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1. Introduction. Let », k£ and / be positive integers such that v > 2k
and {(v—1) = k(k—1), and let n = k—1I. Let V be the set of all (—1, 1)
vectors of size v. Let G be the graph whose vertex set is V such that two
vertices a and A are adjacent in G if and only if the inner product of ¢ and
B equals v—4n. So « and f are adjacent in G if and only if « and £ differ
in exactly 2n coordinates. G will be called an SD graph.

The weight of a vertex « is the number of coordinates of a which are
equal to —1 and it is denoted by wi(a). W, denotes the set of all vertices
of weight /. For two vertices a and B, d(e, 8) denotes the distance in G
between them. D,(e) denotes the set of vertices B such that d(a, 8) = /.
Let 7 denote the all one vector. Then obviously D,(n) = W,,.

The automorphism group & of G contains the symmetric group & on ¢
coordinate positions of vectors and an elementary Abelian group € of order
2" consisting of sign changes of coordinates of vectors. § acts regularly
on V, and & fixes 7 and acts transitively on D,(). So G is a symmetric

v
graph of valency (271)

Since v > 2k we have kK > 2/ and n > [. If we consider v = 2n+1+
(n*—n)/l as a function of / for a fixed n, then v is steadily decreasing.
Hence we have that 4n—1 < » < n®*+a+4+1. We notice that two bounds
correspond to the parameters of Hadamard designs and projective planes
respectively. The case v—4n <1 is studied to some extent in [1. 2]. So
in the present paper it is assumed that » > 4n. Main purposes of the
present paper are to determine diameters and automorphism groups of con-
nected components of G.

Notation. Let x,.x,,....,xn be vectors of size [,, {,...., I, respectively,
Then x = (x,, x,,...,xn) denotes a vector of size {,+/,+:--+/, such that
the subvector of x consisting of the ({,+.--+{,_,+1)-st,....(J, +---+{,_,
+1,)-th coordinates of x equals x,, 1 < r <m. lfx;, =x;,, = ... = x,.5,
then the abbreviation (x;)s will be used. Thus, for instance, ({(1),) = .

2. Diameters of connected components of G. Let d be the diameter
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of the connected component of G containing 7. Now D.(9) is invariant under
€, 1<r<d, and & is transitiveon W,, 0 </ < ». So if D.{5) N W,
+ @, then W, is contained in D,(7).

Lemma 1. D,(n) = 1 LZ% _”W”.

Proof. Let ayn = ((—1)sn, (1)y_2n). Then @y, belongs to D,(5). Now
let B be a vertex such that d(f, a,,) = 1 and that wi(B8) # 0, 2n. In order
to estimate wt(8) we may assume that 8= ((—1)¢, (1), (—1). (1),), where
e+f=2n and g+h = v—2n. Then we have that f+g = 2n and wi(8) =
e+g. Soe =g and wi(f) = 4n—2f, where0 < f< 2nand f+ 0, n.

Lemma 2. IfD.(n) #+= & then D.(n) = lsgzn Wirezimea Jor r = 3.

Proof. First assume that r = 3. Let 8 be a vector of D,(%) and o
a vertex of D,(7) such that d(8, a) = 1. In order to estimate wi(g) we may
assume that 8= (( —1), (1)y-e) and a = ((—1)4, (1), (—1),, (1);), where
e>4dn, gth=¢, i+j=v—c¢ and g+i =2m with 1 < m < 2n and m
#+ n. Since h+i = 2n, we have that wi(8) = e = 2n—i+2m—i. Let
s =m—n. Then wi(f) =4n+2(s—i), where i < s < n. The case r > 3
is simpler.

From Lemmas 1 and 2 we have the following proposition.
Proposition 3. G consists of two connected components E and O. E

and O consist of all vectors of G of even and odd weights respectively. E and
O are isomorphic. The diameter d of E satisfies the following inequalities :

(v=2)/(4n)+2 =d = ((r—1)/(4n)) +1.

Proof. Since Du(n) += ¢. we have that v = 4(d—2)n+2. Since
Da.(n) = &, we have that v < 4(d—1)n+2.

Corollary 4. d =2 if and only if v = 4n+1 (under the assumption
that v > 4n).

Corollary 5. If v = n*+n+1. then d = (1/4)n+2, (1/4)(n+7),
(1/4Xn+6). or (1/4)(n+5), according as n =0, 1, 2 or 3 (mod 4).
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Corollary 6. The girth of G equals three.
3. The automorphism group & of G.

Lemma 7. Let a and B be vertices of D,(n) such that D\(a) N Dy(7)
= D(B) N D,(n). Then a= p.

Proof. By Lemma 1 and under the action of © we may assume that « =
((_l)u‘, (1)11—25) and B: ((—l)es (l)f, (_1)g~ (l)h)a where 1 < i < 2n,
i+n et+f=2i gth=v—2i andetg=2m withl < m < 2n, m ¥+
n. First assume that i < 2n. Let y= ((—1);, (1), (—1)2n-ss (1)y_znes)s
%=1, (=1)imr. (Dimrs (=Danogirs (Dpozns) and 7 = ((—=1);, (1)iey,
(—1)an-i-1s (1)p_2n-s-1, —1). Then 7 7 and 7% belong to D1(77) N D,(a).
If ef #+ 0, then the inner products (8. ¥) = (8 7). So either y or ¥ does
not belong to D,(B). Thus we have that ef = 0. If gh = 0, then (8, ) =+
(B. 7). So either ¥ or 7 does not belong to D,(B8). Thus we have that
gh=0. Ife=h=0, then 8= ((1),;, (—1)p_2;) = —a. Since v > 4n,
(7, @) = (7, B). So 7y does not belong to D,(8). Thus we have that f = 0.
If h =0, then #= — 7. Since v > 4n, this is a contradiction. So we get
g=0and a=§

Now assume that i = 2n. We notice that 7, does not exist under this
assumption. As above we get ¢f = 0. If e =0, then (8 y) = h—g =
v—4n—2g. If B and 7y are adjacent, then (8 ¥) = v—4n. So we get
g =0 and A= 7 which is absurd. So we have that f = 0. As above we
get g=0 and o = B.

Lemma 8, Let obe an automorphism of G such that o fixes D,(n) and
that the restriction of o to D\(n) is trivial. Then o is the identity auto-
morphism.

Proof. Let a be a vertex of G such that D,(a) = D,(n). Then under
the action of © we may assume that ¢« = (( —1);, (1),_;). If 2n > i, then let
a = ((—1)sn, (1)ps;). @ belongs to Di(n) and(a. &) = i—(2n—i)+v—
2n=v—4n+i. Thus i =0 and a= 7 If 2n < i, then (@ o) = 20—
(i—2n)+v—i=v+4n—2i. Thus i =4n. Let o, = (1)y_pn, (—1)sn).
Then @, belongs to D\(n). If v—2n > 4n, then(a, @) < v—8n and a, does
not belong to D\(a). If 1—2n < 4n, then (a. @) = —(v—2n)+(dn—ov+
2n)—(v—4n) = —3v+12n. Thus if @ belongs to D,(a), then v = 4n
which is against the assumption. So o fixes 7.
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If @ and B are two distinet vertices of D,(n), then by Lemma 7 there
exists a vertex yof D,(7) such that ¥ is adjacent with exactly one of aand .
If #= ao, then o destroys the adjacency. Thus o restricted to D,(p) is
trivial. Now since G is vertex-transitive, we may apply an induction argu-
ment to complete the proof.

Let a; be a vertex of D,(n) of weight 2/, 1 < i < 2n, i + n. Then it

is easy to see that D,(@;) N D,(n) consists of (2_1)(0—2{) vertices. Put

i /\2n—1i
AG) = (211)(”_21) 1<i<2n.

2n—1

Lemma 9. If v = 4n+1, then A(i) = A(2n—i+1) for 1 < i< n
and A(1) > A(Q) for 2 < i < 2n—1. Ifv = 4n+2, then A(1) > A(i) for
2 <1< 2n.

Proof. Let v =4n+1. Then A(i)—A(2n—i+1)= (2_1')(471—-2174—1)

i 2n—1i

B (4n—2i+2)(2i—1) B <2i—1)(4n—21’+1>_ '4n—2i+1)<2i—1)

2n—i+1 Ni—=1/) i 2n—i ( 2n—i i—1
=(0. We have that A(i+1)/A(i)=(2i+1)X2n—i+1)/i+1)4n—2i+1).
Let B(i) =(i+1)X4n—2i+1)—(2i+1)(2n—i+1). Then B(i) = 2n—2i.
So A(1) > A(i) for2 < i < n.

Now assume that v = 4n+2. Then A(i+1)/A(i) = (2i+1)2n—1)-
(2n—i+2)/(i+1)2n—i+1)(4n—2i+1). Let B(i) = (i+1)2n—i+1)-
(4n—2i4+1)—(2i+1)(20—i)(2n—i+2) = 2{*—6ni+4n’+2n+1. We
have that A(i) > A(i+1) if and only if B(i) > 0. B({) is quadratic with
respect to i and takes the minimum at i = 3n/2. Since B(2n—2) < 0 and
B(2n—1) > 0, we have only to compare A(l) with A(2n—1). Now
A(1)/ A(2n—1) = (4n—1)/(3n) > 1. This completes the proof.

Lemma 10, Ifz = 4n+2, then A(1) > A(i) for 2 < i < 2n.

Proof. Let C(v) = A(l)—?l(i) = 2(21)"__21)—(2;)(2;_2;). By

Lemma 9 C(4n+2) > 0. So we use an induction argument on v. Assume

that C(») > 0. Then we have that C(v+1) = 2( o1 )_(Z.i)(v—Zi—ijl)
2n—1 ) 2n—1i

. v—1 _2(11—2 )_(21’)(1)—21?—*-1)
T v—2n 2n—1 i 2n—1i
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> 2 (2002l
~tmitan (2 =0
Since (v—1Xv—2n—i+1)—(s—2n)(2—2i+1) = (v—4n+1)i—1) > 0,

we have the assertion.

Remark. By Lemma 10, we see that if an automorhpism o of & leaves
7 invariant, then o leaves W, invariant.

Lemma 11. Let a and B be two distinct vertices of D,(n). Then we
have that D\(a) N W, = D\(B) N W,.

Proof. Under the action of @ we may assume that @ = ((—1);n, (1)4-2n)
and A= ((—1)e, (1)2n-es (—1)ane, (1)y_snse), where 2n > e. Let y=
((1)snys =1, (1)y_sn1, —1). We have that (@, ) = v—4n and hence ¥
belongs to D,(a). We have that (8, ¥) = v—4n+4 and hence y does not
belong to D,(B).

Assume that v = 4n+2.

Lemma 12. Let o be an automorphism of G such that o= n. If o
restricted to W, is trivial, then o is trivial.

Proof. Now deny the assertion. Then by Lemma 8 there exist two
distinet vertices o and B of Di(75) such that #= ao. By Lemma 11 ¢
destroys the adjacency.

Lemma 13. Let w(i, j) be a vertex in W, such that the i-th and j-th
coordinates equal —1, where 1 < i, j< v and i #+ j. Then

(i) Di(w(i, j1)) N Di(wli, j,)) N D(n) consists of (21';;_21) vertices,
'Where jl =’= jl’ a’nd Dl(w(i]’ jl)) m D](w(iz, jz)) m Dl(n) Cansists Of

v—4 ] ... .
4(211—2) vertices, where i1, ji, i» and j, are distincl.

(i) DuCadi, 1) O Dulaki, ) () Daln) comsists of (7% ) vertices,
where j, #+ j,, and D,(w(iy, j1)) N Dy(w(i,, j.)) N Dy(n) consists of
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2(20n——2) vertices, where i,, j,, i, and j, are distinct.

Proof. (i) Let abe a vertex of D,(w(i, j;)) N D,(a(i, j.)) N Di(7).
Then the i-th, j,-th and j,-th coordinates of @ equal either —1, 1 and 1, or
1, —1 and —1 respectively. Let 8 be a vertex of D,(w(i,, j,)} N D\(w(i,,
j2)) N Di(n). Then the i,-th, ji-th, i,-th and j,-th coordinates of & equal
either —1,1, —land1,0r —1,1,1 and —1,0r1, —1,—1 and 1, or 1,
—1,1and —1 respectively. Since wit{ a)= wi(8)=2n, we obtain the assertion.

(ii) Let o be a vertex of D,(w(i, j,)) N Dy(w(i, j;)) N Dy(75). Then,
since wt(@) # 2n, the i-th, j,-th and j,-th coordinates of @ should be equal.
Let 8 be a vertex of D\(w(iy, ji)) N Di(w(iz, j2)) N Dy(n). Then, since
wi(B) # 2n, the i,-th, i,-th, j,-th and j,-th coordinates of 8 should be equal.
So we obtain the assertion.

Lemma 14, Let o be an automorphism of G such that no= 5 and
o(l,2)0= (1,2). Then {w(1,3),.... (1, v), (2, 3),..., (2,0)} is

invariant under o.

Proof. This follows from Lemma 13.

Lemma 15. Let o be an automorphism of G such that no= n and
w(1,2)0 = (1, 2). If o resiricted to | w(1,3),....0(1, v), w(2,3),...,
(2, v)} is trivial, then o is trivial.

Proof. Deny. Then by Lemma 12 we may assume that «(3,4)oc=
(3, 5) or w(5,6). So D, (w(3, 4)) N D,(w(l, 4)) N Di(5) moves to
D\(w(3,5)) N Di(aw(1,4)) N D7) or Di(w(5,6)) N Di(w(1,4)) N D(n),

where / = 1,2, By Lemma 13 this is a contradiction.

Lemma 16. Let o be an automorphism of G such that no= 73, w(1,2)0
= w(l,2) and o(1,3)0= w(1,3). Then |w(l,4),..., (1, v)} is in-

variant under o.

Proof. Otherwise, by Lemma 14 we may assume that w(1l, 4)¢=
(2, 4) or w(2,5). So we may follow the proof of Lemma 15.

Lemma 17. Let o be an automorphism of G such that no= 17, «(1,2)0o
= w(1, 2) and (1, 3)oc = w(l, 3). If o reciriced to | (1, 4),..., (1, v)}

is trivial, then o is trivial.

Proof. Deny. Then by Lemma 15 we may assume that (2, i)o =
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(2, j), where i #+ j. So we may follow the proof of Lemma 15 to get
a contradiction.

Proposition 18, & = €&,

Proof. First we notice that the normalizer of € contains ©. So the
product €3 is a subgroup of &.

Now let ¢ be an automorphism of G outside €&. Since € is transitive
on V, we may assume that 0 = #. Since & is transitive on W,, by Lemma
10 we may assume that (1, 2) o = (1, 2). Let &,, denote the stabilizer
of {1, 2} in ©. Then &,, is transitive on { w(1, 3),..., w(1, v), w(2, 3),
v (2, v)]. So by Lemma 14 we may assume that (1, 3)o= w(1, 3).
By Lemma 16 o leaves | w(1,4),..., (1, »)| invariant. The stabilizer &,,;
of 1, 2 and 3 in & acts as the symmetric group on | (1, 4),.... (1, )}
So we may assume that ¢ is trivial on{ w(1, 4),..., w(1, v)}. By Lemma 17
o is trivial, which is a contradiction.

Now let T be the subgroup of € of order 2¥' consisting of sign changes
of even number of coordinates of vectors. Then the automorphism group € of
E obviously equals the product ©&; € = DE.

4. The case v = 4n+1. In this section we assume that v = 4n+1.
Let o be an automorphism of G outside €. Since & is transitive on V, we
may assume that 70 = 7. By Lemma 9 W, U W,, is invariant under o. W,

and W,, contains (; ) and v vertices respectively. So under the action of &
we may assume that w(1, 2) o belongs to W,. Since & is transitive on W,,
we may assume that (1, 2)o = w(l, 2).

Lemma 19. Let w(i) be a vertex of W,, such that the i-th coordinate
equals 1, 1 < i <4n+1. Then

(i) Diwli, j)) N Di(w(i)) N D7) consists of (47;;1) vertices.

(i1) D,(w(i, j)) N Di(a(l)) N D7) consists of 2(;::?) vertices,

where | + 1, j.

Proof. We may assume that i =1, j =2 and / = 3. Let abe a vertex
of D,(7) adjacent with w(1, 2). Then we see that the first two coordinates
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of a are distinct. If a is adjacent with (1), too, then the first coordinate
of a must be equal to 1. So we get (i). If ais adjacent with w(3), then
the third coordinate of a must be equal to 1. So we get (ii).

Here we notice that Lemma 13 holds for the case » = 4n+1, and that
4n—1\ _ (4n—1 4n—2\ _ ,(4n—3
(271—1) - ( 2n ) and 2(2n—1) - 4(271——2)'

Lemma 20, Let t be an automorphism of G such that ntv = 7 and
o(l,2)r= (1, 2). Then | (1), {2), (1, 3)...., (1, v), (2, 3),...,

(2, v)| is invariant under .
Proof. This is immediate from Lemmas 13 and 19.

Now we go back to our a. Since &,, is transitive on | w(1, 3),...,

o(l,v), o(2,3),...,w(2, v)}|, under the action of & we may assume that
w(l,3)0= w(1,3). So by Lemma 20 w(2,3)oc= «(2,3) and | (1),
w(1,4),..., (1, v)| is invariant under o. Since &,,; acts as the symmetric
group on { (1, 4),..., w(1, v)|, under the action of & we may assume that

w(l,)o= w(l,i), 4 <i<wv—1 and | (1), w(1, v)} is invariant under
o. Then by Lemma 20 we have that (i, j)o= (i, j), 4 < i, j<ov—1
and | (i), (i, »)}, 1 < i < v—1, invariant under 0. Hence we also have
that w(v) o= w(v).

Finally, let @ = {((1);n-1, (—1)sns2). Then since a and «(2n, i),
2n+1 < i < 4n, are adjacent, the 2n-th,..., the 4n-th coordinates of oo
must be equal to —1. Further since a and «w(z) are not adjacent, the
(4n+1)-st coordinate of @o must be equal to —1. Since by Lemma 9 W,,.,
is invariant under o, we have that ag = a. Now «w(2n) is not adjacent with
a. Therefore w(2n, 4n+1) and «(2n) are fixed by . This implies that ¢
is trivial. This is a contradiction. So Proposition 18 holds for the case

v=4n+1.
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