Mathematical Journal of Okayama University

Volume 19, Issue 2

1976

Article 11

JUNE 1977

On s-unital rings. II

Hisao Tominaga*

Copyright ©1976 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

ON s-UNITAL RINGS. II

Dedicated to Professor Tominosuke Otsuki on his 60th birthday

HISAO TOMINAGA

This is a natural sequel to [11]. The notation and terminology employed there will be used here, and $S_t(R)$ will denote the socle of $_RR$. In this paper, several results obtained by Yue Chi Ming [13], [14] and V. Gupta [5] for rings with identity will be carried over to s-unital rings and, in addition, some of our previous results obtained in [3], [4], [8], [10] and [11] will be improved.

1. In general, an element a of a multiplicative semigroup S is called a semi-unit if there exists an element a^* (called a semi-inverse of a) such that $a^2a^*=a$, $a^{*2}a=a^*$ and $aa^*=a^*a$. It is known that if $a^2a'=a=a''a^2$ for some a', $a'' \in S$ then a has a uniquely determined semi-inverse a^* and $a^*b=ba^*$ provided ab=ba (cf. [2, Lemma 1]). Moreover, if a is a left (or right) π -regular element of a ring of bounded index a then a^* is a semi-unit (see [2, Theorem 4]). Needless to say, in case a contains 1, a left (or right) regular element of a is a unit if and only if it is a semi-unit.

The next is contained in [11, Theorem 4].

Theorem 1. If R is left s-unital, then the following conditions are equivalent:

- 1) Every irreducible left R-module is s-injective.
- 2) Every s-unital left R-module M is semisimple; $rad(_RM) = 0$.
- 3) Every homomorphic image of $_{R}R$ is semisimple.
- 4) Every left ideal of R is an intersection of maximal left ideals.

If a left s-unital ring R satisfies one of the equivalent conditions in Theorem 1, then R is called a *left V-ring*. A left s-unital ring R will be called a *left V'-ring* (resp. *left p-V'-ring*) if every irreducible, singular left R-module is s-injective (resp. p-injective).

A left ideal I of a ring R is said to be *semi-modular* if for each $a \in R$ there exists some $c \in R$ such that $a - ac \in I$. Obviously, every modular left ideal in the sense of [6] is semi-modular.

Proposition 1 (cf. [11, Proposition 4]). (1) A left V-ring R is a left p-V-ring if and only if every maximal left ideal is semi-modular.

- (2) If R is a left V'-ring and every maximal left ideal is semi-modular, then R is a left p-V'-ring.
- (3) R is a left V-ring (resp. left p-V-ring) if and only if R is a left V'-ring (resp. left p-V'-ring) and every minimal left ideal is s-injective (resp. p-injective).
- **Proof.** (1) First, assume that every maximal left ideal of R is semi-modular. Let $g: R \longrightarrow M$ be an extension of a non-zero R-homomorphism f of Ra into an irreducible left R-module M. Since $\mathfrak{m} = \operatorname{Ker} g$ is semi-modular, there exists an element c such that $a ac \in \mathfrak{m}$. Hence, $(xa)f = (xac)g = xa \cdot cg$ for all $x \in R$. Conversely, we assume that R is a left p-V-ring. Let \mathfrak{m} be a maximal left ideal, and a an element of R. Considering the R-homomorphism $f: Ra \longrightarrow R/\mathfrak{m}$ defined by $xa \longmapsto xa + \mathfrak{m}(x \in R)$, we can find an element $c \in R$ such that $a + \mathfrak{m} = ac + \mathfrak{m}$, which means that \mathfrak{m} is semi-modular.
 - (2) This is evident by the proof of (1).
- (3) If an irreducible left R-module is not singular then it is isomorphic to some minimal left ideal. This proves (3).

Recently, in [5], V. Gupta introduced the notion of a left weakly π -regular ring as a generalization of those of a fully left idempotent ring and of a strongly π -regular ring; R is called a *left weakly* π -regular ring if for each $a \in R$ there exists a natural number n such that $a^n \in (Ra^n)^2$, i. e., $a^n = ea^n$ with some $e \in Ra^nR$.

The right analogues of the above notions will be defined in an obvious way.

- 2. Our first lemma contains several easy statements, which will be used frequently in the subsequent study.
- **Lemma 1.** (1) If a is a left regular element of R and ea = a for some $e \in R$, then e is a right identity of R. If, in addition, a is right regular then e is the identity of R.
- (2) If R is left unital and every Ra is a left annihilator, then R is (right unital and) left s-unital.
- (3) If R is right s-unital and (a) is a direct summand of $_{R}R$, then a = aa'a for some $a' \in R$.
- (4) If a proper left ideal I of a left s-unital ring R contains l(a) with some $a \in R$, then I is contained in a maximal left ideal.
 - *Proof.* (1) Since $xe x \in l(a) = 0$ for all $x \in R$, e is a right

identity of R. If furthermore r(a) = 0 then ae = a implies that e is a left identity of R.

- (2) In fact, $Ra \cdot r(Ra) = 0$ implies $a \cdot r(Ra) \subseteq r(R) = 0$, so $a \in l(r(Ra)) = Ra$.
- (3) Let $R = (a \mid \bigoplus f$ with a left ideal f, and ae = a. Since e = u + k with some $u \in (a \mid \text{ and } k \in f$, we obtain $a au = ak \in (a \mid \bigcap f = 0$. Hence, $a = au = au^2 \in aRa$.
- (4) Choose $e \in R$ with ea = a. Since $x xe \in l(a)$ for all $x \in R$, l is a modular left ideal. It is well-known that l is contained in a maximal left ideal (see, e.g. [6, Proposition I. 3. 2]).

Corollary 1 ([10, Lemma 1 (a)]). If α is a proper ideal of a left s-unital ring R, then α is contained in a maximal left ideal.

Proof. For any $a \in R \setminus a$, it is easy to see that $a + l(a) \neq R$. Hence, the statement follows from Lemma 1 (4).

A left annihilator in R is called a maximal left annihilator if it is maximal among the left annihilators different from R.

Theorem 2 (cf. [12, Lemma 2], [13, Theorem 9] and [14, Theorem 2]). The following conditions are equivalent:

- 1) R is a regular ring.
- 2) Every left R-module is p-injective.
- 3) Every (a | is p-injective.
- 4) R is left s-unital and every semisimple homomorphic image of $_{R}R$ is p-injective.
- 5) R is left s-unital, every $|a\rangle$ is a right annihilator, and every singular homomorphic image of $_RR$ is p-injective.
- 6) R is s-unital, every Ra is either l(b) with some $b \in R$ or a direct summand of $_RR$, and every singular homorphic image of $_RR$ is p-injective.
- 7) R is a semiprime s-unital ring, and every finitely generated left ideal is either a maximal left annihilator or a direct summand of $_RR$.

Proof. Obviously, $1) \Longrightarrow 7$). As was noted in the introduction of [4], $1) \Longrightarrow 2 \Longrightarrow 3 \Longrightarrow 1$, and $1) \Longrightarrow 4 \smile 6$.

4) \Longrightarrow 3) Obviously, R is a left p-V-ring. Let a be an arbitrary non-zero element of R, and b a non-zero element of Ra. Then there exists a left subideal l' of Ab which is maximal with respect to excluding b. Since Rb/l' is an irreducible left R-module, there exists an element $c \in Rb$ such that xb+l'=xbc+l' for all $x \in R$. Let $l = \{x \in Ra \mid xc \in l'\}$. Then, $l' = l \cap Rb$, Ra/l is R-isomorphic to Rb/l' and $b \not\in l$,

174

- namely, l is a maximal left subideal of Ra and excludes b. Hence, Ra is semisimple, so that Ra is p-injective.
- 5) \Longrightarrow 1) Let |a| = r(S) with a subset S of R, and ea = a, Choose a left ideal \mathfrak{k} such that $\mathfrak{l} = l(a) \oplus \mathfrak{k}$ is essential in ${}_RR$, and consider the R-homomorphism $f: Ra \longrightarrow R/\mathfrak{l}$ defined by $xa \longmapsto x+\mathfrak{l}$ $(x \in R)$. Then we can find an element $c \in R$ such that $x+\mathfrak{l} = xac+\mathfrak{l}$ for all $x \in R$. Setting e-ac=u+k with $u \in l(a)$ and $k \in \mathfrak{k}$, for any $s \in S$ there holds se=su+sk. Since $sk=se-su\in l(a)\cap \mathfrak{k}=0$, it follows $k\in r(S)=|a|$. Hence, $a=ea=(ac+u+k)a=aca+kea\in aRa$,
- 6) \Longrightarrow 1) In case Ra is a direct summand of $_RR$, by Lemma 1 (3) we have a=aa'a with some $a' \in R$. Next, we consider the case Ra=l(b). Let ae=a, and \mathfrak{k} a left ideal such that $\mathfrak{k}=l(b) \oplus \mathfrak{k}$ is essential in $_RR$. As above, we can find then an element $c \in R$ such that $x+\mathfrak{k}=xbc+\mathfrak{k}$ for all $x \in R$. Since $e-ebc \in \mathfrak{k}$, we set e-ebc=a'a+k, where $a'a \in Ra=l(b)$ and $k \in \mathfrak{k}$. Then, a=aa'a+ak, and $a-aa'a=ak \in Ra \cap \mathfrak{k}=0$. Hence, a=aa'a.
- 7) \Longrightarrow 1) First, we shall prove that R is left non-singular. Suppose $Z = Z_i(R)$ contains a non-zero element z. Since Z contains no non-zero idempotents, Rz can not be a direct summand of $_RR$ (Lemma 1 (3)), so that Rz is a maximal left annihilator l(t) $(t \neq 0)$. Moreover, Rz is essential in RR. In fact, if not, $Rz \cap Rw = 0$ for some non-zero $w \in R$. Recalling that $Rz \oplus Rw (\supset Rz)$ is a direct summand of RR, we see that Rz is also a direct summand of $_RR$, which is impossible again by Lemma 1 (3). Hence, t is in Z. If $Rz \neq Z$ then there exists some $z' \in Z$ such that Rz + Rz' = R, which means Z = R. By [11, Theorem 1], there exists an element e such that ze = z and z'e = z'. Then e is obviously a right identity of R = Z, which is contradictory. Hence, Rz = Z. But then $(Rt)^2 \subseteq Z \cdot Rt = 0$, which contradicts the semiprimeness of R. Thus, we have seen Z=0. Now, assume that Ra is a maximal left annihi-Since Z = 0, there exists a non-zero $b \in R$ such $Ra \oplus Rb$ is a direct summand of $_RR$. Then Ra is also a direct summand of $_RR$, and hence R is a regular ring by Lemma 1 (3).

Next, we shall prove the following which includes [7, Theorem 2] and [8, Theorem].

Theorem 3. The following conditions are equivalent:

- 1) $R = \bigoplus_{\lambda \in \Lambda} R_{\lambda}$, where R_{λ} is the complete ring of linear transformations of finite rank of a vector space over a division ring.
 - 2) R is a semiprime ring and every left ideal is a left annihilator.
 - 3) R is a semiprime ring and every Ra and every maximal left ideal

are left annihilators.

- 4) R is a left s-unital semiprime ring and every maximal left ideal is a left annihilator.
- 5) R is a left s-unital, left non-singular ring and every maximal left ideal is a left annihilator.
- 6) R is a regular ring and every maximal left ideal is a left annihilator.
- 7) R is a right s-unital, left V-ring, and every maximal left ideal is a left annhilator.
- 8) R is a left p-V-ring and every maximal left ideal is a left annihilator.
- 9) R is a fully left idempotent ring and every maximal left ideal is a left annihilator.
- *Proof.* Obviously, $2) \Longrightarrow 3$) and $6) \Longrightarrow 9$) $\Longrightarrow 4$). By [6, Theorem IV. 16. 3], $1) \Longrightarrow 2$), 6) and 7). By Lemma 1 (2) $3) \Longrightarrow 4$), and by Proposition 1 (1) and [11, Proposition 6] $7) \Longrightarrow 8) \Longrightarrow 9$).
- $4)\Longrightarrow 5)$ Assume $Z=Z_l(R)\neq 0$. Take a left ideal $\mathfrak k$ such that $Z\oplus l(Z)\oplus \mathfrak k$ is essential in ${}_RR$. Then $\mathfrak k\subseteq r(Z)=l(Z)$, so that $\mathfrak k=0$, which means that $Z\oplus l(Z)$ is essential in ${}_RR$. If $Z\oplus l(Z)\neq R$ then, by Corollary 1 and the hypothesis, $Z\oplus l(Z)\subseteq l(z)$ for some non-zero $z\in Z$. But $z\in r(Z)\cap r(l(Z))=l(Z)\cap r(l(Z))=0$, a contradiction. Hence $Z\oplus l(Z)=R$, whence it follows r(l(Z))=Z. Again by Corollary 1, l(Z) is contained in a maximal left ideal l(w) with some non-zero $w\in r(l(Z))=Z$. Since Rw ($\cong R/l(w)$) is a minimal left ideal, Rw=Re with an idempotent $e\in Z$, a contradiction.
- 5) \Longrightarrow 1) Since no maximal left annihilators are essential in $_RR$, every maximal left ideal is a direct summand of $_RR$. Hence, by [10, Lemma 1 (b)], $_RR$ is completely reducible, and R is a left V-ring. Accordingly, every left ideal of R is a left annihilator. Now, let R_{λ} be an arbitrary homogeneous component of $_RR$. Then R_{λ} is a simple ring and every left ideal of R_{λ} is a left annihilator in R_{λ} . Hence, by [6, Theorem IV. 16. 3], R_{λ} is the complete ring of linear transformations of finite rank of a vector space over a division ring.
- 3. The main theme of this section will concern left V'-rings and left p-V'-rings, and the next will play an important role in our study.
- **Lemma 2** (cf. [13, Lemma 1]). Let R be a left p-V'-ring. If a left ideal I of R contains RaR + I(a) with some $a \in R$ then I is a direct

176

summand of RR.

Proof. There exists a left ideal \mathfrak{f} such that $\mathfrak{l} \oplus \mathfrak{k}$ is essential in $_RR$. Assume $\mathfrak{l} \oplus \mathfrak{k} \neq R$. Then, by Lemma 1 (4), $\mathfrak{l} \oplus \mathfrak{k}$ is contained in a maximal left ideal \mathfrak{m} . Since \mathfrak{m} is essential in $_RR$, the irreducible, singular left R-module R/\mathfrak{m} is p-injective. We consider here the R-homomorphism $f: Ra \longrightarrow R/\mathfrak{m}$ defined by $xa \longmapsto x + \mathfrak{m} (x \in R)$. Then there exists some $b \in R$ such that $x + \mathfrak{m} = xab + \mathfrak{m}$ for all $x \in R$. But, this yields a contradiction $\mathfrak{m} = R$.

Corollary 2 (cf. [13, Propositions 3 and 6]). Let R be a left p-V'-ring.

- $(1) \quad Z_{\iota}(R) \cap J(R) = 0.$
- (2) If a is a regular element of R then R has an identity and RaR = R.
 - (3) If I is an essential left ideal of R then $I^2 = I$.
- (4) If R is semiprime, then R is fully left idempotent, and is a semiprimitive, right non-singular ring.
- *Proof.* (1) Let $a \in Z_l(R) \cap J(R)$, and a = ea. By Lemma 2, the essential left ideal RaR + l(a) is a direct summand of ${}_{R}R$, and hence R = RaR + l(a) = J(R) + l(a). Let e = u + v with some $u \in J(R)$ and $v \in l(a)$, and u' the quasi-inverse of u. Then 0 = a ua = a (u + u' u'u)a = a.
- (2) Since R contains an identity by Lemma 1 (1), this is given in [13, Proposition 3 (ii)], and easily seen by Lemma 2.
- (3) Let a be an arbitrary element of l, and a = ea. Since R = l + lR + l(a) by Lemma 2, it follows $a = ea \in (l + lR + l(a))a = la + lRa \subseteq l^2$.
- (4) If R is not fully left idempotent, there exists some $a \in R$ with $(Ra)^2 \neq Ra$. Let \mathfrak{l} be a maximal left subideal of Ra containing $(Ra)^2$. Since R is semiprime, $(Ra)^2$ is essential in ${}_RRa$, so that Ra/\mathfrak{l} is an irreducible, singular left R-module. Then there exists some $b \in Ra$ with $x+\mathfrak{l}=xb+\mathfrak{l}$ for all $x \in Ra$. But this implies a contradiction $\mathfrak{l}=Ra$. The latter assertion is given in [11, Proposition 7].

Combining Corollary 2 (4) with [9, Theorem 17], we readily obtain

Corollary 3 (cf. [13, Corollary 8]). If R is a semiprime left Goldie, left p-V'-ring, then R is a finite direct sum of simple rings.

In case R is s-unital, we obtain the following characterizations of a left V'-ring.

Theorem 4. If R is s-unital, then the following conditions are equivalent:

- 1) R is a left V'-ring.
- 2) R is a left p-V'-ring and every singular, s-unital left R-module is semisimple.
- 2') $Z_l(R) \cap J(R) = 0$ and every singular, s-unital left R-module is semisimple.
- 2") $Z_l(R) \cap S_l(R) = 0$ and every singular, s-unital left R-module is semisimple.
- 3) R is a left p-V'-ring and every singular homomorphic image of $_{R}R$ is semisimple.
- 3') $Z_l(R) \cap J(R) = 0$ and every singular homomorphic image of $_RR$ is semisimple.
- 3") $Z_l(R) \cap S_l(R) = 0$ and every singular homomorphic image of $_RR$ is semisimple.
- 4) R is a left p-V'-ring and every essential left ideal is an intersection of maximal left ideals.
- 4') $Z_l(R) \cap J(R) = 0$ and every essential left ideal is an intersection of maximal left ideals.
- 4'') $Z_i(R) \cap S_i(R) = 0$ and every essential left ideal is an intersection of maximal left ideals.
- *Proof.* Obviously, $2) \Longrightarrow 3) \Longrightarrow 4$), $2') \Longrightarrow 3') \Longrightarrow 4'$), and $2'') \Longrightarrow 3''$) $\Longrightarrow 4''$). Since $Z_l(R)$ contains no non-zero idempotents, there holds $Z_l(R) \cap S_l(R) \subseteq Z_l(R) \cap J(R)$. Combining this with Corollary 2 (1), we see that $2) \Longrightarrow 2'' \Longrightarrow 2''$, $3) \Longrightarrow 3' \Longrightarrow 3''$) and $4) \Longrightarrow 4' \Longrightarrow 4''$).
- 1) \Longrightarrow 2) By Proposition 1 (2), R is a left p-V'-ring. As is noted above, $Z_l(R) \cap S_l(R) = 0$. Now, let M be an arbitrary singular, s-unital left R-module. Given an arbitrary non-zero $u \in M$, there exists an R-submodule Y of M which is maximal with respect to excluding u. Obviously, Ru + Y is the smallest R-submodule of M properly containing Y and (Ru + Y)/Y is an irreducible, singular left R-module. Hence, there exists an R-submodule X of M containing Y such that $M/Y = (Ru + Y)/Y \oplus X/Y$. Then, $u \notin X$ implies X = Y, namely, M = Ru + Y. This means that Y is a maximal R-submodule of M and $rad(_RM) = 0$.
- $4'')\Longrightarrow 1$) Let M be an irreducible, singular left R-module, and \mathbb{I} a left ideal of R. By [11, Proposition 3], it suffices to prove that every non-zero $f \in \operatorname{Hom}(_R\mathbb{I},_RM)$ can be extended to an element of $\operatorname{Hom}(_RR,_RM)$. We may assume here \mathbb{I} is essential in $_RR$. If $\mathbb{I}' = \operatorname{Ker} f(\subset \mathbb{I})$ is not essential in $_RR$, then $\mathbb{I}' \cap \mathbb{I} = 0$ for some non-zero left ideal \mathbb{I} . Since $\mathbb{I}'' = \mathbb{I} \cap \mathbb{I} \neq 0$ and $\mathbb{I}'' \cap \mathbb{I}' = 0$, \mathbb{I}'' is R-isomorphic to $\mathbb{I}''f = M$, whence

it follows $\mathfrak{l}''\subseteq Z_{\mathfrak{l}}(R)\cap S_{\mathfrak{l}}(R)=0$. This contradiction means that \mathfrak{l}' is essential in ${}_{R}R$. Accordingly, there exists a maximal left ideal \mathfrak{m} containing \mathfrak{l}' but not \mathfrak{l} . Since $\mathfrak{l}/\mathfrak{l}'$ is R-isomorphic to M and $\mathfrak{l}\supset \mathfrak{l}\cap \mathfrak{m}\supseteq \mathfrak{l}'$, we have $\mathfrak{l}\cap \mathfrak{m}=\mathfrak{l}'$. Now, taking this into mind, one can define an extension of f by $l+m\longmapsto lf(l\in \mathfrak{l}, m\in \mathfrak{m})$.

Corollary 4 (cf. [1, Theorem 1.1]). If R is s-unital and left semiartinian, then the following conditions are equivalent:

1) R is a left V'-ring.

178

- 2) R is left non-singular and every singular, s-unital left R-submodule is semisimple.
- 3) R is left non-singular and every singular homomorphic image of $_{R}R$ is semisimple.
- 4) R is left non-singular and every essential left ideal is an intersection of maximal left ideals.

In case R is left non-singular, the proof of Theorem 4 enables us to see the following

Corollary 5. If R is left s-unital and left non-singular then the following conditions are equivalent:

- 1) R is a left V'-ring.
- 2) Every singular, s-unital left R-module is semisimple.
- 3) Every singular homomorphic image of $_RR$ is semisimple.
- 4) Every essential left ideal is an intersection of maximal left ideals.

Corollary 6 (cf. [13, Corollary 4]). If R is s-unital then the following conditions are equivalent:

- 1) R is a left V-ring.
- 2) R is a left V'-ring and every minimal left ideal is s-injective.
- 3) R is a left p-V-ring, every minimal left ideal is s-injective, and every singular homomorphic image of $_{\mathbb{R}}R$ is semisimple.
- 4) R is a left p-V'-ring, every minimal left ideal is s-injective, and every singular homomorphic image of $_{R}R$ is semisimple.
- 5) R is a left p-V'-ring, every minimal left ideal is s-injective, and every essential left ideal is an intersection of maximal left ideals.

Proof. By Proposition 1 (3), 1) \Leftrightarrow 2). The equivalence of 2) - 5) is obvious by Theorem 4.

Theorem 5 (cf. [3, Theorem], [4, Theorem 1], [13, Theorem 2] and

http://escholarship.lib.okayama-u.ac.jp/mjou/vol19/iss2/11

8

- [14, Theorem 1]). The following conditions are equivalent:
 - 1) R is a strongly regular ring.
 - 2) R is a left duo, left V-ring.
 - 2') R is a left duo, left V'-ring.
 - 3) R is a left duo, left p-V-ring.
 - 3') R is a left duo, left p-V'-ring.
 - 4) R is a reduced ring and every (a) is a left annihilator.
- 5) R is a left s-unital, reduced ring and every maximal left ideal is p-injective.
- 6) R is a left s-unital reduced ring and every maximal left ideal is either p-injective or a left annihilator.
- 7) R is a left non-singular ring and every (a | is the left annihilator of a left ideal.
- 8) R is a left non-singular, left duo ring, and every (a) is closed in $_{\mathbb{R}}R$.
- 9) For each $a \in R$ there exists one and only one element a' such that aa'a = a and a'aa' = a'.
- 10) R is a reduced ring and in any homomorphic image of R each element is either a zero-divisor or a semi-unit.
- *Proof.* It is easy to see that $1) \Longrightarrow 9$) and 10). Obviously, $2) \Longrightarrow 2'$), $3) \Longrightarrow 3'$), $5) \Longrightarrow 6$), and $1) \Longrightarrow 7$) and 8). By [3, Theorem] and Theorem 2, $1) \Longrightarrow 2$), 3) and 5). By Proposition 1 (2), 2') $\Longrightarrow 3'$), and by [10, Lemma 3], $7) \Longrightarrow 4$) and $8) \Longrightarrow 4$).
- $3') \Longrightarrow 1$) Given $a \in R$, Ra + l(a) is essential in ${}_{R}R$. In fact, if $(Ra + l(a)) \cap \mathfrak{k} = 0$ for a (left) ideal \mathfrak{k} then $\mathfrak{k}a \subseteq Ra \cap \mathfrak{k} = 0$ and $\mathfrak{k} \subseteq l(a)$, which means $\mathfrak{k} = 0$. Hence, by Lemma 2 we have Ra + l(a) = R, whence it follows $Ra^{2} = Ra \ni a$.
- 4) \Longrightarrow 1) As is well-known, $r(a) = r(a^2)$ in the reduced ring R. Since $(a \mid \text{and } (a^2 \mid \text{are left annihilators, } (a \mid = l(r((a \mid)) = l(r(a)) = l(r(a^2)) = (a^2 \mid .$
- 6) \Longrightarrow 1) Let $a \in R$, and ea = a. We shall prove Ra + l(a) = R, which will yield $a \in Ra^2$. If not, there exists a maximal left ideal m containing Ra + l(a) (Lemma 1 (4)). In case m is p-injective, considering the canonical injection $i: Ra \longrightarrow m$, we can find an element $c \in m$ with a = ac. Then, $e ce \in r(a) = l(a)$, and so 0 = (e ce)a = a ca. Hence, $x xc \in l(a)$ for all $x \in R$, whence it follows a contradiction m = R. On the other hand, in case m = l(b) with some nonzero $b \in R$, we have $b \in r(m) \subseteq r(a) = l(a) \subseteq m = l(b)$. Thus, $b^2 = 0$, a contradiction.
 - 9) \Longrightarrow 1) Let $a^2 = 0$, aa'a = a and a'aa' = a'. Then, setting a'' =

a' + aa', we have aa''a = a and a''aa'' = a''. By the uniqueness of a', it follows aa' = 0 and a = 0. Hence R is a reduced ring.

 $10)\Longrightarrow 1)$ Let a be an arbitrary non-zero element of R. Obviously, $\alpha=\bigcup_i r(a^i)=\bigcup_i l(a^i)$ is an ideal, which excludes a. If $\overline{a}\,\overline{b}=0$ (resp. $\overline{b}\,\overline{a}=0$) in $\overline{R}=R/\alpha$ then $a^{n+1}b=0$ (resp. $a^nba=0=a^{n+1}b$) for some n, whence it follows $\overline{b}=0$. Hence, \overline{a} is a semi-unit. Then, $\overline{a}^2\overline{c}=\overline{a}$ with some c, so that $a^{m+1}c=a^m$ for some m. Hence, recalling that R is of bounded index 1, a is a semi-unit by [2, Theorem 4].

4. First, we claim that all the results in [5, §3] are still valid for rings without identity.

Lemma 3 (cf. [5, Propositions 3.1 and 3.3]). Let R be a left weakly π -regular ring.

- (1) The center of R is a π -regular ring.
- (2) J(R) is a nil ideal.

180

- (3) $Z_r(R)$ is a nil ideal.
- (4) If a is a left regular (resp. regular) element of R then R contains a right identity (resp. the identity) and R = RaR.

Proof. (1) is an easy consequence of [2, Lemma 1].

- (2) Let $a \in J(R)$, and $a^n = ea^n$ with $e \in Ra^nR$. Let e' be the quasi-inverse of e. Then $a^n = (e + e' e'e)a^n = 0$.
- (3) Let $a \in Z_r(R)$, and $a^n = ea^n$ with $e \in Ra^nR$. Since r(e) is essential in R_R and $r(e) \cap a^nR = 0$, it follows $a^nR = 0$ and $a^n \in R(a^nR)a^n = 0$
- (4) Let l(a) = 0 (resp. l(a) = r(a) = 0), and $a^n = ea^n$ with $e \in Ra^nR$. By Lemma 1 (1), e is a right identity (resp. the identity) of R and $RaR \supseteq Re = R$.

Corollary 7 (cf. [5, Proposition 3.2]). Let R be a reduced ring.

- (1) If R is left weakly π -regular then R is right weakly π -regular, and conversely.
- (2) R is a prime left weakly π -regular ring if and only if R is a simple ring with 1.

Proof. (1) Let $ea^n = a^n$ with $e \in Ra^n R$. Then $(a^n e - a^n)^2 = 0$, so $a^n e = a^n$.

(2) Since every non-zero element of a prime reduced ring is regular, this is a consequence of Lemma 3 (4).

We shall conclude our study with the following

http://escholarship.lib.okayama-u.ac.jp/mjou/vol19/iss2/11

10

Theorem 6 (cf. [5, Theorem 3.4] and [14, Theorem 3]). The following conditions are equivalent:

- 1) R is artinian semiprimitive.
- 2) R is a semiprime left Goldie, left V'-ring, and every essential left ideal is an ideal.
- 3) R is a semiprime left Goldie, left p-V'-ring, and every essential left ideal is an ideal.
- 4) R is a semiprime left Goldie, left weakly π -regular ring, and every essential left ideal is an ideal.
- 5) R is a left s-unital ring with a left regular element and every maximal left ideal is the left annihilator of an idempotent right ideal.
- 6) R is a left s-unital ring with a left regular element and the right annihilator of any maximal left ideal is a non-zero s-injective right ideal.
- 7) R is a left s-unital ring with a left regular element and the right annihilator of any maximal left ideal is a non-zero p-injective right ideal.
- 8) R is a left s-unital ring with a left regular element and the right annihilator of any maximal left ideal contains a non-nilpotent right ideal.

Proof. Obviously, $1) \Longrightarrow 2 - 7$, $5) \Longrightarrow 8$, and $6) \Longrightarrow 7 \Longrightarrow 8$. We claim here that if any one of the conditions 2)-8 is satisfied then R has a right identity (Lemma 1 (1)). Especially, $2) \Longrightarrow 3$. Now, assume one of the conditions 3) and 4). Given an arbitrary left ideal I, there exists a left ideal I such that $I \oplus I$ is essential in I As is well-known, any essential left ideal of the semiprime left Goldie ring I contains a regular element. Hence, by Corollary 2 (2) and Lemma 3 (4) we have $I \oplus I = I$ which implies 1). Finally, we shall prove that $I \oplus I$ be an arbitrary maximal left ideal, $I \cap I$ a non-nilpotent right ideal contained in $I \cap I$ and $I \cap I$ then $I \cap I$ is essential in $I \cap I$ then $I \cap I$ a contains a non-zero element $I \cap I$ is a direct summand of $I \cap I$ so that $I \cap I$ is artinian semiprimitive by $I \cap I$ Lemma 1 (b).

REFERENCES

- [1] J.S. ALIN and E.P. ARMENDARIZ: A class of rings having all singular simple modules injective, Math. Scand. 23 (1968), 233—240.
- [2] G. AZUMAYA: Strongly π -regular rings, J. Fac. Sci. Hokkaido Univ., Ser. I, 13 (1954), 34—39.
- [3] K. Chiba and H. Tominaga: On strongly regular rings, Proc. Japan Acad. 49 (1973), 435-437.
- [4] K. Chiba and H. Tominaga: Note on strongly regular rings and P_1 -rings, Proc. Japan Acad. 51 (1975), 259—261.

- [5] V. Gupta: Weakly π-regular rings and group rings, Math. J. Okayama Univ. 19 (1977), 123-127.
- [6] N. JACOBSON: Structure of Rings, Amer. Math. Soc. Coll. Publ. 37, Providence, 1964.
- [7] M. JAEGERMAN and J. KREMPA: Rings in which ideals are annihilators, Fund. Math. 76 (1972), 95—107.
- [8] K. KISHIMOTO and H. TOMINAGA: On decompositions into simple rings. II, Math. J. Okayama Univ. 18 (1975), 39—41.
- [9] V.S. RAMAMURTHI: Weakly regular rings, Canad. Math. Bull. 16 (1973), 317-321.
- [10] H. TOMINAGA: On decompositions into simple rings, Math. J. Okayama Univ. 17 (1975), 159—163.
- [11] H. TOMINAGA: On s-unital rings, Math. J. Okayama Univ. 18 (1976), 117-134.
- [12] R. YUE CHI MING: On (von Neumann) regular rings, Proc. Edinburgh Math. Soc. (2) 19 (1974), 89-91.
- [13] R. YUE CHI MING: On von Neumann regular rings—II, Math. Scand. 39 (1976), 167—170.
- [14] R. Yue Chi Ming: On annihilator ideals, Math. J. Okayama Univ. 19 (1976), 51-53.

OKAYAMA UNIVERSITY

(Received May 30, 1977)