements of A left fixed by all elements of G. When A has a classical left quotient ring $Q_{cl}(A)$ and the extension of G to $Q_{cl}(A)$ is identified with G, A^G has $Q_{cl}(A)^G$ as its classical left quotient ring under suitable hypotheses (cf. [2], [3], In stead of classical left quotient rings, we shall [4], [8] and [9]). consider here maximal left quotient rings in the sense of Utumi-Lambek. As was shown by Utumi [10], a ring A always has its maximal left quotient ring $Q_{max}(A)$ determined uniquely up to isomorphism over A and every ring automorphism of A can be extended uniquely to that of $Q_{\max}(A)$. We shall now identify the unique extension of G to $Q_{\max}(A)$ with G. As was noted in [2], in general it is not true that $Q_{\max}(A)^c = Q_{\max}(A^c)$. The purpose of this note is to prove the last equality under the hypothesis that A is a G-Galois extension of A^{c} , namely, there exist $x_{1}, \dots, x_{n}; y_{1}$, $y_n \in A$ such that $\sum_i x_i \sigma(y_i) = \delta_{1,\sigma}$ for all $\sigma \in G$ (cf. [7]).

Throughout the present note, it is always assumed that every ring has an identity, every subring of a ring contains the same identity and that every module as well as every ring homomorphism is unital. Furthermore, A will represent a ring, and G a finite group of automorphisms of A, which will be identified with the unique extension of G to the maximal left quotient ring $Q_{\max}(A)$ of A.

1. Lemmas. We shall recall here several terminologies which will be used in the sequel. Let ${}_RM \subset {}_RN$ be left R-modules. If M has nonzero intersection with every nonzero R-submodule of N, then M is an essential submodule of N (or N is an essential extension of M). If, for each x, $0 \neq y \in N$ there exists $a \in R$ such that $ax \in M$ and $ay \neq 0$, then N is a rational extension of M (or M is a dense submodule of N). If a ring extension S of R is a rational extension of R as a left R-module, then R is called a left quotient ring of R. For the notion and information about maximal left quotient rings see [10] or [6, § 4.3].

The next lemma is well known. However, for the sake of completeness, we shall give here the proof.

56 Y, KITAMURA

Lemma 1. Let $_RM$ and $_RN$ be left R-modules, and let $_R\hat{N}$ be the injective hull of $_RN$. Then the following statements are equivalent:

- 1) Hom_R $(M, \hat{N}) = 0$.
- 2) For each $x \in M$, $0 \neq y \in N$, there exists $a \in R$ such that ax = 0 and $ay \neq 0$.

Proof. 1) \Longrightarrow 2): Let $x \in M$, $0 \neq y \in N$. We may assume $x \neq 0$. Let I be the left annihilator of x in R. Then the right multiplication map of x from R to Rx induces an R-isomorphism of R/I to Rx. If Iy = 0, then the right multiplication map of y induces a nonzero R-homomorphism of R/I to N, and so, $R\hat{N}$ being injective, $Hom_R(M, \hat{N}) \neq 0$, contradicting 1).

2) \Longrightarrow 1): If there exists an R-homomorphism f of M to \hat{N} such that $f(x) \neq 0$ for some $x \in M$, then, N being essential in \hat{N} , there exists $a \in R$ with $0 \neq af(x) \in N$, and so we have $a' \in R$ such that a'(ax) = 0 and $a'(af(x)) \neq 0$. This is a contradiction.

Lemma 2. Let S/R be a ring extension, \hat{S} the injective hull of ${}_{S}S$, and \hat{R} that of ${}_{R}R$. Let α : $\operatorname{Hom}_{R}(S, \hat{R}) \to \hat{S}$ be an S-isomorphism. Then, for an arbitrary left S-module ${}_{S}X$, the map

$$\alpha'(X): \operatorname{Hom}_{\mathbb{R}}(X, \hat{R}) \to \operatorname{Hom}_{\mathbb{S}}(X, \hat{S})$$

defined by

$$[\alpha'(X)(g)](x) = \alpha(g \cdot \rho_x)$$
 $(g \in \text{Hom}_R(X, \hat{R}), x \in X)$ is bijective, where $\rho_x : S \to X$ is defined by $(\rho_x)(s) = sx(s \in S)$.

Proof. To be easily seen, $\alpha'(X)$ is the composite of the following isomorphisms:

$$\operatorname{Hom}_{R}(X, \hat{R}) \cong \operatorname{Hom}_{R}(S \otimes_{S} X, \hat{R}) \cong \operatorname{Hom}_{S}(X, \operatorname{Hom}_{R}(S, \hat{R})) \cong \operatorname{Hom}_{S}(X, \hat{S}).$$

Following F. Kasch [5], a ring extension S/R is called a *Frobenius* extension if $_RS$ is finitely generated projective and $_SS_R \cong _S Hom(_RS, _RR)_R$.

Let $\Delta = \Delta(A; G)$ be the trivial crossed product of A with G, that is, $\Delta = \bigoplus_{\sigma \in G} Au_{\sigma}$; $\{u_{\sigma}\}_{\sigma \in G}$ is a free generator for Δ over A, $au_{\sigma} \cdot bu_{\tau} = a\sigma(b)u_{\sigma}$; $(a, b \in A; \sigma, \tau \in G)$. Then the map

induces a left 1-, right A-bimodule isomorphism

$$\Phi: \varDelta \to \operatorname{Hom}({}_{A}\varDelta, {}_{A}A), \quad (\Phi(d))(x) = h(xd) \quad (d, x \in \varDelta)$$

whose inverse is given by

NOTE ON THE MAXIMAL QUOTIENT RING OF A GALOIS SUBRING

$$\Phi^{-1}(f) = \sum_{\sigma \in G} \sigma (f(u_{\sigma^{-1}})) u_{\sigma} \quad (f \in \operatorname{Hom}(AJ, AA)).$$

Therefore, J/A is a Frobenius extension.

Lemma 3. Let \hat{A} and \hat{J} be the injective hulls of ${}_{A}A$ and ${}_{3}J$, respectively. Then there exists a left J-module isomorphism $\operatorname{Hom}_{A}(J, \hat{A}) \cong \hat{J}$.

Proof. At first, we shall show that $\Delta \bigotimes_A \widehat{A}$ is an essential extension of $\Delta(\cong J \bigotimes_A A)$ as left J-modules. To see this, let $x = \sum_{\sigma \in G} u_\sigma \bigotimes_\sigma (\{x_\sigma\}_{\sigma \in G} \subset \widehat{A})$ be an arbitrary nonzero element of $\Delta \bigotimes_A \widehat{A}$. We have then $x_\sigma \neq 0$ for some σ . However, $A\widehat{A}$ is an essential extension of AA, and so there exists some $a_\sigma \in A$ such that $0 \neq \sigma^{-1}(a_\sigma)x_\sigma \in A$. Since

$$a_{\sigma}x = \sum_{\tau \in G} u_{\tau} \cdot \tau^{-1}(a_{\sigma}) \otimes x_{\tau} = u_{\sigma} \otimes \sigma^{-1}(a_{\sigma}) x_{\sigma} + y$$

Now, we shall denote by t the trace map

$$t: A \longrightarrow A^{G}, \ t(x) = \sum_{\sigma \in G} \sigma(x) \qquad (x \in A),$$

and say that t is *left nondegenerate* if $t(Aa) \neq 0$ for all nonzero $a \in A$, or equivalently, if $t(I) \neq 0$ for all nonzero left ideals I of A. The *right nondegeneracy* of t is defined symmetrically.

Lemma 4. Assume that the trace map t is left nondegenerate.

- 1) If I is a dense left ideal of A, then t(I) and $I \cap A^{r}$ are both dense left ideals of A^{r} .
- 2) $Q_{\text{max}}(A)^G$ is a left quotient ring of A^G . Furthermore, assume that for every dense left ideal D of A^G the left ideal AD of A is dense. Then
 - 3) $Q_{\max}(A)^{\alpha}$ is the maximal left quotient ring of A^{α} .

Proof. 1): Let I be a dense left ideal of A. Let x, $0 \neq y$ be elements of A''. Then, there exists $a \in A$ such that $ax \in I$ and $ay \neq 0$.

58 Y. KITAMURA

But, t being left nondegenerate, there exists $a' \in A$ such that $0 \neq t(a'ay)$ $= t(a'a)y \in A^{\sigma}$. It follows therefore that t(I) is a dense left ideal of A^{σ} . Noting that the intersection of a finite number of dense left ideals is a dense left ideal and $\sigma(I)$ is dense in A for each $\sigma \in G$, we see that $I_0 = \bigcap_{\sigma \equiv \sigma} \sigma(I)$ is dense in A, and so $t(I_0)$ is dense by the above. Therefore $I \cap A^{\sigma}$ is dense by $t(I_0) \subset I_0 \subset I$.

- 2): Let x, $0 \neq y$ be elements of $Q_{\max}(A)^n$. Then there exists $a \in A$ such that ax, $ay \in A$ with $ay \neq 0$. Then, in the same way as in 1), we can find an element $a' \in A$ such that $t(a'a)x \in A^n$ and $t(a'a)y \neq 0$, which yields 2).
- 3): In this proof, we shall use freely [6, Corollary to Prop. 8, p. 99] and write left module homomorphisms on the right side. Let $f: D \longrightarrow A^c$ be an arbitrary left A^c -module homomorphism of a dense left ideal D of A^c to A^c . Then the map

$$\bar{f}\colon AD\longrightarrow A$$

defined by

$$(\sum_k a_k d_k) \overline{f} = \sum_k a_k \cdot (d_k) f \quad (a_k \in A, d_k \in D)$$

is well-defined. Indeed, let assume $\sum_k a_k d_k = 0$ ($a_k \in A$, $d_k \in D$). Since $t(a\sum_k a_k \cdot (d_k)f) = \sum_k t(aa_k)$ (d_k) $f = (\sum_k t(aa_k)d_k)$ ($f = (t(a\sum_k a_k d_k))$) f for all $a \in A$, the left nondegeneracy of f yields f is dense in f by the assumption, and so there exists f is dense in f by the assumption, and so there exists f is uch that f is dense in f in all f is dense in f in all f in f

Lemma 5. If A is a G-Galois extension of A^{i} , then AD is a dense left ideal of A whenever D is a dense left ideal of A^{i} .

Proof. Let us set $B = A^{\sigma}$, and $C = \text{End}(A_B)$. There exist x_1, \dots, x_n ; $y_1, \dots y_n \in A$ such that $\sum_i x_i \sigma(y_i) = \delta_{\sigma,1}$ for all $\sigma \in G$. Then the map

$$i: J = J(A: G) \longrightarrow C$$

defined by

$$j(\sum_{\sigma} a_{\sigma}u_{\sigma})(x) = \sum_{\sigma} a_{\sigma}\sigma(x) \quad (x \in A)$$

is a ring isomorphism whose inverse is given by

$$j^{-1}(c) = \sum_{\sigma} (\sum_{i} c(x_i) \sigma(y_i)) u_{\sigma} \qquad (c \in C).$$

Moreover, if $i_1: A \to A$ is the natural injection and $i_2: A \to C$ is the left multiplication map then $ji_1 = i_2$. Therefore, we may and shall identify

C with \exists via j. Since $x = \sum_i t(xx_i)y_i = \sum_i x_i t(y_ix)$ for all $x \in A$, t is left and right nondegenerate. Let D be a dense left ideal of B. We shall show that $\operatorname{Hom}_A(A/AD, \hat{A}) = 0$, which will complete the proof by Lemma 1. Using Lemmas 2 and 3, it is sufficient to show $\operatorname{Hom}_C(A/AD, \hat{C}) = 0$. Let $x \in A$ and $0 \neq c \in C$. We have then $c(x') \neq 0$ for some $x' \in A$. Since t is left nondegenerate, there exists $a \in A$ such that $t(ac(x')) \neq 0$. Further, D being dense in B, there exists $b \in B$ such that $bt(ac(x')) \neq 0$ and $bt(ax) \in D \subset AD$. Then $c' = i_2(b) \cdot t \cdot i_2(a)$ is an element of C such that $c' \cdot x \in AD$ and $c' \cdot c \neq 0$, and so $\operatorname{Hom}_C(A/AD, \hat{C}) = 0$ by Lemma 1.

2. Main theorem. We are now ready for proving our main theorem.

Theorem. Let A be a G-Galois extension of A^a . Then $Q_{max}(A)^a = Q_{max}(A^a)$, and moreover $Q_{max}(A) = A$ if and only if $Q_{max}(A^a) = A^a$.

Proof. Put $Q = Q_{\max}(A)$. There exist x_1, \dots, x_n ; $y_1, \dots, y_n \in A$ such that $\sum_i x_i \sigma(y_i) = \delta_{\sigma,1}$ for all $\sigma \in G$. In the proof of Lemma 5 we have seen that the trace map t is nondegenerate. Therefore by Lemmas 4 and 5 we have $Q^{\sigma} = Q_{\max}(A^{\sigma})$. It is easy to see that $x = \sum_i x_i t(y_i x) = \sum_i t(xx_i)y_i$ for all $x \in Q$, where t is the trace map of Q to Q^{σ} . It follows then that $Q = A \cdot Q^{\sigma} = Q^{\sigma} \cdot A = A \cdot Q_{\max}(A^{\sigma}) = Q_{\max}(A^{\sigma}) \cdot A$, and so Q = A if and only if $Q_{\max}(A^{\sigma}) = A^{\sigma}$.

Obviously the maximal left quotient ring of a ring has no proper left quotient rings (see [6, Corollary to Prop. 2, p. 95]). Hence the following is an easy combination of our theorem and Lemma 4.

Proposition. If $Q = Q_{max}(A)$ is a G-Galois extension of Q^{G} such that the trace map $t: A \to A^{G}$ is left nondegenerate, then Q^{G} is the maximal left quotient ring of A^{G} .

Remark 1. If A is a semiprime ring without |G|-torsion, then the trace map t is left and right nondegenerate. If in addition the left singular ideal of A is zero, then $Q_{\max}(A)^g = Q_{\max}(A^g)$. In fact, $I = \{a \in A \mid t(Aa) = 0\}$ is clearly a G-invariant left ideal of A such that t(I) = 0. Thus I is nilpotent by [1, Proposition 2. 3]. However, A is semiprime, and so I = 0. Hence, t is left nondegenerate. Similarly, t is right nondegenerate. Since the left singular ideal of A is zero, $Q = Q_{\max}(A)$ is a regular, left self-injective ring. Hence, Q is injective as a left A-module. Moreover, the left quotient ring Q of A has no |G|-torsion. Thus we can apply the above argument to see that the trace

60

map $t: Q \to Q^{q}$ is left and right nondegenerate. Now, let D, f and \tilde{f} be same as in the proof of Lemma 4 3). The injectivity of ${}_{A}Q$ implies the existence of $q \in Q$ such that $(x) \tilde{f} = xq$ for all $x \in AD$, and so the proof enables us to see that $d(q - \sigma(q)) = 0$ for all $d \in D$, $\sigma \in G$. However, $Q^{q} \cdot D$ is a dense left ideal of Q^{q} by Lemma 4 2). Hence, the right nondegeneracy of $t: Q \to Q^{q}$ implies that the right annihilator of $Q^{q} \cdot D$ in Q is zero, which yields $q \in Q^{q}$. It follows therefore $Q^{q} = Q_{\max}(A^{q})$.

Remark 2. If A is commutative and the trace map t is nondegenerate then $Q_{\max}(A)^a = Q_{\max}(A^a)$. In fact, the nondegeneracy of t implies that if J is an ideal of A^a whose annihilator in A^a is zero then the annihilator of J in A is zero. However, in a commutative ring, a dense ideal is nothing but an ideal whose annihilator is zero. Now, the assertion is a consequence of Lemma 4.

REFERENCES

- [1] G. M. Bergman and I. M. Isaacs: Rings with fixed point free group actions, Proc. London Math. Soc. 27 (1973), 69-87.
- [2] C. FAITH: Galois extensions of commutative rings, Math. J. Okayama Univ. 18 (1976), 113—116.
- [3] M. COHEN: Semiprime Goldie centralizers, Israel J. Math. 20 (1975), 37—45; Addendum 24 (1976), 89—93.
- [4] V. K. HARCHENKO: Galois extensions and quotient rings, Algebra i Logika 13 (1974), 460-484 (in Russian).
- [5] F. Kasch: Projective Frobenius Erweiterungen, Sitzungsber. Heiderberger Akad. Wiss. 1960/61, 89—109.
- [6] J. LAMBEK: Lectures on Rings and Mcdules, Blaisdell, 1966.
- [7] Y. MIYASHITA: Finite outer Galois theory of non-commutative rings, J. Fac. Sci. Hokkaido Univ. Ser. I, 19 (1966), 114—134.
- [8] Y. Miyashita: Locally finite outer Galois theory, J. Fac. Sci. Hokkaido Univ. Ser. I, 20 (1967), 1-26.
- [9] H. TOMINAGA: Note on Galois subrings of prime Goldie rings, Math. J. Okayama Univ. 16 (1973), 115—116.
- [10] Y. UTUMI: On quotient rings, Osaka Math. J. 8 (1956), 1-18.

DEPARTMENT OF MATHEMATICS, TOKYO GAKUGEI UNIVERSITY

(Received November 12, 1976)