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SOME REMARKS ON NORMAL CLASSES
OF SEMIPRIME RINGS

MoTosHI HONGAN

The purpose of this note is to extend the results of [4] and [5], which
are obtained for normal classes of prime rings, to those of semiprime rings.
As for notations and terminologies used in this paper we follow the previous
paper [3].

We begin with the following

Proposition 1 (cf. [4, Proposition 3]). Let (RV.W.S) be a Morita

context with R#+0. and write C :(‘}: ;,,/) Then C is a semiprime ring if
and only if the following hold :

1) R is a semiprime ring.

2) Vw=0 (w &€ W) implies w=0.

3) vW=0 (v€ V) implies v=0.

4) S=0 or S is a semiprime ring.

Proof. Observe that the lack of symmetry in 2)and 3) is only apparent.
For example, 'V =0 implies ( Vw)?=0, so w=0by 1) and 2). Similarly,
Wr=0 implies v=0. To see that C is a semiprime ring, suppose cCc=0,

where c=(; :>e C. Since 0=(" ”)(R 0)(" ”)=( rkr "R”) and R is

ws/N0 0/\w s whr wRv
. o _(0wv (0 0)(0 v)_(O vH"v) .
semiprime, we have » =0, and then ( (z.u s) w ol s/7\0 s/ whence

it follows vWeW=0. Now, by the semiprimeness of R, we have tW =0 and
2=0. Similarly, we can obtain w=0. Hence, 0=(0 0)(0 0)(0 0):(0 0 )

' 0 s/\0 S/\0 s 0 sSs/’
and so s=0 by 4). The converse is easily checked.

‘Let (R, V.W.S) be a Morita context, and A an ideal of K. We set
Va={ve V|vW < A}, Wa={wEW| Vw € A} and Su={s € S|VsW < A}
Then it is known that (R/A, V/ VaW/Wa.5/S4) is a Morita context, the
products being defined in the natural manner. If X is a subset of a ring
R, we denote by Anng(X)=/z(X) N 7x(X) the annihilator of X in £ In
case L is a left, right or two-sided ideal of R, we write L <,R, L <, R or
L < R, respectively.
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Now, we shall extend [4, Theorem 1] to the classes of semiprime rings.

Theorem 1. Let P be a class of semiprime vings. Then P s a
normal class if and only if P satisfies the following conditions

(i) fReEP LA, TR and L is a semiprime ring, then L € P.

(ii) If R is a semiprime ring, L <, T <, R, Annr(L)=Anng(7)=0
and L € P, then R € P,

Proof. Suppose that P satisfies (i) and (ii). Let (R, V.W.S) be an
S-faithful Morita context with R € . Then we have a Morita context
(R, V/ Vip) W/W.0,S), which satisfies the conditions 1)— 3) in Proposition 1.
Suppose that sSs =0 (s € S). Then sWVs=0 implies (VsW)?=0, and so
VsW=0. This means s=0, that is, S is a semiprime ring, proving 4) in
Proposition 1. Hence the ring C :(W/IEWO, V/SV( 0)) is semiprime by Propo-

RO _(R V/Vw -
: 0) and T—(O . ).thenR—R 4 T4, C.

As is easily seen, Anny(R")=0 and Annc(7)=0, and so CE P by (ii).
Again, S =~ (g g.) <, (W/SKO) g) <4, C and S is a semiprime ring, and so
(i) implies S € P.

Conversely, suppose that 2 isanormalclass. If Re P, L, T4 R
and L is a semiprime ring, then the context (R,RL,7T.L) is L-faithful, and
so LE P, If Risasemiprime ring, L <; T <4, R, Annr(L)=Annz(T)=0
and L € P, then the context (L.7.RL.R) is R-faithful, and so R € P.

sition 1. If we set R'=(

Corollary 1 ([3, Theorem 3.2]). Every normal class P of semiprime
vings is a weakly special class.

Now, combining Proposition 1 and the proof of Theorem 1, we readily
obtain

Corollary 2 (cf. [4, Corollary 2 to Theorem 1]). Let P be a normal
class of semiprime rings. Let (RV,W,S) be a Morita context with R € P,

and C=(R 4

W S)' If C is a semiprime ving, then C is in P.

Now, we expose the relationship between the normal classes of semiprime
rings and the weakly special classes.
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Theorem 2 (cf. [5, Theorem 7.5]). Let P be a class of semiprime rings.
Then P is a normal class if and only if P satisfies the following conditions :

(i) P is a weakly special class.

(ii1) If RE P then eRe € P for every non-zero idempotent e of R.

(iii) If e is @ non-zero idempotent of a semiprime ring R and eRe € P,
then R/Anng(ReR) € P.

Proof. If P is a normal class, then (i), (ii) and (iii) are satisfied
(Corollary 1 and [3. Proposition 3.2]).

Conversely, suppose that P is a weakly special class with the proper-
ties (ii) and (iii). Let (R,V.W,S) be an S-faithful Morita context with
Re P. If R!is the Dorroh extension of R obtained by adjoining identity
in the usual way, then the context (R,V,W.S) is S-faithful. Let A=/n(R).
Then A is an ideal of R! and, in the notations introduced just before Theorem
1, we have Vi= Vg, Wa=Wo and Sa=Sw0=0. If we set R°=R/A, V=
V/ Va4 and W=W/W,, then R° is a ring with an identity and is contained
in 2 by [2, Theorems 1 and 5]. And (R°V.W.S) is an S-faithful Morita
g;, g) and euz((l) g) Then e,,Ce;; = ROEP,
and hence C/Annc(CenC) € P by (iii). But, we can easily see that
Annc(Ce 1 C)=0, and so CE . Next, we consider the Dorroh extension S’

context. Now, weset C =(

RV 0 0
1—{ % 4 1 . . _ .
of S and C <W S‘)' Then C! is a ring.and /c:(C) (0 15|(S)). Setting
S°=8"1s(S) and C°=C"/Ic:(C). we see that COZ(RI_V S“) is a ring with

an identity containing C as an ideal. Now, by checking the conditions
2)—4)in Proposition 1, we shall prove that C° is a semiprime ring. First,
if Vio=0 (w€ W), namely Vw C /p(R), then VwR=0, and so Vw=0,
that is, w € Wip. Similarly, sW=0 (¢ € V) implies #=0. Finally, if
(s,2)S°(s,n)=0 ((s,n) € S°), then (5,#)S(s,#)S=0. Since C is semiprime, S
is so. Hence (5.#)S=0, i.e., (s,_n)IO, proving that S° is a semiprime ring.
Thus, we have shown that C° is a semiprime ring. Since C is an ideal of
C° and C is in the weakly special class °, we have C°/Annc(C)€E P,
As is easily verified, /c(C)=0, and so C°E . Then S°= ¢,C°¢s € P

0 .
g 1)6 C°. Since S is an ideal of S°® and P is a

by (ii), where ezz=(
weakly special class, we obtain S& 2. Thus,  is a normal class.

Given subsets X and Y of a ring R, we set YX'={gE R|aX € Y}
and X 'Y={a€e R|Xa<S Y}.
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The next result extends [5, Theorem 7.6] to the classes of semiprime
rings.

Theorem 3. Let P be a normal class of semiprime rings, and (R, V.W,S)
an S-faithful Movita context. Then theve is a one-to-one correspondence
between {(AL R|R/IAE P, A(VIW) (=(VW)'A) S A and A 2VW)and
{(BQS|S/BERP, BWV) (=(WV)'B)S B and B2 WV}.

Proof. Let A be an ideal of R such that R/Ae P, A(VW)'< A and
AP VW. Hereweset R=R/A, V=V/Vs, W=W/W,and S=S/S4. Now,
suppose that S=0. then VSW < A which implies VIWVW S VSW S A, so
VW < A by the semiprimeness of A, a contradiction. Hence (R, V.W.5) is
an S-faithful Morita context, and so R € @ implies S=S/S4E€ 2. Assume
now that WV S S, then VWVW € A, and so VW S A, a contradiction.
Hence we have WV S S, If x is any element in So(WV)™!, then aW'V <
Sa, le., VaWVIW < A, and so (Val¥)?2 € A. Hence we have ValW € A, and
so x € Sy, proving that S4(WV)~'<S Sa. Now, let Rs,={r € R| WrV S Sa}.
Since V(WaV)W=(VW)a(VW) < A for any a € A, we have Rs, 2 A. If
¥ € Rs,, then WrV € Sy, that is, VW rVW < A. Since A is semiprime,
this means *VW S A, ie., r € A(VW) 'S A. Hence we have K5, € A, and
therefore Rs,=A. By symmetry, we can get the inverse map out of B.

Proposition 2 (cf. [5, Corollary 7.8]). Let R, S be semiprime rings
with a common non-zero ideal A such that Ig(A)={s(A)=0.

(1) Let P be a normal class of semiprime vings. Then, R is in P
if and only if so is S.

(2) R is a semiprimitive ring if and only if so is S.

(3) R is a right Goldie ring if and only if so is S.

Proof. (1) Consider the S-faithful Morita context (R,A.A,S) and the
R-faithful Morita context (S.A,A.R).

(2) Since the class of semiprimitive rings is normal by [1, Corollary
21], this is immediate by (1).

(3) By assumption, A is an essential right ideal of R. If R is a right
Goldie ring, then A contains a regular element ¢ of K. Then, for any ¢ in
the classical right quotient ring Q(R) of R, a~'qa=bc™" with some b, cE R,
and therefore g=aba(aca)™'. Hence, Q(A)=Q(R), and A.is a semiprime
right Goldie ring (by Goldie’s theorem). Conversely, if A is a semiprime
right Goldie ring, then A & R < End(A4) & Q(A), and so Q(A)=Q(R).
Thus, R is a right Goldie ring. Similarly, we can show that S is a right
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Goldie ring if and only if so is A. This completes the proof.
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