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DaciBERG L. GONCALVES AND MAURO SPREAFICO

1. INTRODUCTION

Let £ be an F-line bundle over a space X, the field F = R, C or H. A
natural question is to enumerate the set Liner(X) of such bundles £ for given
classes of space. As it is well known, classical bundle theory of characteristic
classes gives a complete answer for the real and complex case, where

Liner(X) = HY(X;7Z/2), Linec(X) = H*(X;7),

the bijection is given by the first Stiefel Withney and Chern classes, respec-
tively. So far, the complete answer for the quaternionic case is still unknown,
and as we will see in Section 2, a full general answer is unlikely. Ultimately,
an answer to this problem would depend at least on the knowledge of the
homotopy groups of the 3—sphere. In this paper we deal with the case
X = HP". Thus, counting quaternionic line bundles over X is equivalent to
count the element in the set [HP™ HP"]y, of the based homotopy classes of
self maps of the quaternionic projective n-space. We give a short review on
what is known on this problem in Section 2. Our results give a complete an-
swer for the low dimensional cases n < 3 and some indication on the general
case. Here the subscript 4+/— denotes the even/odd subset of a subset of
integer numbers and P(2), P(3),Q(2), Q(3) are sets of cardinalities 1,2, 2,4,
respectively.

Theorem 1. [HP?, BS3] = Liney(HP?) = Ry + x P(2)URs,— xQ(2), where
Ry ={ne€Z,n=0,1,9,16(mod24)}.

An explicit description of the maps is given in Proposition 6.

Theorem 2. Liney(HP?) = R + x P(3) U R3— x Q(3), where Ry = {n €
Z,n =0,1,9,16,25, 40,49, 64,81, 121, 136, 144, 145, 160, 169, 184, 216, 225,
241, 256, 265, 280, 289, 304(mod360)}.

Theorem 3. The number of non-equivalent line bundles in Liney(HP™)
with fized first quaternionic characteristic class \, only depends on the parity

of \.

A direct consequence of the above result is:
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Lineg(HP") = Ry, 4+ x P(n)UR,, — X Q(n), where R,, is defined in Section
2, and P(n) and Q(n) are finite sets whose cardinalities depend on n.

Also the above result together with the Feder and Gitler conjecture men-
tioned in Section 2, prompts the following conjecture (where one inclusion
is proved).

Conjecture 1. Lineg(HP") = FGy + X P(n)UFG, - x Q(n), where FG),
is defined in Section 2, and P(n) and Q(n) are finite sets whose cardinalities
depend on n.

As a by-product of the techniques used we also compute [KP?, KP?] where
KP? stands for the Cayley projective space or the cone of the Hopf map
h:S™?® — S8

As mentioned in Section 2, further investigations using the methods of
[12] or [8] would probably allow to extend the classification to dimension
4 and 5, but for the general problem the indications given in Theorem 3
appears to be the best general result we are likely to get, that is to say, it
is unlikely to find out a general formula for the numbers P(n) and Q(n)
appearing in the Conjecture 1.

The work is organized as follows. In the following section, we give a
summary on the state of the art on the subject. In Section 3, we consider
the quaternionic projective space and we give a proof of Theorem 2 by
classical methods, to be superseded by the techniques introduced in Section
4, where we deal with the general case and with the proofs of Theorems 2
and 3. In Section 5 we compute the set of homotopy classes of self maps of
the Cayley projective space.

Acknowledgments We would like to thank Gustavo Granja for helpful
discussion and for having point out to us the references [8] and [9] and the
referee for pointing out a problem in the proof of the result for HP? and for
providing the examples given at the beginning of Section 5 and in Remark 1.

2. SELF MAPS OF QUATERNIONIC PROJECTIVE SPACES

Let f: FP" — FP™ be a self map of the projective space over the field
F =R, C or H. In the complex and quaternionic cases we can identify
free and based homotopy classes, since all the spaces involved are simple
(thus we will omit the subscript 0 in the notation of [X, Y]y, whenever Y is
simple); furthermore, connectivity and dimension imply that [FP", FP"] =
[FP"™, FP*°]. Thus, in the complex case we get

[CP",CP"] = H*(CP™,Z) = Z.

The real case is a little bit more complicate. Using Theorems Ila and
IIIa of P. Olum [14], we can state the following. Call [RP", RP"]J the set of
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pointed homotopy classes of maps which induce the zero homomorphism on
the fundamental group, [RP™, RP"]} the set of pointed homotopy classes of
maps which induce the identity homomorphism on the fundamental group
and Z the local orientation system over RP™. Then we have

[RP" RP"]; = { %2 nodd  mpr RPMS =14 22,
with the same notation for free classes we have
27 n odd 1+2Z n odd
n n10 __ ) n nil __ )
[RP", RP"] _{ Z/2 n even, [RP", RP] _{ 1+ 2N n even.

Turning to the quaternionic case, since H*(HP";Z) = Z[z]/xz"t!, where
x is a generator in dimension 4, we can associate to each self map an integer
A = A(f) defined by f*x = A(f)x, and call it the degree of f. Note that
A(f) corresponds to the usual degree of the induced self map of QHP> in
the infinite case. Note also that the degree of f is the class, in m4(HP™), of
the restriction of f on the 4-skeleton [13].

Definition 1. An integer \ is called n-realizable if there is a self map of
HP"™ with degree A.

Let R, be the subset of integers that are n-realizable, i.e. the image of
the function A : [HP", BS3] — Z. For n > 1, consider the congruences

n—1
o o (2n)!' n even
Cn()\)—o. E)(A—Z )—Omod{ (23)! nodd,

and the set FG, ={\ € Z | C;(\) = 0,1 <i < n}. Forn < oo, the first
congruences are:
Ci(A)=0: X =0(modl),
Co(\)=0: A(A—1)=0(mod24),
C3(A\)=0:  AA—=1)(A—4) =0(mod360).

In general, the allowed degrees in dimension n are not known, but Feder
and Gitler proved in [6], using complex and quaternionic K-theory, that
R, C FG, and they conjectured that the condition is also sufficient. This
conjecture has been verified for n = 1,2,3,4,5, in [2], [11], [8] and n = oo in
[6] using the results of [18].

R, =FG, =Z, Ry = FGy = {0,1,9,16}(mod24).

Ry = FG3 = {0,1,9,16,25,40,49, 64,81, 121,136, 144, 145,160, 169, 184
216,225, 241, 256, 265, 280, 289, 304} (mod360),
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Roo = FGo = {0,(2n +1)%,n € Z}.

The other face of the problem is determining if two self maps with the
same degree are in fact homotopic. Marcum and Randall [13] answered this
question in the negative providing essential self maps with trivial degree for
n = 3,4,5, and they conjectured that this is the general situation. They
also showed that if a map has degree zero in HP? then it is homotopic to
the constant map.

Further results exist for the maps of degree 1, namely the group of self
homotopy equivalence £(HP™). In fact, facing the problem under this point
of view, we can state the general natural question of determining the group
E(FP™) of all invertible elements in the set [FP", FP"]y with monoid struc-
ture given by composition. Again, a complete answer for the real and com-
plex cases easily follows from classical methods in homotopy theory [5] and
[9].

ERP™) =17)2, E(CP™) =17)2,

The quaternionic case was considered by Iwase, Maruyama and Oka in
[9], where they use an unstable homotopy spectral sequence and homotopy
operations to get

E(HP?) =17/2, EMHP?) =17/2 x Z/2,
E(HPY) =0 or Z/2,

and conjecture the first alternative for the last group.

Eventually, the complete answer for the infinite case was given by Mislin
n [12], that using a generalization of the Sullivan conjecture of H. Miller
and a theorem of Dwyer on finite p-groups, got the classification theorem

Theorem 4. (Mislin) Self maps of HP> are classified by their degree.

3. QUATERNIONIC PROJECTIVE PLANE

Let j : S* — BS3 be the inclusion of the 4-skeleton. The following result
generalizes the known fact that each map from a sphere to BS? factors
through S*.

Lemma 5. Let G be a topological group, and X a space. Then, any map
from XX in BG factors up to homotopy through the inclusion i : ¥G — BG.

Proof. Recall that the composition (2i)s : G — QBG is an homotopy equiv-
alence, where s is the natural inclusion (the adjoint of the identity) and
1 : G — BG@ is the inclusion given by the construction of BG. Call ¢ the
homotopy inverse and consider the diagram

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 48/iss1/10
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[

QBG G

A

QXG

For each f: XX — BG, define
[’ = coad(scad(f));
then,
if' =icoad(soad(f)) = coad((Qi)scad(f)) ~ coad(ad(f)) = f.
O

This provides a right inverse ¢ in homotopy to jx : m,(S*) — m,(BS3?).
The explicit form of ¢ is the composite of the suspension homomorphism ¥
with the boundary 0 appearing in the homotopy sequence associated to the
universal fibration of BS3.

We now consider the problem of counting the elements of [HP?, HP?]. Let
X € Ry be a 2-realizable degree, and consider the decomposition of HP? =
S Uy, €8, where hy : 7 — S% is the Hopf map. Then, if uy : S* — BS? has
degree ), it extends to a map @ : HP? — BS?, and different extensions are
given via the Hilton coaction by elements o € mg(BS?) and denoted as 4.
Consider the right end of the Puppe sequence associated to the Hopf map
hi

o [HP%, BS?] 7, M 7./12,
where i; = j is the inclusion of S* in HP2. Then, by classical properties
of Hilton coaction [17] VIL.1, [HP?, BS?] is the union of the inverse images
(1)1 ([un]) of the classes of the maps uy : S* — BS3, and for each fixed
uy, (i3)7H([uy]) contains as many different elements as there are non homo-
topic extensions u$. A construction of Barcus and Barratt [3], defines an
homomorphism

Uy, wl(m0(5’4, BS3: uy)) — 778(BS3),

such that iy ~ 4§ if and only if o € Imv,,. In the present case, since the
4-skeleton S* is a co-H-space, we can get the explicit form of this homomor-
phism. We use the commutative diagram

m1(mo(S*, BS%;uy))

m)ul /

W5(353)(: 7T1(17”L()(S4, BS3; UO)))
where (uy )y is the isomorphism defined in 2.5, 2.6 of [3]. Using the compo-
sition Theorem 4.6 of [3], we get, for any ¢ € m5(BS?) = Z/2,

ms(BS?)
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Bur (€) = vy ()7C) = € 0 S + [(un)- (14), ] © SH (v,

where vy is the class of the Hopf map and ¥ H (v4) = 1. Here we are using the
notation of Toda, and observe that u; = j. Now let’s use the factorization
given by Lemma 5, to reduce the computation in the homotopy groups of
S%. Then, let ¢ = j.(x) for some x € 75(S%) = Z/2[na], where ny = S?n;,
1o is the class of the Hopf map h : S3 — S? and observe that u; = j. By
naturality of the Whitehead product and linearity of the composition with
suspensions, the unique non trivial case is

[(u)«(ta), 7+ (n4)] = A(mod2)jiu[ta, na] = Mmod2)jx[ea, La] 0 97 =
= A(mod2)j.((2vy = Xv') o n7) = A(mod2)j. (X o n7),
where Y1/ 077 is precisely the generator of 7g(S*) that is not in the kernel of
Jx, we used [20] X.8.18, [19] 5.8, and ¢/ is the element of order 4 in 74(S3).
This gives
us 4+ (M) = (A + 1)(mod2) . (52 0 777).

Proposition 6. Let vy : HP? — BS? be of 2-realizable degree X\, and
a = j(Sv onq) the generator of ms(BS®) = Z/2[a). Then, vy and vf
are homotopic if and only if A is even.

Note that the above approach also allows to easily prove the Feder Gitler
conjecture for n = 2, namely to find out the set Ry of the 2-realizable integer
(see [2] for the original proof). In fact, considering the Puppe sequence
above, we see that Ry = kerh]. Reducing the problem in 5%, we have

AA—1 AA—1
ﬂ@ﬁ@»=ﬁ<ﬁm+(2)zﬂ>=(iz)&ﬂ

by [4] IIL.1.9, that gives for the kernel the condition A\(A — 1) = 0(mod24).

4. HP3 AND THE GENERAL CASE

The above technique allows to deal only with the self maps of odd degree
on HP3. Although, we can use the following quite general method. The
natural inclusion 7,,_; : HP" 1 — HP" induces a fibration

(in—1)z : mo(HP™, BS?) — mo(HP" !, BS?).

Now we will define a subspace of mo(HP", BS?) (the space of pointed
maps from HP" to BS?), denoted by M, (fy), which is suitable to study
our problem. Then we will consider the fibration having M, (f)) as total
space, the fibre map the restriction of (i,—1); and as base M, _1(f\) (the
projection is not surjective in general).

Let fy be of degree A, m,(f\) = mo(HP", BS?; f\) denotes the com-
ponent of f\ and M,(f\) = Ug mn(g), where g runs over all maps in

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 48/iss1/10
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mo(HP™, BS?) of degree \. We take fy as base point of M,(f\). If p,
is the restriction of (in—1); to My, (fy) then its fibre F,(f\) over fiin—1, with
base point fy, has the type of Q% BS3, and we have the exact sequence

(1)
5 TaFu(F3) 5 M (M) 5 oMot (frin-1)) 5 -

8'rL,q+l a”,q

The sequences with index n — 1 and n can be ’ composed’ as follows:

7"'q(F;z—l (f)\in—l))

jn—l,q dn,q
e To(Mn(f2)) 5 Tg(Mn—1(fxin-1)) e Tg—1(Fn(fr)) —

where an explicit description of the homomorphism d,, ¢ = 9, qjn—1,4 can be
obtained using a construction of James [10] as in [9]

dn,q : 7"—q(F‘n—l(f/\in—l)) = 7T4n+q—4(B53) - Wq—l(Fn(f)\)) = 7T4n+q—1(BSS)7
(2) dn,q : C = :i:(’l’l - 1)C o V4n+q—4 + A[fya C]J

where 7 = [j] denotes the class of the inclusion j : S* — BS3. Notice in
particular that the homomorphism

Jrq : Tg(FL(fx) = mgra(BS?) — mo(Mi(fr)),

is always an isomorphism, since the two spaces have the same type. We
can now apply this construction to determinate the number of connected
components of the space Ms(fy), for each \. We will use Lemma 5 to
reduce computation to homotopy groups of S*. With n = 2, we get the
sequence

= Z/20j(n)] 5>
5 2121V 0 )] — = mi(Ma(f3)) 57 Z/20 ()] —5 >
HZ/2[ (2 o) *0>7T0(M2(fx)) 0 ——m7(BS?).

with connectmg homomorphisms

dag = 02,1 1 Z/2[ju(na)] — Z/2[jx(XV" 0 17)]
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02,1(¢) = Covs + Alj(ta), ],
that coincides with the homomorphism /,,, of Section 3, and

doo = a2 7/2[ju(ni)] — Z/2[j(3V 0 n3)]

92,2(€) = C o v + Alji(ea), (-
Using 2 o vg = ng 015 0 g = 0 [19] 5.9, this gives
B2,2(J«(17)) = Njiu (B0 0 13).
We can state the following facts:
(1) X even
(1a) then 0y is injective and thus is iso; hence kerjp o = imdy; =
Z/2, and since ja o is onto, because pg is trivial, this means that
mo(Ma(fx)) = 0;
(1b) then 02 is injective, so kerds; = 0 = impsy 1, and hence ps ;
is trivial and 71 (Ma(fy)) = kerpa; = imjo1; with X\ even, O is
trivial, and hence kerjy 1 = 0 and w1 (Ma(fy)) = imja 1 = Z/2.
(2) X odd

(2a) then J9 is trivial and hence kerjap = 0, thus jao is injec-
tive and imja g = kerpag = Z/2; since pag is trivial, this implies
ro(Ma(f)) = Z/2
(2b) then 0, is trivial so kerds 1 = Z/2 = imps 1; on the other side,
022 is injective so kerja 1 = Z/2 = im0y 2, and this implies that jg 1
is trivial, kerp271 = iij,l = 0, hence 7T1(M2(f)\)) = imp271/kerp271 =
Z)2.

When n = 3, using the results of the case n = 2, we have the sequence

- ——= ma(Ma(fxiz)) e Z/2©L[2 e 1 (M3(f2)) ;—

P31
(3)
M1 (M2(fxi2) 5> /2 —— mo(Ms(f3)) 555 mo(Ma(faiz)) —= Z/15.
(where recall that m (Ma(fri2)) = Z/2) with the connecting homomor-
phisms
d31 : mo(BS®) = Z/2[j*(SV o n3)] — m2(BS?) = Z/2[ed],
d31(C) = £2¢ o vy £ Alji(ea), (],
and

d372 : 7T10<BS3) = Z/?) — 7r13(353) = Z/2 D Z/Q,
that is clearly trivial. Let’s compute d3 1, on the generator. By [19] 5.9

(X on?) ovyg = ju (X1 onromg o vg) = 0.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 48/iss1/10
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[ (24), 3= (20 0 03)] = ju((2ua £ TV) 0 241 0 mg 0 m7)) = 0,
since 4(v/ o g o n7) = n7 o vg 0oy = 0, and hence ds; is always trivial. In
order to proceed, we need to distinguish even and odd A.
When A is even, by point (1) above, ja ;1 is onto, and since 051521 = d31 =
0, it follows that 051 is trivial in this case. Hence, kerj3 o = imds; = 0, and
we have the exact sequence

o, L/2 mo(Ms(f3)) 5 mo(Ma(fxiz)) 5 — Z/15.

Since when A is even, by the computations with n = 2, mo(Ma(fri2)) = 0,
we infer that js o is a bijection and 7o(M3(fy)) = Z/2 in this case.

The case X odd is different since jp; is trivial now (by point (2) above).
However, by exactness of the sequence in (3) and since p3; is surjective by
point (4) of Proposition 2.5 of [9] (notice that M, (f\) corresponds to C},
in the notation of [9]), we infer that 05 is trivial as well. Next, since when
A is odd, mo(Ma(frie)) = Z/2, we can consider the commutative diagram

0

J3,0

mo(Fa(fai2)) = Z/2

72,0

ds,o
— m(Ms(f2) —z o(Mal(friz) = /25— mu(BS®) = Z/15
0

and the function 03 g can be identified with the homomorphism d3 that is
clearly trivial. Observing that the function p3 is an homomorphism with
respect to the group structure induced by composition in the case of maps
of degree 1, we see that mo(Ms(f))) has four elements. This concludes the
proof of Theorem 2.

For the general case we prove the following proposition.

Proposition 7. The number of non-homotopic classes of maps of given
degree A in [HP™,HP"|, only depends on the parity of \.

Proof. From sequence (1), we get (for n > 2)
Tan—4(BS?) ——=mo(Mn(f2)) 55> T0(Mn—1(frin-1)) 55— man-1(BS),

where it is clear that j, ¢ and p, o do not depend on the degree. We proceed
by induction on n, and assume in dimension n — 1 the number of connected
components of the space M,,_1(frin—1) only depends on the parity of A. In
order to prove that the number of the connected components of the space
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M, (f\) only depends on the parity of A, it is enough to show that the
boundary homomorphism 9, , only depends on this parity for at least ¢ = 0
and 1 (in fact this happens to be true for all ¢). Now, A\ only appears in
the second term A[y,(] in the given formula (2) for 0, , We can use the
following facts:

(1) for the odd components of the homotopy groups of S%, we have the
Serre isomorphism [16] (p odd)

Tq—1(5%p) ® (873 p) — m(S*;p)

(@, B) = Ba + [ua, 4] © B;
(2) the maximum order of the elements of the 2—component of the ho-
motopy groups of S* is 4 [15].

By Lemma 5, all elements ¢ € my,—4(BS?) can be written as ¢ = j.(y),
for some y = ¢(z) = X(z) in myg,_4(S*). Thus,

[77 .’IJ} = [j*(l’4)7.7*<y)] - J'*([M,Z/]),
by naturality of the Whitehead product and since y is a suspension
[L4a y} = [/’47 ZZ] = [L47 L4] © Z4Z’

with ¥4z € m4,_1(S7). In the odd components, the element [4,4] 0 ¥z
belongs to the kernel of j, by the Serre isomorphisms, and hence [v,(] is
trivial. Thus, we can restrict computation to the 2-component. But in
the 2-component Az = A(mod2)z, for all x, since the realizable integers
A, according to the lists given in Section 2 are divisible by 4, or the same
happens for A — 1. This proves that the unique term depending on the
degree actually depends only on the parity of the degree, and thus gives the
thesis. O

5. THE CAYLEY PROJECTIVE PLANE

In this section we consider the case of the Cayley projective plane that
we denote by KP2. We compute the realizable degrees for self maps on the
Cayley projective plane and the cardinality of the set [KP? KP?] for each
realizable number \. For degree 1 we compute the group structure. One
should ask if Lemma 5 generalizes to the present case, i.e. if given a homo-
topy class X — KP?, does there exist a map which factors through $%?
The following example proves that this is not the case. An easy computation
shows that [XX, S%] — [SX,KP?] is onto if X = S™ for n < 22. However,
723(S8) — mo3(KP?) is not onto, since the first group is finite while the
second is infinite. However, certainly we can say that given a homotopy
class X — KP? there exists a map which factors through S® if X = S»
and n < 15.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 48/iss1/10
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Proposition 8. The set Ry of integers which are 2-realizable, i.e. the image
of the function \ : [KP? KP?| — Z is given by the integers \ which satisfy
the congruence

Ca(A) =0: A(A—1)/2 = 0(mod120),
A =0,1,16,81,96, 145, 160, 225(mod240).

Proof. The proof follows the line of the argument described below Propo-
sition 6, in order to determinate the set of 2-realizable integer for HP?
and uses the observation above to reduce the problem to computations in
the homotopy groups of S® and the fact that the suspension Yo’ has order
120. O

Now we will show:

Theorem 9. [KP? KP? = Ry x {1,2,...,4} U Ry _ x {1,2,...,8} where
Ry ={n € Z,n=0,1,16,81,96, 145, 160, 225(mod240)}.

Proof. We will follow the same steps as in the quaternionic case. Using the
composition Theorem 4.6 of [3], we get, for any ¢ € mo(KP?) = 7Z/2,

Yur (€)= vuy (ur); 1(¢) = C 0 T + [(ur)«(18), (] 0 TH (0g),

where o3 is the class of the Hopf map (S'® — S%) and £ H(og) = 1. Given
a homotopy class ©X — KP? there exists a map which factors through
S8 if X = S™ and n < 15. So we can reduce our problem to a problem
of homotopy groups of spheres and we can perform a similar calculation as
the one done before Proposition 6. Namely, by naturality of the Whitehead
product, linearity of the composition with suspensions (see [20] X.8.18), and
the fact that the group m16(S®) is 2-elementary, the only possible non trivial
case is

[(ur)«(e8), Jx (m8)] = A(mod2)ji([es, ns]) = A(mod2)js([ts, ts] 0 mis) =
= A(mod2)j«((20s £ X0’) o m15) = A(mod?2)j.(Xo’ o m15),

where Yo’ o 115 is a generator of m16(S®) that is not in the kernel of j. (see
[19] VIL.7.1), and ¢’ is the element of order 120 in 714(S7). This yields

Y, (J(n8)) = (A + 1) (mod2) (30" o mis).

Therefore for A odd the image is trivial and for A even the image is
isomorphic to Z/2 and the result follows. O

Now we consider the group structure for the case A = 1. So we show some
result about the coaction which arises from the Barratt-Puppe sequence
associated to some cell complexes.

In general for A and B spaces and f : A — B a continuous map we have:
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Lemma 10. The following diagram is commutative

AVA&BVB
v v
A B

Let L be (n — 1) connected, with n > 2. Let K = LU e™, S = 0e™ =
Sm=1"m > dim(L). From the Lemma above we obtain:

Corollary 11. The following diagram is commutative

KVE -2 gussSvEvVES

v |v

K Kvx:S

0

Lemma 12. Let L be (n — 1) connected, with n > 2. Let K = L U €™,
S = 0e™ = S™~L. Then, the following diagram is homotopy commutative

K Kvx:S

o| |

KvYS—>KVYSVYS

where v : S™ — S™ NV 8™ is the coproduct and 6 : K — K V S the pinching
map.

Proposition 13. Let L be (n—1) connected, with n > 2. Let K = L1, e™,
S =0em=8""1 Let f =1% with a € 7,,(K). Then,

f o f ~ 120¢+aoq*(o¢)’
where q : K — K/L = XS is the natural projection.
Proof. By definition

f=Vo(lVa)ob,
where a = [a]. Using Corollary 11, Lemma 10 and some diagram chasing,
we can transform the following diagram
KTKVESWK\/K?KTK\/ESWKVK?IQ

into the diagram

KHKVES K\/KH(K\/ES) (K\/ES)QW@
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Now consider the map g = fa : S™ — KV S™, where S™ = X8 = X8™ 1,
The class [g] is in 7, (K V S™), and hence decomposes as

[9] = J1=q1+([9]) + J2eq2+([9]) + OB,
where j; : X; — X3V X5 are the inclusions and ¢; : X7V Xs — X the projec-
tions, B € mp41 (K x 8™, K v S™), and 0 is the boundary of the homotopy
exact sequence of the pair. Projecting on the summands, ¢1.([g]) = [a] and
q2+([9]) = [qa], where ¢ : K — K/L = S™ is the natural projection. Now,
by [20] XI.11.7, O is trivial whenever m < m +n — 1, i.e. whenever n > 1.
Thus,
g~ (jla \% qua)V,

and by Lemma 12, we have got the thesis.

Il

Remark One can show a similar formula in a more general situation.
Namely given f1, fo two self homotopy equivalences and oy, s € 7, (K),
then one can show that

(£52) 0 () = (fa o fr)emHas(etescaeien),

Lemma 14. Let KP? = S8 L, €6 be the Cayley projective plane. Then,
¢«(a) = 0 for all a € m16(KP?).
Proof. The projection ¢ : KP? — KP?/S% = S'6 induces the homomor-
phism ¢, : m16(KP?) — 716(516) = Z, thus to prove that g, is trivial, it is
enough to prove that |m6(IKP?)| < co. For, consider the sequence of the
pair
— H16(S®) = 0 — H16(KP?) — Hy6(KP?,5%) — H15(S%) =0 —
This and the relative Hurewicz isomorphism imply that
m16(KP?%, S%) = Hi5(KP?, S%) = Z.
Next, consider the homotopy sequence
71'16(58) = (Z/2)4 T> WlG(KP2) T)

7)7716(KP2758) = ZT>7T15(S8) =Z®7Z/120.

This shows that p is multiplication by some integer k, and kery = Z/k =
Ime. Hence,
m16(KP?) /kerty) = Imap,
shows that |m6(KP?)| = [Imy||Img¢| < oco.
0
Corollary 15. Given [f1],[f2] € [KP% KP?] where f; = 1%, the composite
fio fa satisfies [f1 0 fo] = [17172].
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Theorem 16. The group of the self-homotopy equivalences of KP? is iso-
morphic to Z/2 X 7)2 X 7/2.

Proof. From the previous corollary we have that [f] o [f] is the class of the
identity [1] for every f. So the group is isomorphic to a sum of Z/2 and the
result follow. O

Remarks 1- If W is an H—space, as a result of Lemma 5 we have the
following natural question: let P?W be the projective space constructed
from the H structure of W. Given a homotopy class ©X — P?W does the
map factors through XW? The following example shows that the answer is
negative in general, even when W is a topological group: just consider the
projection p : S1* — S /Sp; = HP2. This map can not factor through S*.

2- We observe that it is known that [u,,7,] = 0 if and only if n = 3
mod(4) or n=2,6. This information is not enough to study the case above
because the group 716(S®) is bigger than Zs. This is why we need to make
some extra calculation which does not appear in the case of the sphere S*.
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