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ON EUCLIDEAN ALGORITHM

Kaoru MOTOSE

Recently, using cyclotomic polynomials, Z. Marciniak and S. K. Sehgal
[1] obtained excellent results about units in integral group rings of cyclic
groups. In this paper, we shall give some improvements and alternative
proofs of their results.

For relatively prime polynomials f(z) and g(x) over a field K, it is easy
to compute polynomials u(z),v(z) € K[z] by Euclidean algorithm such that

Fla)u() + gla)o(x) = 1.

However, over Z[z], situation is different from this. Of course we can
compute u(x),v(x) € Q[x] by Euclidean algorithm for relatively prime poly-
nomials f(x),g(z) € Z[z]. Thus we have

f(@)uo(z) + g(x)vo(z) = a

where ug(z),vo(z) € Z[z] and 0 # a € Z.
For example, we obtain for cyclotomic polynomials ®3(z) =
22+ 2+ 1 and ®g(x) = 2% —z + 1,

P3(z)(1 —2) + Ps(z)(z+1) =12+ 14+ 2% =2
and we can easily show there is no polynomials u(z),v(z) € Z[z] such that

Os(z)u(x) + Pg(x)v(z) = 1.

In fact 1 = Pg(w)v(w) = —2wv(w) = —20v(w) for two roots w,w of P3(x).
We have a contradiction such that 1 = 4 - v(w)v(@w) and v(w)v(w) is an
integer.

Thus it is natural to consider the next problem.
For given polynomials f(x), g(x) € Z|x|, does there exist polynomials
u(z), v(z) € Z[x] such that

f@u(z) +g(z)o(z) =17

It is easy for f(x) = x and g(z) = 2™ — 1. But in general, it seems to be
difficult for me because the ring Z[z] is not Euclidean though it is a unique
factorization ring. In this paper, we shall answer to this problem in case
f(z) and g(z) are cyclotomic polynomials.

First, we start from
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Lemma 1. If monic polynomials f(x) and g(x) € Z[z] are relatively prime,
then there exist polynomials u(x),v(z) € Z[x] and a positive integer a such

that
f(@)u(z) + g(x)v(z) = a.
Moreover, we have the following facts.
(1) there exist unique polynomials ug(x),vo(x) € Z[x] such that
degup(z) < degg(z),degvo(x) < deg f(z) and

f(@)uo(x) + g(x)vo(2) = a.

(2) An integer a in (1) is divided by the smallest positive integer b

satisfying
f@)u(@) + g(z)v(x) =b.
Proof. The first statement is clear from Euclidean algorithm in Q|x].
(1) We set u(z) = g(z)q1(x) + uo(x) and v(z) = f(x)g2(z) + vo(z) where
degup(x) < deg g(x) and degvp(x) < deg f(x). Then we have
s(x) == f(2)g(z)(q1(x) + q2(2)) = a — (f(z)uo(x) + g(z)vo(x)).
If s(x) is not zero, then we have a contradiction by comparing degrees of

both sides in the above equation. Uniqueness is almost clear.
(2) is easy to see using division algorithm about a and b. O

We need the following well known results for our purpose about cyclotomic
polynomials (see [2, p. 82]).
Lemma 2. We obtain the next equations

(1) Let p be a prime. In case p | m, ®py(x) = Pp(aP) and in case
p [ m, Pu(2)Ppmp(z) = Py (zP). Moreover, ®s(xt) = L4 ®sa()

for (s,t) = 1.
0 ifn=1,
(2) ®,(1) =< p ifn is a power of the prime p,

1 if n has at least two prime divisors.

Proof. (1) Classifying divisors d of mp by p | d or not, we have the next
equation from the definition of pu.

Opp(z) = [ -0

dlmp
— H(xpd —1)HC) H(md —1)HPd)
dlm dlm
D, (2P)
- P —m\ )
®,,(2P) or D7)

according as p | m or not.
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Thus, we can prove the last equation on induction ¢. In case ¢t = 1, it is
trivial. Setting ¢t = ¢1p® where p is a prime and (¢1,p) = 1, we obtain

Oy(zt) = Dyp((@)P)P((@)) = Re(a) [ Psala™)
dlpe1
= [ ®:a(=") =[] ®eala).
d|pe djt

(2) In case n = 1, it is trivial because ®1(x) = =z — 1.
In case n = p", it is also trivial because

Oy () = Dp(a? ) and Bp(z) = 2P ' 4 2P 24 4+ 1L

Clearly, ®,(1) # 0 for n > 1 from the definition of cyclotomic polynomials.
Thus if n = sp®, where p is prime, s > 1 and (s,p) = 1, then we have the
next equation from (1) and so, using ®4(1) # 0, we obtain our assertion.

<I>S(:rpﬁ) '
o, (xpefl )

e—1

Dype (1) = Pp(a? ) =

g

If m # n, then we have ®,,(x)u(z) + ®,(z)v(z) = 1 in Qx| since
®,,(x), P, (x) are distinct irreducible polynomials in Q[z]. Over Z[z], we
can see the next theorem.

Theorem 1. Assume n > m > 1. Then we have

(1) If m is not a divisor of n, then there exist u(z),v(zx) € Z[z] such
that

D, (z)u(z) + Oy (z)v(x) = 1.
(2) If m is a divisor of n, then we set n = mk and ko is the product of

all distinct prime divisors of k. There exist u(zx),v(x) € Z[z]| such
that

D, (z)u(x) + @y (z)v(x) = Py (1).
Proof. (1) If we set n =mq+r, 0 <r < m, then we have easily

"™ — 1

n_ 1= mo_ ).
1= @) (o

ca") 4+ 2" — 1.

Hence, we can use Euclidean algorithm in Zz| for the polynomials =™ — 1
and ™ — 1, and so

(z" — Du(z) + (2™ — Vv(z) = 2% — 1, for some u(z),v(x) € Z[z]
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where d = (n,m). In fact, there exists integers s and ¢ such that ns+mt = d.
We can see t # 0. In case t > 0, we have s < 0 since m > d, and

s ] :Cmt—l
Similarly, in case ¢ < 0, we have s > 0 and
s — r—mt
"1 — Mo (2D = =24 — 1.
(@ = 1) o @ =) (e Ty = e

Thus we have _ m_q
" — ™ —
md—lu(x)+ md_lv(az) = 1.

Therefore, we obtain the next equation excluding case m|n.
D, (x)u(r) + P (x)v(x) =1 for some u(z),v(x) € Zx].

(2) Since z — 1 divides @y, (x) — ®4,(1) in Z[z], we have "™ — 1 and so
®,,(x) divides P, (2"™) — Py, (1) where h = k% Let ng be the product of
all distinct prime divisors of n. We set ng = £ky and

_ l,hm n
u(z) = q>k0(1)q)m((b£;( ) and v(x) = 1;1 Dppa(zm0)

d#0

where we consider as v(z) = 1 in case £ = 1. Then u(z) and v(z) €
Noting ;¢ = %m = hm and (¢, ko) = 1, we have from Lemma 2 (1)

By (2)u(z) + B (2)0(x) = D (2)u() + By (z70) [ ] Prpalz™o)
d|e
d#£0

Bro (1) — By (™) + By ((270))
= Dy (1).

Z[x].

O

Let m be a natural number and let ¢ be a power of a prime p. Then we
can see from Theorem 1 (2) that there exist u(z),v(z) € Z|[x] such that

D, (x)u(x) + Py (z)v(x) = P

However, the next proposition shows that p is the smallest positive integer
satisfying the above equation.

Proposition 1. The ideal Iy, = (Pp(x), Pp(x)) of Zlx] generated by
O, () and @, (z) (m < n) can be calculated as follows:

[ (p, @ (x)) if n =mgq and q is a power of a prime p,
e Zlx otherwise.
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In particular, there exist no s(x),t(x) € Z[x] such that
D,y (z)s(x) + Prog(2)t(z) =1
where ¢ > 1 is a power of a prime p.

Proof. Our assertion is trivial from Theorem 1 excluding case n = mgq and ¢
is a power of a prime p. In this case, I, , contains (p, ®,,(x)) from Theorem
1 (2). We have from Lemma 2 (1) that

Dpg(2) = Dy (27) OF Bpg ()P (27 ) = Py (29),
according as p | m or not. Therefore, in any case,
D () = @y (2)* mod pZ|[x] for some integer k.
Thus we obtain
Ipm = (P (2), D, (2)*) = 0 mod (p, ®,,,(z)) and so Iy = (p, ®m(z)).

Assume Ip,;mq = Z[z], equivalently, that ®,,(z)s(x) + Prg(2)t(z) =1
where s(z),t(x) € Z[z] and ¢ > 1 is a power of a prime p. Then we have
(p, @ (z)) = Z[z] from the above, namely, 1 = pu(z) + @, (z)v(z) for some
u(z),v(x) € Z[z] and so we have

1= ®,,(n)v(n) =0mod pZn| for n € A

where A is the set of all roots of ®,,(x). Thus pZ[n| = Z[n] and so we have
a contradiction such that % is an algebraic integer. g

Remark 1. Using elementary number theory, we can prove the last part of
Proposition 1 in case p fm (see [3]).

In the remainder of this paper, we consider our problem about ™ — 1 and
D, (7).

Theorem 2. Let mg be the product of all distinct prime divisors of m.
If mg is not a divisor of n, then there exist u(z),v(z) € Z[x] such that

(2" = Du(x) + @ (z)v(z) = H é%o(l).
d|(mo,n)

Proof. We may assume that m = mg from

S m_ n mﬁ_l
By () = By (270) and (270)" — 1 = (" — 1) - (:Ux)_l

We assume d is a divisor of n. If d is not a divisor of m, there exist
ug(x),vq(x) € Z[x] from Theorem 1 (1) such that

D y(z)ug(z) + P (x)vg(x) = 1.
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If d is a divisor of m, there exist uq(z),vq4(x) € Z[z] from Theorem 1 (2)
such that
P4(z)ua(z) + P (x)vg(z) = @
Thus we have from 2 — 1 = Hd|n D4(x),
(2" — Du(z) + B = [ @

d|(m,n)

(1).

a3

&\3

O

Theorem 3 (Marciniak and Sehgal [1] ). Let mq be the product of all distinct
prime divisors of m. If t = (nmﬂgo) > 1 is not a prime, there exist integral

polynomials u(z), v(x) € Z[x] such that
D, (x)u(z) + (2" — Dv(x) = 1.

Proof. We may assume m = mg from the same reason as we assumed m =
myg in the proof of Theorem 2.
Proof 1. Since t is the order of (]}, where (,, is a root of ®,,(x), we have

o) =[[0-GH=0-¢) TTa-ah
k k>1
where k runs over 1 < k <t and (k,t) = 1. Thus the following polynomial
z(x) has a root (,, and is divided by ®,,(z).
2(x) = (1—2")- [J(1—a2") - @, (1)
k>1

where k runs over 1 < k < t and (k,t) =

Proof 2. If ¢ is not a prime, we have ®= (1) =1 for all d | (m, n) because
7= % is not a prime since t = (ng?n) is a divisor of (m D= . O

Remark 2. If ¢ is a prime p, then we have from Proof 1 and Lemma 2 (2).
D (z)u(w) + (2" — Nv(z) = (1) = p.

It is easy to see that the product of polynomials with the same equations
as ®,(z) in Theorem 3 also satisfy the same condition. Thus we have a
corollary.

Corollary 1. Let f(z) be a product of some x and some cyclotomic poly-
nomials ®y(x) such that ( ) > 1 is not a prime where £y is the product of

all distinct prime divisors ofﬁ Then we have f(z)sy(z)+ (2" —1)t,(z) =1
where s, (x), tn(z) € Z[z].
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