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ON RINGS SATISFYING THE IDENTITY
(X—X"’=0

Hisa0 TOMINAGA and ApiL YAQUB

Throughout, R will represent a ring with center C, and N the set of
nilpotent elements in R. Let n be a positive integer greater than 1, and
E, the set of elements x in R such that x=x".

We consider the following properties :

(i) N is commutative.

Gi)r (x—x")y—y")=0 for all x, yE R.

(ii)n (x—x")>=0 for all xE R.

(ii)p (x—x™)"=0 for all x € R.

(iii)» Any x € R may be written in at most one way in the form x =

b+a, where b€ E, and a € N. (There may be elements x in
R which cannot be written in the given form.)

If R satisfies (ii)F and (iii), then R is called a generalized n-ring.
Following [4], R is called a generalized n-like ring if (xy)"—xy™—x"y+xy
=0 for all x, ¥y € R, or equivalently, if (x—x")(y—y™)=0 and (xy)"=x"y"
for all x, y € R (see [4, Lemma 3)).

The major purpose of this paper is to prove the following

Theorem 1. If R satisfies (i), (ii)n and (iii)n, then R is commutative.

In preparation for proving Theorem 1, we state the next lemma.

Lemma 1. (1) Let R be a ring satisfying (i) and (ii)n. Then N
is a commutative nil ideal of bounded index at most 2. If there exists an
integer m > 1 such that m*x*=0 for all x € R, then x™ € E, for all x € R.

(2) If R satisfies (i) and (ii)n, then there exists a finite set P of
prime numbers such that R=2>pcp R'P, where RP={x € R| px € N}.

(3) Let R be a ring satisfying (i), (ii)n and (iii)n. . If there exists
an integer m > 1 such that m*x*=0 for all x € R, then [x™,a]=0 for all
xE R and a€ N.

Proof (1) By (ii)a, there holds x2"=2x"*'—x2 Hence, N is a
commutative nil ideal of bounded index at most 2 by [2, Lemma 2 (2)].
Furthermore, an easy induction shows that x**~#*2=ux"*!—(u—1)x?, and
so x*"= u(x"**"'—x*)+x* for any positive integer z; in particular, x™*"=
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mZ(xn+m2-—1_xmz)'_*_xm‘:xmz.

(2) Let m=(2"—2)% Since N is an ideal of R by (1), we see that
(2"—2)x=2"(x—x")—{2x—(2x)"} E N for all x E R, i.e., m(R/N)=0. As
is well known, the factor ring R/N satisfying the polynomial identity
X—X"=0 is a subdirect sum of finite fields (see, e.g., [1, Theorem 19]).
Noting here that m(R/N)=0, we can easily see the assertion. Needless
to say, every R is an ideal of R containing M.

(3) Let x€R, and a€ N. According to (1), we have (x+a)™'=
x™+a' +a’, where x™ € E,, a =3"5'x™"'qxi€ N and a"E N2C C.
Since (x+a)™ is also in E,, (iii)» shows that @'+ a”=0. Hence, [x™ a]=
[x,a'1=[x,a']+[x,a"]=0.

Proof of Theorem 1. In view of Lemma 1 (2), there exists a finite
set P of prime numbers such that R=2}pcp R'®, where R'® is the ideal of
R containing N defined by {x € R | px € N}. Obviously, (i), (ii)» and
(iii)» are inherited by the ideal R”. Since N is a nil ideal of bounded
index at most 2 (Lemma 1 (1)), we see that p*x2=0 for all x € R, and
so [x?,a]=0 forall x € R and a € N (Lemma 1(3)). As is well known,
the factor ring R'”/N satisfying the polynomial identity X —X7"=0 is a
subdirect sum of finite fields of characteristic p, and hence we can find a
positive integer % such that x»*—x € N for all x € R*®. Now, let x € R?
and ¢€ N. Since [x*',a]=0 and x*"—xE N, we get [x,a]=0 by (i),
which shows that N is in the center of R®. Hence, N is contained in the
center of R, and therefore R is commutative by [1, Theorem 19].

If R is a generalized #»-ring, it is easy to see that N*=0, and so N is
commutative. Thus, as a direct consequence of Theorem 1, we have

Corollary 1. Every generalized n-ving is commutative. In particular,
every generalized n-like ring satisfying (i), is commutative.

Corollary 2. Suppose that there exists an integer m >1 such that
(m,n—1)=1 and mN=0. Suppose that R satisfies (i) and (ii)n. Then,
R is commutative if and only if R satisfies (iii)s.

Proof. In view of Theorem 1, it suffices to show that if R is commu-
tative then (iii), is satisfied. Suppose that both 4 and b+« are in E, with
some a=N. Then b+nab"'=(b+a)*=b+a (Lemma 1 (1)), and so
nab"'=a, whence it follows that nab=nab®=ab. Hence, na=n?ab* =
nab” '=a, namely (n—1)a=0. Since ma=0 and (m,n—1)=1, we get
a=0, proving (iii ).
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Next, motivated by [3, Theorem 1], we prove the following

Theorem 2. Let p be a prime. If R satisfies (i), (ii)» and pR=0,
then the following ave equivalent :

1) R #s commutative.

2) R satisfies (iii)p.

3) E, is a subring of R.

4) E, is an additive subgroup of R.

5) Ep is central.

Proof. Obviously, x* € Ep for any x € R, and N is a commutative nil
ideal of bounded index at most p by [2, Lemma 2 (2)]. Then, it is easy
to see that 1)=3)=4)=2) and 1)&5).

2)=1). LetxE R, and aE N. Then we have (x+a)’=x"+a'+a",
where x* € Ep, =284 x° 7 lax'E N and " € N2<S C. Since (x+a)*
is also in Ep, (iii), shows that a'+a”"=0. Hence, [x”.a]l=[x,a']=[x,a’]+
[x,a”]1=0, and therefore [x,al=[x",al+[x—x",a]l=0, which shows that
N € C. Now, R is commutative by [1, Theorem 19].

Examples. (1) The commutative ring R=Z/4Z satisfies (ii)s, but
does not (iii)s ; the commutative ring Z/8Z satisfies (ii)a, but does neither
(ll )3 nor (lll )3.
ab

00
commutative ring satisfying (ii Y» and pR=0.

(2) Let p be a prime. Then R={( )Ia, be GF(p)} is a non-

abc
(3) Let R=[<0 a b) |a, b, cE GF(3)]. Then R is a commutative

00a
ring satisfying (ii)s and 3R=0, but not (ii)s.
abcd
0 alc .
(4) Let R= 00 ab la. b, c, d=GF(2);. Then R is a com-
000 a

mutative ring satisfying (ii).=(ii); and 2R=0, but not" (ii)s.
These examples give the following table, where (c) signifies the property
that R is commutative.
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(ii ) A (iii)n
(ii)5 A (c) ‘///

H \(<) A (ii)n ﬁ(iii)n@(ii)n A (iii)n A (c)
(i )n 171 H

b onaineae
G A @ FF
In conclusion, we would like to express our indebtedness and gratitude’
to the referee for his helpful suggestions and valuable comments.
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