Mathematical Journal of Okayama University

Volume 25, Issue 2

1983

Article 12

DECEMBER 1983

On rings satisfying the identity $(X - X\hat{n})^2 = 0$

Hisao Tominaga*

Adil Yaqub[†]

Copyright ©1983 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

[†]University Of California

Math. J. Okayama Univ. 25 (1983), 181-184

ON RINGS SATISFYING THE IDENTITY $(X-X^n)^2 = 0$

HISAO TOMINAGA and ADIL YAQUB

Throughout, R will represent a ring with center C, and N the set of nilpotent elements in R. Let n be a positive integer greater than 1, and E_n the set of elements x in R such that $x=x^n$.

We consider the following properties:

- (i) N is commutative.
- $(ii)_n^* (x-x^n)(y-y^n)=0$ for all $x, y \in R$.
- (ii)_n $(x-x^n)^2=0$ for all $x \in R$.
- (ii)'_n $(x-x^n)^n=0$ for all $x \in R$.
- (iii)_n Any $x \in R$ may be written in at most one way in the form x = b+a, where $b \in E_n$ and $a \in N$. (There may be elements x in R which cannot be written in the given form.)

If R satisfies (ii) $_n^*$ and (iii) $_n$, then R is called a generalized n-ring. Following [4], R is called a generalized n-like ring if $(xy)^n - xy^n - x^ny + xy = 0$ for all $x, y \in R$, or equivalently, if $(x-x^n)(y-y^n)=0$ and $(xy)^n = x^ny^n$ for all $x, y \in R$ (see [4, Lemma 3]).

The major purpose of this paper is to prove the following

Theorem 1. If R satisfies (i), (ii)_n and (iii)_n, then R is commutative. In preparation for proving Theorem 1, we state the next lemma.

- **Lemma 1.** (1) Let R be a ring satisfying (i) and (ii)_n. Then N is a commutative nil ideal of bounded index at most 2. If there exists an integer m > 1 such that $m^2x^4 = 0$ for all $x \in R$, then $x^{m^2} \in E_n$ for all $x \in R$.
- (2) If R satisfies (i) and (ii)_n, then there exists a finite set P of prime numbers such that $R = \sum_{p \in P} R^{(p)}$, where $R^{(p)} = \{x \in R \mid px \in N\}$.
- (3) Let R be a ring satisfying (i), (ii)_n and (iii)_n. If there exists an integer m > 1 such that $m^2x^4 = 0$ for all $x \in R$, then $[x^{m^2}, a] = 0$ for all $x \in R$ and $a \in N$.
- *Proof.* (1) By (ii)_n, there holds $x^{2n}=2x^{n+1}-x^2$. Hence, N is a commutative nil ideal of bounded index at most 2 by [2, Lemma 2 (2)]. Furthermore, an easy induction shows that $x^{\mu n-\mu+2}=\mu x^{n+1}-(\mu-1)x^2$, and so $x^{\mu n}=\mu(x^{n+\mu-1}-x^{\mu})+x^{\mu}$ for any positive integer μ ; in particular, $x^{m^2n}=$

 $m^2(x^{n+m^2-1}-x^{m^2})+x^{m^2}=x^{m^2}.$

- (2) Let $m=(2^n-2)^2$. Since N is an ideal of R by (1), we see that $(2^n-2)x=2^n(x-x^n)-\{2x-(2x)^n\}\in N$ for all $x\in R$, i.e., m(R/N)=0. As is well known, the factor ring R/N satisfying the polynomial identity $X-X^n=0$ is a subdirect sum of finite fields (see, e.g., [1, Theorem 19]). Noting here that m(R/N)=0, we can easily see the assertion. Needless to say, every $R^{(p)}$ is an ideal of R containing N.
- (3) Let $x \in R$, and $a \in N$. According to (1), we have $(x+a)^{m^2} = x^{m^2} + a' + a''$, where $x^{m^2} \in E_n$, $a' = \sum_{i=0}^{m^2-1} x^{m^2-i-1} a x^i \in N$ and $a'' \in N^2 \subseteq C$. Since $(x+a)^{m^2}$ is also in E_n , (iii)_n shows that a' + a'' = 0. Hence, $[x^{m^2}, a] = [x, a'] = [x, a'] + [x, a''] = 0$.

Proof of Theorem 1. In view of Lemma 1 (2), there exists a finite set P of prime numbers such that $R = \sum_{P \in P} R^{(P)}$, where $R^{(P)}$ is the ideal of R containing N defined by $\{x \in R \mid px \in N\}$. Obviously, (i), (ii), and (iii), are inherited by the ideal $R^{(P)}$. Since N is a nil ideal of bounded index at most 2 (Lemma 1 (1)), we see that $p^2x^2=0$ for all $x \in R^{(P)}$, and so $[x^{P^4},a]=0$ for all $x \in R^{(P)}$ and $a \in N$ (Lemma 1 (3)). As is well known, the factor ring $R^{(P)}/N$ satisfying the polynomial identity $X-X^n=0$ is a subdirect sum of finite fields of characteristic p, and hence we can find a positive integer p such that $p^{P^4}-p$ for all p for all

If R is a generalized n-ring, it is easy to see that $N^2=0$, and so N is commutative. Thus, as a direct consequence of Theorem 1, we have

Corollary 1. Every generalized n-ring is commutative. In particular, every generalized n-like ring satisfying (iii)_n is commutative.

Corollary 2. Suppose that there exists an integer m > 1 such that (m,n-1)=1 and mN=0. Suppose that R satisfies (i) and (ii)_n. Then, R is commutative if and only if R satisfies (iii)_n.

Proof. In view of Theorem 1, it suffices to show that if R is commutative then (iii)_n is satisfied. Suppose that both b and b+a are in E_n with some $a \in N$. Then $b+nab^{n-1}=(b+a)^n=b+a$ (Lemma 1 (1)), and so $nab^{n-1}=a$, whence it follows that $nab=nab^n=ab$. Hence, $na=n^2ab^{n-1}=nab^{n-1}=a$, namely (n-1)a=0. Since ma=0 and (m,n-1)=1, we get a=0, proving (iii)_n.

183

Next, motivated by [3, Theorem 1], we prove the following

Theorem 2. Let p be a prime. If R satisfies (i), (ii)'_p and pR=0, then the following are equivalent:

- 1) R is commutative.
- 2) R satisfies (iii)_p.
- 3) E_P is a subring of R.
- 4) E_P is an additive subgroup of R.
- 5) E_P is central.

Proof. Obviously, $x^p \in E_P$ for any $x \in R$, and N is a commutative nil ideal of bounded index at most p by [2, Lemma 2 (2)]. Then, it is easy to see that $1) \Rightarrow 3) \Rightarrow 4) \Rightarrow 2)$ and $1) \Leftrightarrow 5$.

2) \Rightarrow 1). Let $x \in R$, and $a \in N$. Then we have $(x+a)^p = x^p + a' + a''$, where $x^p \in E_p$, $a' = \sum_{i=0}^{p-1} x^{p-i-1} a x^i \in N$ and $a'' \in N^2 \subseteq C$. Since $(x+a)^p$ is also in E_p , (iii) $_p$ shows that a' + a'' = 0. Hence, $[x^p, a] = [x, a'] = [x, a'] + [x, a''] = 0$, and therefore $[x, a] = [x^p, a] + [x - x^p, a] = 0$, which shows that $N \subseteq C$. Now, R is commutative by [1, Theorem 19].

Examples. (1) The commutative ring $R = \mathbb{Z}/4\mathbb{Z}$ satisfies (ii) $_3^*$, but does not (iii) $_3$; the commutative ring $\mathbb{Z}/8\mathbb{Z}$ satisfies (ii) $_3^*$, but does neither (ii) $_3$ nor (iii) $_3$.

- (2) Let p be a prime. Then $R = \{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} | a, b \in GF(p) \}$ is a non-commutative ring satisfying (ii) $_P^*$ and pR = 0.
 - (3) Let $R = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} \mid a, b, c \in GF(3) \right\}$. Then R is a commutative

ring satisfying (ii)'s and 3R=0, but not (ii)₃.

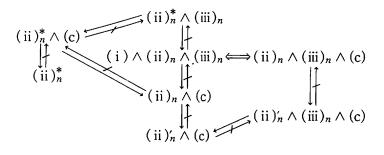
(4) Let
$$R = \left\{ \begin{pmatrix} a & b & c & d \\ 0 & a & 0 & c \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a \end{pmatrix} | a, b, c, d \in GF(2) \right\}$$
. Then R is a com-

mutative ring satisfying (ii)₂=(ii)₂ and 2R=0, but not (ii)₂*.

These examples give the following table, where (c) signifies the property that R is commutative.

184

H. TOMINAGA and A. YAQUB



In conclusion, we would like to express our indebtedness and gratitude to the referee for his helpful suggestions and valuable comments.

REFERENCES

- [1] I.N. HERSTEIN: The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864-871.
- [2] Y. HIRANO, H. TOMINAGA and A. YAQUB: On rings satisfying the identity $(x+x^2+\cdots+x^n)^{(n)}$ =0, Math. J. Okayama Univ. 25 (1983), 13—18.
- [3] M. ÔHORI: On rings satisfying the polynomial identity $(x+x^2)^2=0$, J. Fac Sci. Shinshu Univ. 18 (1983), to appear.
- [4] H. TOMINAGA and A. YAQUB: On generalized n-like rings and related rings, Math. J. Okayama Univ. 23 (1981), 199—202.

OKAYAMA UNIVERSITY, OKAYAMA, JAPAN UNIVERSITY OF CALIFORNIA. SANTA BARBARA, U.S.A.

(Received June 30, 1983)