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Abstract

We define a Con-Cos group G to be one having a proper normal subgroup N whose cosets
other than N itself are conjugacy classes. It follows easily that N = G’, the derived group of G.
Most of the paper is devoted to trying to classify finite Con-Cos groups satisfying the additional
requirement that N has just two conjugacy classes. We show that for such groups the center Z(G)
has order at most 2, and if Z(G) = {1}, then G is a Frobenius group of a rather special type.

KEYWORDS: Con-Cos group, 2-Con-Cos group



Muktibodh: Characterization of Frobenius Groups of Specia Type

Math. J. Okayama Univ. 48 (2006), 73-76

CHARACTERIZATION OF FROBENIUS GROUPS OF
SPECIAL TYPE

ARUN S. MUKTIBODH

ABSTRACT. We define a Con-Cos group G to be one having a proper
normal subgroup N whose cosets other than N itself are conjugacy
classes. It follows easily that N = G’, the derived group of G. Most of
the paper is devoted to trying to classify finite Con-Cos groups satisfy-
ing the additional requirement that N has just two conjugacy classes.
We show that for such groups the center Z(G) has order at most 2, and
if Z(G) = {1}, then G is a Frobenius group of a rather special type.

1. INTRODUCTION

Definition 1.1. A finite group G is called a Con-Cos group if there exists
a proper normal subgroup N in G such that N = cl(z) for all z € G\ N,
where cl(z) is the conjugacy class of x.

Theorem 1.1. If G is a Con-Cos group and N is the normal subgroup as
in the above definition then N = G', the commutator subgroup of G.

Proof. We first show that G/N is abelian, so that G’ C N. Let z,y € G. If
x € N then N = N, hence yN commutes with x/N. If x is not in N then
y~lzy is not in N. In this case , we have (y~'N)(zN)(yN) = y layN =
cl(y~txy) = cl(z) = xN, so that N and yN commute with each other.
Conversely, let n € N and x € G\ N. Then, zn € cl(x), so that there exists
y € G such that zn = y~!zy. Hence , n = [z,y], and n € G’ O

Theorem 1.2. Let G be a Con-Cos group. Then G' = {[x,y] : y € G}, for
any x € G\ G'. In particular, any element of G' is a commutator.

Proof. Each element of G’ is a commutator [x,y| where x is arbitrarily fixed
in G\ G O

Theorem 1.3. If G is a non-abelian Con-Cos group then Z(G) C G'.

Proof. Let a € Z(G) and a # 1. Then cl(a) = {a}. If a is not in G’ then
aG" = cl(a), so that | G’ |= 1, contrary to the assumption that G is not
abelian. 0
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2. 2-CoN-CO0S GROUPS

Definition 2.1. A finite group G is called a 2-Con-Cos group if the following
conditions are satisfied for a proper commutator subgroup G’ of G;

i) G’z =cl(x), for all z in G\ G’

ii) G’ =1Ucl(a), for some a in G.

Note that, every nonidentity element of G’ is of same order as G’ consists
of only two conjugacy classes. Now, if p is a prime divisor of | G’ | then G’
has an element of order p. So, all nonidentity elements of G’ are of order
p. Therefore G’ is a p-group and hence G” # G’. Thus G” is properly
contained in G’. Hence, G” = 1 as G’ is the minimal normal subgroup of G.
Hence G’ is abelian. Thus G’ is elementary abelian.

Now, as both G’ and G/G’ are abelian, it immediately follows that G is
metabelian.

3. EXAMPLES

Symmetric group Ss of degree 3 is a 2-Con-Cos group with S% = {1, (123),
(123)?}. Alternating group A4 as the set of even permutations on 4 el-
ements is a 2-Con-Cos group with A = {1,(12)(34), (13)(24), (14)(23)}.
Quaternion group @ of order 8 described via generators a,b with relations
a* = 1,0 = a®,ba = a~'b, is a 2-Con-Cos group with Q" = {1,a?}. Frobe-
nius group Fys = Z7 X Zg with kernel Z7; and complement Zg ,where Zg
acts fixed point freely on Z7 \ {1} , is a 2-Con-Cos group with G’ = Z7.
G = Z, x Aut(Z,) is a 2-Con-Cos group with G’ = Z,. Frobenius group
of order p”"(p" — 1) with kernel (Z,)" (elementary abelian) and complement
Zyr—1 (cyclic) is a 2-Con-Cos group. However, there do exist Frobenius
groups of order p"(p” — 1) which are not 2-Con-Cos. e.g. Frobenius group
Frop9 = Z351 X Zo with kernel Z351 and complement Z, where Z5 acts fixed
point freely on Z3s1\ {1} , has order 33(33 —1) . But F¥gs is not a 2-Con-Cos

group.
4. SOME CLASSIFICATION THEOREMS
Theorem 4.1. If G is a 2-Con-Cos group such that |G'| # 2 then Z(G) = 1.

Proof. Let G be a 2-Con-Cos group with |G'| > 2. Then G’ = cl(a) U {1}
with |cl(a)] > 1. So, if z € Z(G) then z =1 from Z(G) C G'. O
Theorem 4.2. If G is a 2-Con-Cos group then |Z(G)| < 2, and if Z(G) =
{1} then G is Frobenius with its complement abelian.

Proof. |Z(G)| < 2 follows from theorem 4.1. Let G be a 2-Con-Cos group
with G’ = {1} Ucl(h). Suppose there exists a normal subgroup K in G such
that 1 # K . Now, as Z(G) = {1},1 4 [G,K] CG'NK so |G'N K| > 1. As
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G’ and K are normal subgroups of G , G’ N K is also a normal subgroup of
G. But G’ is also a minimal normal subgroup of G. Therefore G'N K = G'.
Hence G’ C K. Thus, G’ is a unique minimal normal subgroup of G. Let
|G'| = p™ with p a prime and ¢ # p be another prime such that ¢ | |G].
Let Q € Syly(G). Then G'Q < G and G' C G'Q, so G'Q < G. By Frattini
argument we can write G'Ng(Q) = G. Set H = Ng(Q), then G' N H < H.
Also G'NH <G’ as G’ is abelian, and hence G'NH <G'H = G. By unique
minimality of G’ we have G NH = {1} or G NH =G . It G NH =G
then G’ C H which implies G = G'H = H, hence Q < G. But G’ is the
unique minimal normal subgroup of G, so G’ C Q. Hence p | ¢, which is a
contradiction. Therefore G' N H = {1}, so H is abelian.

Let x € H,z # 1. Then for any h € H,hCq (x)h™! = Ce(x) as H is
abelian. But Ce/(z) <G hence Cer(x) SG'H = G. Therefore Cor(z) = G’
or Cer(z) = {1}. If Cer(x) = G’ then o commutes with every element of G'.
As H is abelian x € Z(G'H) = Z(G) = {1} which is a contradiction. Hence
Cer(z) = {1}. This shows that G is a Frobenius group with kernel G’ and
complement H. O

Corollary 4.1. If G is a 2-Con-Cos group and G is a Frobenius group with
kernel G' and complement H, then H is cyclic.

Proof. Since G is 2-Con-Cos, G’ is elementary abelian. So, H is a group of
fixed point free automorphisms of an abelian group, hence by [5] theorem
IX.4.f. H is cyclic. U

Theorem 4.3. Let G be a 2-Con-Cos group with Z(G) = {1}. Then G is a
Frobenius group of the kind (Zy)" X Zyr_1 for some prime p and some r > 1.
Conversely, Frobenius groups of such kind with kernel (Z,)" and complement
Zyr—1 are 2-Con-Cos groups and have trivial center.

Proof. G is Frobenius with elementary abelian kernel G’. Complement H is
cyclic. Hence G’ = (Z,)" for some prime p and H = Zj, for some h > 2. Since
G’ \ {1} is a single conjugacy class the action of H on G’ by conjugation
has to be transitive and fixed point free, so that |H| = p" — 1. On the
other hand, for any Frobenius group G = (Z,)" % Z,-_1 with kernel (Z,)"
and complement Z,r_; , G’ is the kernel, Z(G) = {1} and action of the
complement on (Z,)" \ {1} is regular. Hence G is 2-Con-Cos. O
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