Mathematical Journal of Okayama University

 Volume 25, Issue 1
 1983
 Article 14

 JUNE 1983

On the two decompositions of a measure space by an operator semigroup

Hisakichi Suzuki*

Copyright ©1983 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Chiba Institute Of Technology

Math. J. Okayama Univ. 25 (1983), 87-90

ON THE TWO DECOMPOSITIONS OF A MEASURE SPACE BY AN OPERATOR SEMIGROUP

HISAKICHI SUZUKI

Let $T = \{T_t; t > 0\}$ be a strongly continuous semigroup of positive linear operators on $L_1(X) = L_1(X, \mathfrak{F}, \mu)$, where (X, \mathfrak{F}, μ) is a σ -finite measure space. The semigroup T decomposes X into two parts C and D, called the initially conservative and initially dissipative parts, respectively. It holds that

(1)
$$T_t f = 0$$
 on D for any $f \in L_1(X)$ and $t > 0$,

and that if $E \in \mathfrak{F}$, instead of D, satisfies the property (1), then $E \subset D$, where the inclusion holds up to a set of measure zero. (Throughout this paper, inclusions and equalities of sets or functions are considered in this sense.)

The space X has another decomposition into C^* and D^* by the same semigroup T, such that

(2)
$$||T_t(f1_{D^*})||_1 = 0$$
 for any $f \in L_1(X)$ and $t > 0$,

and that if $E \in \mathfrak{F}$, instead of D^* , satisfies the property (2), then $E \subset D^*$, where 1_{D^*} denotes the characteristic function of D^* .

For the definitions and other characterizations of those decompositions we refer the reader to [1] in the case of contraction semigroups, and in the case of more general ones, to [2] and [3], in the latter of which C^* and D^* are denoted by P and N respectively.

In this paper we establish some theorems on the inclusion relations between D and D^* , motivated by the statement in [2] that $D \subset D^*$. If T_t are contractions, that is,

$$||T_t||_1 \le 1$$
 for any $t > 0$.

then an inclusion relation between D and D^* holds (Theorem 1). But, in general, there is no relation between them as Theorem 3 shows.

Theorem 1. If $T = \{T_t : t > 0\}$ is a strongly continuous semigroup of positive contraction operators, then $D^* \subset D$.

Proof. If $T_t(t > 0)$ are contractions, then it holds that

$$(3) T_t(L_1(C^*)) \subset L_1(C^*)$$

88 H. SUZUKI

by [3, Remark 1], where $L_1(C^*)$ denotes the subspace consisting of functions vanishing outside C^* . Now, (3) implies together with (2) that

$$T_t f = 0$$
 on D^* for any $f \in L_1(X)$ and $t > 0$,

and hence $D^* \subseteq D$.

Even in the case of contractions, it does not hold that $D = D^*$ in general.

Theorem 2. There exists a strongly continuous semigroup $T = \{T_t : t > 0\}$ of positive contractions such that $D^* \subseteq D$.

Proof. Let $T = \{T_t\}$ be a strongly continuous semigroup of Markovian operators, that is,

(4)
$$\int_X T_t f d\mu = \int_X f d\mu \quad \text{for any } f \in L_1(X) \text{ and } t > 0.$$

By (2) and (4) we can easily conclude that $\mu(D^*)=0$ for Markovian operators. If in addition $\mu(D)>0$ holds for this semigroup T, then the theorem will be proved.

Now we assume that X=C for the present Markovian semigroup T, and construct, making use of T, another Markovian semigroup $\widetilde{T}=\{\widetilde{T}_t\}$ such that the initially dissipative part \widetilde{D} determined by \widetilde{T} has positive measure.

Step 1. Definition of the underlying measure space $(\widetilde{X}, \widetilde{\S}, \widetilde{\mu})$. Let $A \in \mathfrak{F}$ have positive measure, and $(A, \mathfrak{F}_A, \mu_A)$ be the measure space defined as $\mathfrak{F}_A = \{B \cap A : B \in \mathfrak{F}\}$ and $\mu_A(B) = \mu(B \cap A)$. Now let $(X', \mathfrak{F}', \mu')$ be a measure space isomorphic to $(A, \mathfrak{F}_A, \mu_A)$ with $X \cap X' = \emptyset$. By an isomorphism of two measure spaces A and X', we mean a one-to-one mapping τ from A onto X' such that

$$\tau^{-1}\mathfrak{F}'\subset\mathfrak{F}_A$$
, and $\mu_A(\tau^{-1}B)=\mu'(B)$ for any $B\in\mathfrak{F}'$.

We define a σ -finine measure space $(\widetilde{X},\widetilde{\mathfrak{F}},\widetilde{\mu})$ as

$$\widetilde{\mathfrak{F}} = X \cup X',$$

 $\widetilde{\mathfrak{F}} = \{B \cup B' ; B \in \mathfrak{F} \text{ and } B' \in \mathfrak{F}'\}$

and for $\tilde{B} = B \cup B' \in \tilde{\mathfrak{F}}$

$$\tilde{\mu}(\tilde{B}) = \mu(B) + \mu'(B').$$

Step 2. Construction of Markovian operators \tilde{T}_t on $L_1(\tilde{X})$. Let \tilde{f} be in $L_1(\tilde{X})$, and define a corresponding f in $L_1(X)$ as

(5)
$$f(x) = \begin{cases} \tilde{f}(x) + \tilde{f}(\tau x) & \text{if } x \in A \\ \tilde{f}(x) & \text{if } x \in X \setminus A, \end{cases}$$

89

where \tilde{f} may be any one of versions of the equivalence class.

Now we define $\tilde{T} = {\{\tilde{T}_t; t > 0\}}$ as

$$(\tilde{T}_t \tilde{f})(x) = \begin{cases} 0 & \text{if } x \in X' \\ (T_t f)(x) & \text{if } x \in X = \tilde{X} \setminus X' \end{cases}$$

It is shown as follows that \widetilde{T} forms a semigroup. Let s, t > 0 and $\widetilde{f} \in L_1(\widetilde{X})$. Now let f and h correspond respectively to \widetilde{f} and $\widetilde{h} = \widetilde{T}_t \widetilde{f}$ as in (5). Then since $h = \widetilde{h} = T_t f$ on X, we have

$$\tilde{T}_s(\tilde{T}_t\tilde{f}) = T_sh = T_s(T_tf) = T_{s+t}f$$
 on X .

Hence $\tilde{T}_s(\tilde{T}_t\tilde{f}) = \tilde{T}_{s+t}\tilde{f}$ holds.

It is easily shown that \tilde{T}_t are Markovians, and that the initially dissipative part \tilde{D} contains X', which has positive measure.

Without the assumption that T is a semigroup of contractions, neither inclusion $D \subset D^*$ nor $D^* \subset D$ holds in general.

Theorem 3. There exists a strongly continuous semigroup of positive operators which satisfies

(a)
$$\mu(D) = 0 \text{ and } \mu(D^*) > 0$$
;

and also there exists a strongly cotinuous semigroup of positive operators which satisfies

(b)
$$\mu(D) > 0$$
, $\mu(D^*) > 0$ and $\mu(D \cap D^*) = 0$.

Proof. Let X be the closed unit interval [0, 1], and μ the Lebesgue measure on X. We construct two semigroups $T = \{T_t; t \ge 0\}$ on $L_1(X)$.

1) For $f \in L_1(X)$ and $t \ge 0$ we define T_t as

$$(T_t f)(x) = \begin{cases} e^{at} f(x) & \text{if } x \in [0, 1/2) \\ e^{at} f(x - 1/2) & \text{if } x \in [1/2, 1], \end{cases}$$

where α is a nonzero constant. Then $T = \{T_t; t \ge 0\}$ is a semigroup of positive operators with the norms

$$||T_t||_1 \leq 2e^{\alpha t} \quad (t \geq 0).$$

We have $\mu(D) = 0$, while $\mu(D^*) \ge 1/2$, since it holds that for any $E \subset [1/2, 1]$ and $t \ge 0$

$$0 \le ||T_t(1_E)||_1 \le ||T_t(1_{[1/2, 1]})||_1 = 0.$$

This semigroup T satisfies the property (a).

2) Next we define T_t as

90 H. SUZUKI

$$(T_{t}f)(x) = \begin{cases} 0 & \text{if } x \in [0, 1/3) \\ e^{\alpha t} f\{(x-1/3) + f(x+1/3)\} & \text{if } x \in [1/3, 2/3) \\ e^{\alpha t} f\{(x) + f(x-2/3)\} & \text{if } x \in [2/3, 1] \end{cases}$$

Clearly it holds that $||T_t||_1 \le 2e^{\alpha t}$ $(t \ge 0)$, D = [0, 1/3) and $D^* = [1/3, 2/3)$. Hence a semigroup with the property (b) is constructed.

REFERENCES

- [1] M.A. AKCOGLU and R.V. CHACON: A local ratio theorem, Canad. J. Math. 22 (1970). 545—552.
- [2] M.A. AKCOGLU and U. KRENGEL: A differentiation theorem in L_P, Math. Z. 169 (1979), 31-40.
- [3] R. Sato: On local ergodic theorems for positive semigroups, Studia Math. 63 (1978), 45—55.

CHIBA INSTITUTE OF TECHNOLOGY

(Received June 7, 1982)