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1. INTRODUCTION

Auslander and Bridger introduced the notion of projective stabilization
mod R of a category of finite modules. The category mod R is known to
be non-abelian. But realistically, mod R is almost abelian. It fails to be
abelian because of the lack of kernel and cokernel. In fact, each morphism
has a pseudo-kernel and a pseudo-cokernel (see §3). On the other hand, a
pseudo-kernel of a monomorphism does not necessarily vanish. In this paper
we focus on how mod R is similar or dissimilar to an abelian category (§4).
What is a monomorphism? Which object makes monomorphisms split?
One reason for similarity is that mod R is closely related to the homotopy
category of complexes. We discuss the functor from mod R to homotopy
category (§2). The method we use already produced important results in
representation theory on commutative rings [2], [5].

Throughout the paper, R is a commutative semiperfect ring, equivalently
a finite direct sum of local rings; that is, each finite module has a projec-
tive cover (see [4] for semiperfect rings). The category of finitely generated
R-modules is denoted by mod R, and the category of finite projective R-
modules is denoted by proj R. For an abelian category A, K(A) stands for
the homotopy category of complexes where a complex is denoted as

F. EPIN Fn—]_ an_l F’n, an F’I’L+1 e

A morphism in K(A) is a homotopy equivalence class of chain maps. A
degree-shifting 7" is an autofunctor on K(mod R);

(TF)TL — ‘F’I’L+17 dTFn — an+1,
T<nF'®, >, F'® are truncations;
T<nF® s = F"2 5 7L L F" 50 —0— -

TopF®:n =0 —0— F" — FrHl o pnt2

and F7 is the cocomplex such as F* = (F,)*, d¥ = (dg"!)* where * means
Homp( ,R). The projective stabilization mod R is defined as follows:

e Each object of mod R is an object of mod R.
e For A, B € mod R, a set of morphisms from A to B is

Hompg(A, B)/P(A, B),
31
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where P(A, B) := {f € Hompg(A, B) | f factors through some pro-
jective module}. Each element is denoted as f = f mod P(A, B). If

st
A, B € mod R are isomorphic in mod R, we write A = B.
For an R-module M, define a transpose Tr M of M to be Cokd* where
Pl QQ — M — 0 is a projective presentation of M. The transpose of
M is uniquely determined as an object of mod R. If f € Hompg(M,N),
then f induces a map Tr N — Tr M, which represents a morphism Tr f €
Homp(Tr N, Tr M'). Hence Tr is an autofunctor on mod R.

2. A FUNCTOR TO THE HOMOTOPY CATEGORY
Let £ be a full subcategory of K(mod R) defined as
L={F*eK(projR) | H'(F) =0 (i <0), H;(Fy) =0 (j > 0)}.

Lemma 2.1. For a morphism f® in L, f* =0 in K(mod R) if and only if
H%(7<0f) =0 in mod R.

Proof. Let f* : A* — B® be a chain map with A®, B®* € L such that
HO%(7<0f*) = 0. Then there exists g € Homg(H"(7<0A®), B®) that satisfies
H%(1<0f*®) = pog where p : By — H°(7<(B®) is the natural projective cover.
We get chain maps p®* € Hompg(By, 7<0B®) and ¢* € Hompg(7<0A®, Bp) such
as H(p*) = p and H%(g®*) = g. From the assumption, 7<of* is homotopic
to p® o g*, which implies

Fr=ht ody +dgi=lo b
with some ™1 : A" — B for i < —1. Similarly, since H(1<of*)* = 0,
we have

fj — pitl o dAj 4+ dijl o hJ
with some h? : A — BJ~! for j > 2. Therefore as a morphism in £, we may
assume f' = 0 (i # 0,1). Moreover, we may assume f* = 0 (i # 1); since
da o f9" =0, we get s* : A — B with fO = s! 0 d4°. Finally, to see
f* =0, observe d4° o f1* = 0, then we get u? : A2 — B! with f1 = u2od4".
Since da'" o u?* o dp!” = o dp'™ = 0, there exits a map u® : A3 — B?
such that

dg! o'LLQ—l—u?’odA2 =0.

Thus we obtain a homotopy map u : A* — T—'B® which shows that f* is

homotopic to zero.
The “only if” part comes from a more general result Lemma 2.2. O

Lemma 2.2 ([5]). Let f* be a chain map between two projective complezes.
If f* is homotopic to zero, then H™(1<n f*) =0 for everyn € Z.
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For the proof of Lemma 2.2, the argument in [5, p. 246] completely works
so we omit the proof here.

Lemma 2.1 is a key lemma and we obtain the following results as corol-
laries.

Proposition 2.3. For A € mod R, there exists Fo* € L that satisfies

0 st
H (TSOFA.) = A

Such an F4°* is uniquely determined by A up to isomorphisms. We fix the
notation F4o* and call this a standard resolution of A.

Proof. First take a projective resolution P4*® of A:
=Pyl Pyt P A0,

and then a projective resolution Pry 4® of Tr A = Cok dFA_l* as

*

O<—TrA<—PA71*<—PA0*<—PTrA*2 —

Define a complex F4° as

FAi — PAi ) (Z < _1)7 dF T dPAi ] (Z < _1)7
Pra~ 77 (i >0), 4 >

We easily see F4* € £ and

0 st
H (TSOFA.) =~ A.

Suppose both F4* and F’,* have this property. Adding some trivial com-
plex P*® of projective modules

P . 50—-P =Pl 50— ..

if necessary, we may assume that H%(1<gF4®) & H%(7<0F’,*) & A in mod R.
Then there are chain maps ¢® : 7<oF* — 7<oF4® and +* : 7<0F4°* —
T<oF",* such that ¢®o~® = 1y and 7* 0 ® = 1, p,e. As 7>_1Fag
and Tz,lFAf are acyclic, H_1(m>_1¢}) induces a chain map Tz,lFAf —
T>_1Fa,. With this map for the positive part, ¢*® can be extended to a chain
map f°®: Fa® — F/,* such that 7<of® = ¢®. Similarly we get a chain map
g® : F'\* — F® such that 7<og® = 7°. It is easy to see H(1<o(f* 0 g°)) =

14 and H%(7<o(g® o f*)) = 14. From Lemma 2.1, we have f®o ¢g® = 1F,'4°
and g® o f* =1p,e. O

Proposition 2.4. For f € Hompg(A, B), there exists

f. S HomK(mod R) (FA.7 FB.)
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that satisfies HO(TS()]“) = f. Such an f* is uniquely determined by f up to
isomorphisms, so we use the notation f® to describe a chain map with this
property for given f.

Proof. Asin the proof of Proposition 2.3, we obtain a chain map f°®. Unique-
ness follows from Lemma 2.1. O

Since the operation H%7<( commutes with composition, the next lemma
is an immediate corollary of Proposition 2.4.

Lemma 2.5. For f € Homp(A, B) and g € Hompg(B,C), we have
frog®=(fog)
To sum up, we construct a functor.

Theorem 2.6. The mapping A — FA°* gives a functor from mod R to
K(mod R), and this gives a category equivalence between mod R and L.

Every short exact sequence of modules induces that of projective reso-
lutions. But it does not necessarily induces an exact sequence of standard
resolutions.

Lemma 2.7. A short exact sequence
0-A—-B—-C—0
i mod R induces a short exact sequence of chain complexes
0— Fy*— Fg* — Fs*—0
if and only if 0 — C* — B* — A* — 0 is also exact.

Proof. If 0 — Fx* — Fp*® — Fc®* — 0 is exact, so is 0 — 7>1F¢, —
T>1FBy — 7>1F 4y — 0, which induces an exact sequence of homology:

0—-C*— B*— A* = 0.
With no assumption, we have a diagram with exact rows:

0 — T<0FA* — 7<0FB* —= 7<0fc* ——0

(2.1) l l l

0 A B C 0.

If0— C* — B* — A* — 0 is exact, similarly we get a diagram with exact
rows:

0 ——>T>1F0q — T>1Fpy — > T>1Fag —0

(2.2) l l l

0 cr B* A* 0.
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Applying Hompg( ,R) to (2.2) and connecting the dualized diagram to
(2.1), we get a desired exact sequence 0 — F4® — Fp® — F¢®* — 0. O
3. PSEUDO-KERNELS AND PSEUDO-COKERNELS

For A,B € modR, put A®* = F4*, B* = Fp*. For f € Homg(A, B),
consider the chain map f*: A®* — B® with H(7<of*®) = f. Putting C* =
C(f*)®, we get a triangle
(3.1) Tlo0 M 40 L ope < o,

In general, C'* does not belong to £ any more but it satisfies the following;:
HI(C") =0 (i < —1), H;(CI)=0( >-1).

Definition and Lemma 3.1. As objects of mod R, Ker f := Hil(rg_lC’)

and Cok f := H(1<oC*®) are uniquely determined by f.

Proof. Lemma 2.1 guarantees that C'* is uniquely determined in K(proj R).
Together with Lemma 2.2, we know that H"(7<,C®) are also uniquely de-
termined by f. O

Put
ng = H(t<on®) : Ker f — A, ¢ = H"(r<oc®) : B — Cok f.

The triangle (3.1) gives an exact sequence of the following form:

(),

(3.2) 0—Ker f~-25 Aep Y2 B0
with some projective module P. In fact, Ker f is characterized with this
property:

Proposition 3.2. If an R-linear map p' : P’ — B from a projective module

st
P’ makes f': A® P -2 (f ) B a surjective mapping, then Ker f = Ker /-

Proof. Tt is easy to show that both of the composites P’ 2, B — Cok f

and P & B — Cok f are projective covers of Cok f. There exist t €

Hompg(Pp, P’') and v € Hompg(Pp,A) such that p — p ot = fou. Ift

is not an epimorphism, add some s : ) — P with € proj R to make
(ts)

P & @Q —= P’ surjective. From the diagram

A@P@Qgﬁﬂi

(100)
“jiip%g,
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t
we get Ker f > Ker(f p sop’). Also we have a diagram

A@P@Qgﬁﬂig

Gy, |
Ao P — 7 . B ,
st
hence Ker f’ ~ Ker(f p sop). O
Lemma 3.3. With notation as above, we have the following:

1) fony=0.
2) If x € Homp(X, A) satisfies fox =0, there exists

hy € Homp(X, Ker f)
such that x = ny o h,.

The proof is straightforward from the definition. Strictly speaking, Ker f
is not the kernel of f. Because it lacks the uniqueness of h, in 2) of
Lemma 3.3. (See Example 3.4).

Example 3.4. Let R = k[[z,y,2]]/(2®> — yz), A = R/(yz) and B =
R/(yz,vy?, 2%). Let f : A — B be the natural map induced from the inclusion

t
(yz) C (yz,y* 2%). Since f is surjective, Ker f > Ker f = R/(z) ® R/(y),

and the sequence 0 — Ker f ™, AL B S 0is exact. Put X = Trk and
let u € Homp(X, Ker f) be as follows:

()

0 R R3 X 0
®) o 168 |
0 R? Y R? Ker f ——=0.

Easily we get nfou = 04 = uy o 0 where 04 = 0 € Homp(X,A) and
05 =0 € Homp(X, Ker f). Also we have u # 0p from this diagram. 0

Dually, (Cok f,cy) satisfies the following, which comes from the observa-
tion B
Cok f=TrKer Trf, c;=Trng;.

Lemma 3.5. 1) crof=0.
2) If y € Homp(B,Y) satisfies yo f =

f =0, there exists
ey € Homp(Cok f,Y)

such that Yy =eyocy.
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Two modules Ker f and Ker f are not always stably isomorphic. But we

get the following.
1) There is an exact sequence 0 — L — M — N — 0

Lemma 3.6.

st st st
such that L = Ker f, M = Ker f and N = Q}(Cok f).
2) There is an exact sequence 0 — L' — M' — N’ — 0 such that

£
Cok f and QL(L') is the surjective image of

st S
M’ = Cok f, N'
Ker f.
Proof. 1) The claim easily follows from the following diagram:
0 0 0
0 Ker f A Imf——0
(i
i N
0 Ker f Aa P B 0
| ()
0 — QL(Cok f) P Cok f —=0
0 0 0

f
2) Dualizing (3.2) with R, we get amap f : A @ B®Q with some pro-

. st
jective module @ such that Cok f = Cok f. And consider the commutative

diagram:

! i

0 Im f Cok f — 0,

0
l
Q
o V
Im f B®Q—=Cokf—=0
l
B
|
0

where the middle column is a split exact sequence. If we put L' the kernel of
epimorphism Cok f — Cok f, then Q}(L’) is the kernel of the natural map

A/Ker f =2Im f —Imf = A/Ker f.
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Therefore Q1 (L') = Ker f/Ker f. O
t

Corollary 3.7. 1) Ker f > Ker f if f is an epimorphism.

st
2) Cok f = Cok f if f is a split monomorphism.

Notations. For a given homomorphism f : A — B in mod R, put A®* =

Fy®, B®* = Fg® and C°® = C(f.). Set K*® = F@ f. and L® = FM f'.

Chain maps ny® € Homy mea r)(K*®, A®) and c;*® € HO}DK(mOd r)(B®,L*®) are

induced from n; and cy. Since f®ong® = 0 and cf® o f* = 0, there exist

e* € HomK(mO(E) (K',?AC") and ¢* € Homg mod r)(C®, L*) such that
ng® =n®oe®, and ¢f* = 6% oc’.

Notice that

CE®)!' =03 <—1), and C(8°) =0 (j > —1)

because €* and ¢° induce 1ker 7 and 1ok

K* 1 a0
S
T—lco Ao Bo Co

| . e
cy®

B* —L°.
4, MONOMORPHISMS, EPIMORPHISMS, AND SPLIT MORPHISMS
If Ker f = 0, then f is injective. But the vanishing of Ker f is not

a necessary condition for f to be injective; let A, B be two modules with
pd B > 2. Let f be a split monomorphism A — A @ B. Obviously ny = 0

st
but Ker f = Q}%(B) is not projective. We investigate what is an injective
morphism in mod R.

Proposition 4.1. With notations as in §3, the following are equivalent.

1) f is a monomorphism in mod R.

2) Exth(f, —) : Exth(B, —) — Exth(A, —) is surjective.
3) ng=0
4) There ezists p* € Homg moa ry(K*, T~'B*) that makes the diagram

commutative:
K* L Tfl Co

T—lBo

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 43/issl/5
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5) T<_1c® is a split epimorphism in K(mod R).
6) QL (f) is a split monomorphism and Ker f = Cok Q(f) in mod R.

Proof. 1) < 3). A morphism f is called a monomorphism if and only if
fox = 0 always implies z = 0, which is equivalent to ny = 0 from Lemma 3.3.
1) < 2). An exact sequence

nyf
OH@]"MA@PMBHO

induces a long exact sequence

Ext}%(f, ) Ext}a(nf, )
5 5

- — Ext}%(B, ) Ext}z(A, ) Ext}%(@i, ) — -

So Ext}%( f, ) is surjective if and only if Ext}(n f, ) is zero, which is equivalent
to the condition ny = 0 from [1] (1.44).

3) & 4). Lemma 2.1 shows that ny = 0 if and only if ny® = n®o
£®* = 0, that is, some ¢® : K®* — T71B*® exists and €* = T~ 'c® o ® since

—1_.e (]

7-15* T 710 % A* - B* is a triangle.

4) = 5). Applying 7<o to the diagram in 4), we get 5) since 7<o(T " 1c*) =
T~ (1<_1¢®) and T<(e® is the identity.

5) = 6). Put X*®* = C(7<_1c*). Then a triangle

T_IX. — T§,1B. & Tgflc. — X.

induces a split exact sequence

0— H*(X*) = H Y(r<1B*) — H }(1<-1C*).

=+

S

t
By definition, H~!(7<_1B®) > B and H 1 (7<1C*) = Ker f. We claim
st st
that H2(X*®) = A and via this isomorphism, w 2 QL(f). Since B~! —
st
C~' = X~ is surjective, so is dx 2, which implies H2(X*®) = Cokdx ~>.

¢

Moreover, Cokdx 3 = Cokdc(c)_3 > Cokda 2 = QL(A) as 7< 2 X* =
7<—2C(c)® and C(c)® = A°.
6) = 4). With no assumption, we have the diagram

QR(H*

Fot a)° Fou(p)* C(QL()°
t.
o B " > K*
T*lf. _IC. e®
714 T-1ps —~ T-1Ce
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where a®, 3* are canonical maps induced by Lot (a) and 1g1 (), which induce
v*. The map Cok Qf(f) — Ker f induces t*. Now if we assume the
condition 6), there exists a chain map s* : C(QL(f))" — FQ}%(BV such that
v%0s® = 10(9}_{(]@))- and t* = 1xe. Hencee® = 7®* = y%ov®0s® = T~ 1c®03%0s®
so we get the chain map ¢* = (3° o s°. ([l

If Exth(B,R) = 0, then H_;(C}) = 0, which implies * = 1; K* =
T~1C®. Thus we have the next lemma:
Lemma 4.2. The following are equivalent for B € mod R.

1) In mod R, every monomorphism to B splits.

2) Exth(B,R) = 0.

Proof. 2) = 1). Let f : A — B be a monomorphism and let us use the same
notations as in Proposition 4.1. If Ext}%(B,R) = 0, then H_;(C}) = 0,
which implies T~'C® = K*, that is, €* is an isomorphism. Since n =0,
n® =ny®* = 0 hence f* is a split monomorphism. o

1) = 2). If Exth(B,R) # 0, then there exists a non-split short exact
sequence

0-R—-AL B0
5t
We see f is a monomorphism because Ker f ~ R. But f does not split. [
Dually, we get

Lemma 4.3. The following are equivalent for A € mod R.

1) In mod R, every epimorphism from A splits.
2) Exth(Tr A, R) = 0.

Remark. The condition that Q}%( f) is a split monomorphism does not au-

¢
tomatically induce Ker f > Cok QL(f). For instance, let z € R be an

non-zero-divisor of R. Let f be an endomorphism of R/(z2?) as f = z.
Then Q}(f) is an endomorphism of R, so we have Cok Q}(f) = 0. But

st
Ker f = R/(z) is not projective.

Theorem 4.4. The following are equivalent for a ring R.

1) Every monomorphism in mod R splits.

2) Every epimorphism in mod R splits.

3) R is self-injective.

4) FEvery short exact sequence 0 — A — B — C' — 0 induces an exact
sequence of standard resolutions 0 — FA* — Fp* — Fo* — 0.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 43/issl/5
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5) Every short exact sequence 0 — A — B — C — 0 remains ezact
when dualized by R; 0 — C* — B* — A* — 0 is exact.

Proof. The equivalence between 3) and 1) (or 2)) follows from Lemma 4.2
(Lemma 4.3) respectively. We have already shown in Lemma 2.7 that 4)
and 5) are equivalent. Obviously 3) implies 5), so it suffices to prove that 5)
implies 3). Let M be an arbitrary object of mod R. Consider a projective
cover of M:

0— QL(M)—P— M —0.

If the dualized sequence remains exact, that means Ext}%(M ,R)=0. ]
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