Mathematical Journal of Okayama University

Volume 29, Issue 1

1987

Article 1

JANUARY 1987

On SD graphs. I

Noboru Ito*

Machio Tadokoro[†]

Copyright ©1987 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Konan University

[†]Konan University

Math. J. Okayama Univ. 29 (1987), 1-9

ON SD GRAPHS. I

To Hisao Tominaga on his 60th birthday

Noboru ITO and Machio TADOKORO

1. Introduction. Let v, k and l be positive integers such that v > 2k and l(v-1) = k(k-1), and let n = k-l. Let V be the set of all (-1, 1) vectors of size v. Let G be the graph whose vertex set is V such that two vertices α and β are adjacent in G if and only if the inner product of α and β equals v-4n. So α and β are adjacent in G if and only if α and β differ in exactly 2n coordinates. G will be called an SD graph.

The weight of a vertex α is the number of coordinates of α which are equal to -1 and it is denoted by $wt(\alpha)$. W_t denotes the set of all vertices of weight l. For two vertices α and β , $d(\alpha, \beta)$ denotes the distance in G between them. $D_l(\alpha)$ denotes the set of vertices β such that $d(\alpha, \beta) = l$. Let η denote the all one vector. Then obviously $D_1(\eta) = W_{2n}$.

The automorphism group $\mathfrak G$ of G contains the symmetric group $\mathfrak S$ on v coordinate positions of vectors and an elementary Abelian group $\mathfrak C$ of order 2^v consisting of sign changes of coordinates of vectors. $\mathfrak C$ acts regularly on V, and $\mathfrak S$ fixes η and acts transitively on $D_1(\eta)$. So G is a symmetric graph of valency $\binom{v}{2n}$.

Since v>2k we have k>2l and n>l. If we consider $v=2n+l+(n^2-n)/l$ as a function of l for a fixed n, then v is steadily decreasing. Hence we have that $4n-1 \le v \le n^2+n+1$. We notice that two bounds correspond to the parameters of Hadamard designs and projective planes respectively. The case v-4n<1 is studied to some extent in [1,2]. So in the present paper it is assumed that v>4n. Main purposes of the present paper are to determine diameters and automorphism groups of connected components of G.

Notation. Let $x_1, x_2, ..., x_m$ be vectors of size $l_1, l_2, ..., l_m$ respectively. Then $x = (x_1, x_2, ..., x_m)$ denotes a vector of size $l_1 + l_2 + ... + l_m$ such that the subvector of x consisting of the $(l_1 + ... + l_{r-1} + 1)$ -st, ..., $(l_1 + ... + l_{r-1} + l_r)$ -th coordinates of x equals x_r , $1 \le r \le m$. If $x_j = x_{j+1} = ... = x_{j+s}$, then the abbreviation $(x_j)_s$ will be used. Thus, for instance, $((1)_v) = \eta$.

2. Diameters of connected components of G. Let d be the diameter

2

of the connected component of G containing η . Now $D_r(\eta)$ is invariant under \mathfrak{S} , $1 \leq r \leq d$, and \mathfrak{S} is transitive on W_l , $0 \leq l \leq v$. So if $D_r(\eta) \cap W_l \neq \phi$, then W_l is contained in $D_r(\eta)$.

Lemma 1.
$$D_2(\eta) = \bigcup_{1 \le i \le 2n, i \ne n} W_{2i}$$
.

Proof. Let $\alpha_{2n}=((-1)_{2n},(1)_{v-2n})$. Then α_{2n} belongs to $D_1(\eta)$. Now let β be a vertex such that $d(\beta,\alpha_{2n})=1$ and that $wt(\beta)\neq 0$, 2n. In order to estimate $wt(\beta)$ we may assume that $\beta=((-1)_e,(1)_f,(-1)_g,(1)_h)$, where e+f=2n and g+h=v-2n. Then we have that f+g=2n and $wt(\beta)=e+g$. So e=g and $wt(\beta)=4n-2f$, where $0\leq f\leq 2n$ and $f\neq 0$, n.

Lemma 2. If
$$D_r(\eta) \neq \phi$$
, then $D_r(\eta) = \bigcup_{1 \le i \le 2n} W_{4i\tau-2in+2i}$ for $r \ge 3$.

Proof. First assume that r=3. Let β be a vector of $D_3(\eta)$ and α a vertex of $D_2(\eta)$ such that $d(\beta, \alpha)=1$. In order to estimate $wt(\beta)$ we may assume that $\beta=((-1)_e,(1)_{v-e})$ and $\alpha=((-1)_g,(1)_h,(-1)_i,(1)_j)$, where e>4n, g+h=e, i+j=v-e and g+i=2m with $1\leq m\leq 2n$ and $m\neq n$. Since h+i=2n, we have that $wt(\beta)=e=2n-i+2m-i$. Let s=m-n. Then $wt(\beta)=4n+2(s-i)$, where $i< s\leq n$. The case r>3 is simpler.

From Lemmas 1 and 2 we have the following proposition.

Proposition 3. G consists of two connected components E and O. E and O consist of all vectors of G of even and odd weights respectively. E and O are isomorphic. The diameter d of E satisfies the following inequalities:

$$((v-2)/(4n))+2 \ge d \ge ((v-1)/(4n))+1.$$

Proof. Since $D_a(\eta) \neq \phi$, we have that $v \geq 4(d-2)n+2$. Since $D_{a+1}(\eta) = \phi$, we have that v < 4(d-1)n+2.

Corollary 4. d = 2 if and only if v = 4n+1 (under the assumption that v > 4n).

Corollary 5. If $v = n^2 + n + 1$, then d = (1/4)n + 2, (1/4)(n+7), (1/4)(n+6), or (1/4)(n+5), according as $n \equiv 0, 1, 2$ or $3 \pmod{4}$.

Corollary 6. The girth of G equals three.

3. The automorphism group 3 of G.

Lemma 7. Let α and β be vertices of $D_2(\eta)$ such that $D_1(\alpha) \cap D_1(\eta) = D_1(\beta) \cap D_1(\eta)$. Then $\alpha = \beta$.

Proof. By Lemma 1 and under the action of \mathfrak{S} we may assume that $\alpha=((-1)_{2i},(1)_{v-2i})$ and $\beta=((-1)_e,(1)_f,(-1)_g,(1)_h)$, where $1\leq i\leq 2n$, $i\neq n,\ e+f=2i,\ g+h=v-2i,\ and\ e+g=2m$ with $1\leq m\leq 2n,\ m\neq n$. First assume that i<2n. Let $\gamma=((-1)_i,(1)_i,(-1)_{2n-i},(1)_{v-2n-i})$, $\gamma_1=(1,(-1)_{i-1},(1)_{i-1},(-1)_{2n-i+1},(1)_{v-2n-i})$ and $\gamma_2=((-1)_i,(1)_{i+1},(-1)_{2n-i-1},(1)_{v-2n-i-1},-1)$. Then γ , γ_1 and γ_2 belong to $D_1(\gamma)\cap D_1(\alpha)$. If $ef\neq 0$, then the inner products $(\beta,\gamma)\neq(\beta,\gamma_1)$. So either γ or γ_1 does not belong to $D_1(\beta)$. Thus we have that ef=0. If $gh\neq 0$, then $(\beta,\gamma)\neq(\beta,\gamma_2)$. So either γ or γ_2 does not belong to $D_1(\beta)$. Thus we have that gh=0. If e=h=0, then $\beta=((1)_{2i},(-1)_{v-2i})=-\alpha$. Since v>4n, $(\gamma,\alpha)\neq(\gamma,\beta)$. So γ does not belong to $D_1(\beta)$. Thus we have that f=0. If h=0, then h=0. Since h=0, then h=0, then h=0. Since h=0, this is a contradiction. So we get h=0 and h=0.

Now assume that i=2n. We notice that γ_2 does not exist under this assumption. As above we get ef=0. If e=0, then $(\beta, \gamma)=h-g=v-4n-2g$. If β and γ are adjacent, then $(\beta, \gamma)=v-4n$. So we get g=0 and $\beta=\eta$, which is absurd. So we have that f=0. As above we get g=0 and $\alpha=\beta$.

Lemma 8. Let σ be an automorphism of G such that σ fixes $D_1(\eta)$ and that the restriction of σ to $D_1(\eta)$ is trivial. Then σ is the identity automorphism.

Proof. Let α be a vertex of G such that $D_1(\alpha)=D_1(\eta)$. Then under the action of $\mathfrak S$ we may assume that $\alpha=((-1)_i,(1)_{v-i})$. If $2n\geq i$, then let $\alpha_1=((-1)_{2n},(1)_{v-2i})$. α_1 belongs to $D_1(\eta)$ and $(\alpha,\alpha_1)=i-(2n-i)+v-2n=v-4n+i$. Thus i=0 and $\alpha=\eta$. If 2n< i, then $(\alpha,\alpha_1)=2n-(i-2n)+v-i=v+4n-2i$. Thus i=4n. Let $\alpha_2=((1)_{v-2n},(-1)_{2n})$. Then α_2 belongs to $D_1(\eta)$. If $v-2n\geq 4n$, then $(\alpha,\alpha_2)\leq v-8n$ and α_2 does not belong to $D_1(\alpha)$. If v-2n<4n, then $(\alpha,\alpha_2)=-(v-2n)+(4n-v+2n)-(v-4n)=-3v+12n$. Thus if α_2 belongs to $D_1(\alpha)$, then v=4n which is against the assumption. So σ fixes η .

N. ITO and M. TADOKORO

If α and β are two distinct vertices of $D_2(\eta)$, then by Lemma 7 there exists a vertex γ of $D_1(\eta)$ such that γ is adjacent with exactly one of α and β . If $\beta = \alpha \sigma$, then σ destroys the adjacency. Thus σ restricted to $D_2(\eta)$ is trivial. Now since G is vertex-transitive, we may apply an induction argument to complete the proof.

Let α_{2i} be a vertex of $D_2(\eta)$ of weight 2i, $1 \le i \le 2n$, $i \ne n$. Then it is easy to see that $D_1(\alpha_{2i}) \cap D_1(\eta)$ consists of $\binom{2i}{i}\binom{v-2i}{2n-i}$ vertices. Put $A(i) = \binom{2i}{i}\binom{v-2i}{2n-i}$, $1 \le i \le 2n$.

Lemma 9. If v = 4n+1, then A(i) = A(2n-i+1) for $1 \le i \le n$ and A(1) > A(i) for $2 \le i \le 2n-1$. If v = 4n+2, then A(1) > A(i) for $2 \le i \le 2n$.

Proof. Let v = 4n+1. Then $A(i) - A(2n-i+1) = \binom{2i}{i} \binom{4n-2i+1}{2n-i} - \binom{4n-2i+2}{2n-i+1} \binom{2i-1}{i-1} = \binom{2i-1}{i} \binom{4n-2i+1}{2n-i} - \binom{4n-2i+1}{2n-i} \binom{2i-1}{i-1} = 0$. We have that A(i+1)/A(i) = (2i+1)(2n-i+1)/(i+1)(4n-2i+1). Let B(i) = (i+1)(4n-2i+1) - (2i+1)(2n-i+1). Then B(i) = 2n-2i. So A(1) > A(i) for $2 \le i \le n$.

Now assume that v = 4n+2. Then $A(i+1)/A(i) = (2i+1)(2n-1) \cdot (2n-i+2)/(i+1)(2n-i+1)(4n-2i+1)$. Let $B(i) = (i+1)(2n-i+1) \cdot (4n-2i+1) - (2i+1)(2n-i)(2n-i+2) = 2i^2 - 6ni + 4n^2 + 2n + 1$. We have that A(i) > A(i+1) if and only if B(i) > 0. B(i) is quadratic with respect to i and takes the minimum at i = 3n/2. Since B(2n-2) < 0 and B(2n-1) > 0, we have only to compare A(1) with A(2n-1). Now A(1)/A(2n-1) = (4n-1)/(3n) > 1. This completes the proof.

Lemma 10. If $v \ge 4n+2$, then A(1) > A(i) for $2 \le i \le 2n$.

Proof. Let $C(v) = A(1) - A(i) = 2\binom{v-2}{2n-1} - \binom{2i}{i}\binom{v-2i}{2n-i}$. By Lemma 9 C(4n+2) > 0. So we use an induction argument on v. Assume that C(v) > 0. Then we have that $C(v+1) = 2\binom{v-1}{2n-1} - \binom{2i}{i}\binom{v-2i+1}{2n-i}$ $= \frac{v-1}{v-2n} \cdot 2\binom{v-2}{2n-1} - \binom{2i}{i}\binom{v-2i+1}{2n-i}$

4

$$> \frac{v-1}{v-2n} \binom{2i}{i} \binom{v-2i}{2n-i} - \binom{2i}{i} \binom{v-2i+1}{2n-i}$$

$$= \frac{(v-1)(v-2n-i+1)}{(v-2n)(v-2i+1)} \binom{2i}{i} \binom{v-2i+1}{2n-i} - \binom{2i}{i} \binom{v-2i+1}{2n-i}.$$

Since (v-1)(v-2n-i+1)-(v-2n)(v-2i+1)=(v-4n+1)(i-1)>0, we have the assertion.

Remark. By Lemma 10, we see that if an automorphism σ of \mathfrak{G} leaves η invariant, then σ leaves W_2 invariant.

Lemma 11. Let α and β be two distinct vertices of $D_1(\eta)$. Then we have that $D_1(\alpha) \cap W_2 \neq D_1(\beta) \cap W_2$.

Proof. Under the action of $\mathfrak S$ we may assume that $\alpha=((-1)_{2n},(1)_{v-2n})$ and $\beta=((-1)_e,(1)_{2n-e},(-1)_{2n-e},(1)_{v-4n+e})$, where 2n>e. Let $\gamma=((1)_{2n-1},-1,(1)_{v-2n-1},-1)$. We have that $(\alpha,\gamma)=v-4n$ and hence γ belongs to $D_1(\alpha)$. We have that $(\beta,\gamma)=v-4n+4$ and hence γ does not belong to $D_1(\beta)$.

Assume that $v \geq 4n+2$.

Lemma 12. Let σ be an automorphism of G such that $\eta \sigma = \eta$. If σ restricted to W_2 is trivial, then σ is trivial.

Proof. Now deny the assertion. Then by Lemma 8 there exist two distinct vertices α and β of $D_1(\eta)$ such that $\beta=\alpha\sigma$. By Lemma 11 σ destroys the adjacency.

Lemma 13. Let $\omega(i, j)$ be a vertex in W_2 such that the i-th and j-th coordinates equal -1, where $1 \le i, j \le v$ and $i \ne j$. Then

- (i) $D_1(\omega(i,j_1)) \cap D_1(\omega(i,j_2)) \cap D_1(\eta)$ consists of $\binom{v-2}{2n-1}$ vertices, where $j_1 \neq j_2$, and $D_1(\omega(i_1,j_1)) \cap D_1(\omega(i_2,j_2)) \cap D_1(\eta)$ consists of $4\binom{v-4}{2n-2}$ vertices, where i_1 , j_1 , i_2 and j_2 are distinct.
- (ii) $D_1(\omega(i, j_1)) \cap D_1(\omega(i, j_2)) \cap D_2(\eta)$ consists of $\binom{v-2}{2n-1}$ vertices, where $j_1 \neq j_2$, and $D_1(\omega(i_1, j_1)) \cap D_1(\omega(i_2, j_2)) \cap D_2(\eta)$ consists of

5

N. ITO and M. TADOKORO

6

 $2\binom{v-4}{2n-2}$ vertices, where i_1 , j_1 , i_2 and j_2 are distinct.

Proof. (i) Let α be a vertex of $D_1(\omega(i,j_1)) \cap D_1(\omega(i,j_2)) \cap D_1(\eta)$. Then the i-th, j_1 -th and j_2 -th coordinates of α equal either -1, 1 and 1, or 1, -1 and -1 respectively. Let β be a vertex of $D_1(\omega(i_1,j_1)) \cap D_1(\omega(i_2,j_2)) \cap D_1(\eta)$. Then the i_1 -th, j_1 -th, i_2 -th and j_2 -th coordinates of β equal either -1, 1, -1 and 1, or -1, 1 and -1, or 1, -1, and 1, or 1, -1, 1 and 1 respectively. Since $wt(\alpha) = wt(\beta) = 2n$, we obtain the assertion.

(ii) Let α be a vertex of $D_1(\omega(i,j_1)) \cap D_1(\omega(i,j_2)) \cap D_2(\eta)$. Then, since $wt(\alpha) \neq 2n$, the *i*-th, j_1 -th and j_2 -th coordinates of α should be equal. Let β be a vertex of $D_1(\omega(i_1,j_1)) \cap D_1(\omega(i_2,j_2)) \cap D_2(\eta)$. Then, since $wt(\beta) \neq 2n$, the i_1 -th, i_2 -th, j_1 -th and j_2 -th coordinates of β should be equal. So we obtain the assertion.

Lemma 14. Let σ be an automorphism of G such that $\eta \sigma = \eta$ and $\omega(1,2) \sigma = \omega(1,2)$. Then $\{\omega(1,3),...,\omega(1,v), \omega(2,3),...,\omega(2,v)\}$ is invariant under σ .

Proof. This follows from Lemma 13.

Lemma 15. Let σ be an automorphism of G such that $\eta \sigma = \eta$ and $\omega(1,2) \sigma = \omega(1,2)$. If σ restricted to $|\omega(1,3),...,\omega(1,v), \omega(2,3),...,\omega(2,v)|$ is trivial, then σ is trivial.

Proof. Deny. Then by Lemma 12 we may assume that $\omega(3,4) \sigma = \omega(3,5)$ or $\omega(5,6)$. So $D_1(\omega(3,4)) \cap D_1(\omega(1,4)) \cap D_l(\eta)$ moves to $D_1(\omega(3,5)) \cap D_1(\omega(1,4)) \cap D_l(\eta)$ or $D_1(\omega(5,6)) \cap D_1(\omega(1,4)) \cap D_l(\eta)$, where l=1,2. By Lemma 13 this is a contradiction.

Lemma 16. Let σ be an automorphism of G such that $\eta \sigma = \eta$, $\omega(1,2) \sigma = \omega(1,2)$ and $\omega(1,3) \sigma = \omega(1,3)$. Then $|\omega(1,4),...,\omega(1,v)|$ is invariant under σ .

Proof. Otherwise, by Lemma 14 we may assume that $\omega(1, 4) \sigma = \omega(2, 4)$ or $\omega(2, 5)$. So we may follow the proof of Lemma 15.

Lemma 17. Let σ be an automorphism of G such that $\eta \sigma = \eta$, $\omega(1,2) \sigma = \omega(1,2)$ and $\omega(1,3) \sigma = \omega(1,3)$. If σ rectriced to $\{\omega(1,4),...,\omega(1,v)\}$ is trivial, then σ is trivial.

Proof. Deny. Then by Lemma 15 we may assume that $\omega(2, i) \sigma =$

7

 $\omega(2, j)$, where $i \neq j$. So we may follow the proof of Lemma 15 to get a contradiction.

Proof. First we notice that the normalizer of \mathbb{C} contains \mathfrak{S} . So the product $\mathbb{C}\mathfrak{S}$ is a subgroup of \mathbb{S} .

Now let σ be an automorphism of G outside \mathfrak{CS} . Since \mathfrak{C} is transitive on V, we may assume that $\eta \sigma = \eta$. Since \mathfrak{S} is transitive on W_2 , by Lemma 10 we may assume that $\omega(1,2) \sigma = \omega(1,2)$. Let $\mathfrak{S}_{11,21}$ denote the stabilizer of $\{1,2\}$ in \mathfrak{S} . Then $\mathfrak{S}_{11,21}$ is transitive on $\{\omega(1,3),...,\omega(1,v),\omega(2,3),...,\omega(2,v)\}$. So by Lemma 14 we may assume that $\omega(1,3) \sigma = \omega(1,3)$. By Lemma 16 σ leaves $\{\omega(1,4),...,\omega(1,v)\}$ invariant. The stabilizer $\mathfrak{S}_{1,2,3}$ of 1, 2 and 3 in \mathfrak{S} acts as the symmetric group on $\{\omega(1,4),...,\omega(1,v)\}$. So we may assume that σ is trivial on $\{\omega(1,4),...,\omega(1,v)\}$. By Lemma 17 σ is trivial, which is a contradiction.

Now let $\mathfrak D$ be the subgroup of $\mathfrak C$ of order 2^{v-1} consisting of sign changes of even number of coordinates of vectors. Then the automorphism group $\mathfrak E$ of E obviously equals the product $\mathfrak D\mathfrak S$: $\mathfrak E=\mathfrak D\mathfrak S$.

4. The case v = 4n+1. In this section we assume that v = 4n+1. Let σ be an automorphism of G outside G. Since G is transitive on V, we may assume that $\eta \sigma = \eta$. By Lemma 9 $W_2 \cup W_{4n}$ is invariant under σ . W_2 and W_{4n} contains $\binom{v}{2}$ and v vertices respectively. So under the action of G we may assume that $\omega(1,2) \sigma$ belongs to W_2 . Since G is transitive on W_2 , we may assume that $\omega(1,2) \sigma = \omega(1,2)$.

Lemma 19. Let $\omega(i)$ be a vertex of W_{4n} such that the i-th coordinate equals $1, 1 \le i \le 4n+1$. Then

(i)
$$D_1(\omega(i,j)) \cap D_1(\omega(i)) \cap D_1(\eta)$$
 consists of $\binom{4n-1}{2n}$ vertices.

(ii)
$$D_1(\omega(i,j)) \cap D_1(\omega(l)) \cap D_1(\eta)$$
 consists of $2\binom{4n-2}{2n-1}$ vertices, where $l \neq i, j$.

Proof. We may assume that i=1, j=2 and l=3. Let α be a vertex of $D_1(\eta)$ adjacent with $\omega(1,2)$. Then we see that the first two coordinates

8

of α are distinct. If α is adjacent with $\omega(1)$, too, then the first coordinate of α must be equal to 1. So we get (i). If α is adjacent with $\omega(3)$, then the third coordinate of α must be equal to 1. So we get (ii).

Here we notice that Lemma 13 holds for the case v=4n+1, and that $\binom{4n-1}{2n-1}=\binom{4n-1}{2n}$ and $2\binom{4n-2}{2n-1}=4\binom{4n-3}{2n-2}$.

Lemma 20. Let τ be an automorphism of G such that $\eta \tau = \eta$ and $\omega(1,2) \tau = \omega(1,2)$. Then $|\omega(1), \omega(2), \omega(1,3), ..., \omega(1,v), \omega(2,3), ..., \omega(2,v)|$ is invariant under τ .

Proof. This is immediate from Lemmas 13 and 19.

Now we go back to our σ . Since $\mathfrak{S}_{1,2i}$ is transitive on $|\omega(1,3),...,\omega(1,v),\omega(2,3),...,\omega(2,v)|$, under the action of \mathfrak{S} we may assume that $\omega(1,3)\sigma=\omega(1,3)$. So by Lemma 20 $\omega(2,3)\sigma=\omega(2,3)$ and $|\omega(1),\omega(1,4),...,\omega(1,v)|$ is invariant under σ . Since $\mathfrak{S}_{1,2,3}$ acts as the symmetric group on $|\omega(1,4),...,\omega(1,v)|$, under the action of \mathfrak{S} we may assume that $\omega(1,i)\sigma=\omega(1,i), \ 4\leq i\leq v-1$ and $|\omega(1),\omega(1,v)|$ is invariant under σ . Then by Lemma 20 we have that $\omega(i,j)\sigma=\omega(i,j), \ 4\leq i,\ j\leq v-1$ and $|\omega(i),\omega(i,v)|,\ 1\leq i\leq v-1$, invariant under σ . Hence we also have that $\omega(v)\sigma=\omega(v)$.

Finally, let $\alpha=((1)_{2n-1},\,(-1)_{2n+2})$. Then since α and $\omega(2n,\,i),\,2n+1\leq i\leq 4n$, are adjacent, the 2n-th,..., the 4n-th coordinates of $\alpha\sigma$ must be equal to -1. Further since α and $\omega(v)$ are not adjacent, the (4n+1)-st coordinate of $\alpha\sigma$ must be equal to -1. Since by Lemma 9 W_{2n+2} is invariant under σ , we have that $\alpha\sigma=\alpha$. Now $\omega(2n)$ is not adjacent with α . Therefore $\omega(2n,4n+1)$ and $\omega(2n)$ are fixed by σ . This implies that σ is trivial. This is a contradiction. So Proposition 18 holds for the case v=4n+1.

REFERENCES

- [1] N. ITO: Hadamard graphs. I, Graphs and Combinatorics 1 (1985), 57-64.
- [2] N. ITO: Hadamard graphs. II, Graphs and Combinatorics 1 (1985), 331-337.

ON SD GRAPHS. I

Department of Applied Mathematics Konan University Kobe, 658 Japan

(Received April 15, 1986)

9