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Introduction. Throughout, a simple ring will mean a (right) Artinian
two-sided simple ring with identity, and a semisimple ring will mean a
direct sum of finite number of simple rings. In [4], N. Jacobson presented
an infinite outer Galois theory for division rings. In [9] and [13], the theory
was extended to simple rings by T. Nagahara and H. Tominaga. On the
other hand in [16], O. E. Villamayor and D. Zelinsky presented a finite
Galois theory for separable G-extensions of commutative semi-connected
rings. In [5], K. Kishimoto and T. Nagahara presented a finite Galois
theory for G-extensions of semi-connected rings which is a generalization
of [16] to non-commutative rings. In [11], T. Nagahara and the present
author presented an infinite outer Galois theory for semisimple rings which
is a generalization of [8. Corolary 1.4] applying the same methods as in the
[5;16]. This paper is the continuation of the preceding paper [11]. In this
paper, we shall present some Galois theory for semisimple rings which are
not outer. Moreover, some results in [8;9] will be generalized to semisimple
rings.

In what follows, we shall summarize the notations and definitions which
will be used very often in the subsequent study. Throughout the present
paper, B will mean a semisimple ring with P = {ey,...,e,} the set of
all central primitive idempotents of B, and A a semisimple subring of B
containing the identity element of B. By G, we denote the group of all
A-ring automorphisms of B. For a subset K of G and subsets T and S of
B, we shall use the following conventions:

T(K)={beT|o(b) =bforall o € K}
KT)={ceK|o(t)y=tforallt e T}
Vr(S)={t € T |ts = st for all s € S}
Z(T) = vr(T)

(T) = the set of all inner automorphisms

induced by the regular elements of T
K|p = the restriction of K to T
KT ={o(a)|c € K,ae T}
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Moreover, if T' is a subring containing S, then we shall use the following
conventions:

Aut(T'/S) = the group of all S-ring automorphisms of T
idT = identity map on T

Next, let T/ O T be intermediate semisimple rings of B/A. By [T"],
we denote the cardinal number of the set of central primitive idempotents
in 7'. The subring T is called regular in T' if T, Vp«(T) are semisimple
rings and [T'] = [V (T)]. As is easily seen, if 7" is a simple ring and T
is regular in 7' then T is also a simple ring. In general, if T' is regular in
T' then [T] < [T']. The extension T'/T is said to be Galois (or infinite
Galois) if T is regular in 77 and T'(Aut(T"/T)) = T. If T'/T is Galois and
Vi (T) = Z(T"), then we call that T'/T is outer Galois. T'/T is said to be
(left) locally finite if T[F) is finitely generated as a left T-module (abr. left
finite over T') for each finite subset F of T". If for each finite subset F' of T"
there exists an intermediate semisimple ring N of T’ /T[F] such that N/T is
Galois and left finite, then T"/T is said to be locally Galois. If for each finite
subset F' of T/ there exists an intermediate semisimple ring N’ of T'/T[F)
such that N'/T is Galois and left finite, and Aut(7"/T)|n+ 2 Aut(N'/T)
then we shall say that T'/T is Aut(T"/T)-locally Galois.

Now, let K be a subgroup of G. By K*, we denote the set of all elements
o in G such that for each e € P, o|g. = 7|ge for some 7 € K. If K = K*,
then K will be called to be fat. The definition of ”fat” have been appeared
in [16] firstly. Moreover, if B(K) is regular in B and K D (Vp(B(K)))
then K is called regular. At last, we shall introduce a finite topology on G
in which the collection of sets of form {7 € G | 7(z;) = o(z;)} is a basis of
the open sets, where {z;} is a finite subset of B and o is a fixed element of
G. And for a subset K of G, by ClK, we denote the closure of K in G.

In §1 of this paper, we will consider some Galois extensions of semisim-
ple rings with Galois groups which are locally compact. The principal the-
orem of this section is the next: Let B/A be Galois and locally finite, and
let Vg(A)/Z(B) be left finite. Then G is locally compact and there exists
a 1-1 dual correspondence in the usual sense of Galois theory between fat
and closed regular subgroups of G and regular intermediate rings of B/A.
This theorem is a generalization of [9. Corollary 4.2] to semisimple rings
and a generalization of [11. Main Theorem] to non outer case. In §2-§4 we
shall deal with locally Galois extension. The Galois groups which will be
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considered in these sections are both locally compact and not locally com-
pact. In §2, we shall see that if Vg(A)/Z(B) is left finite and B/A is locally
finite then the conditions Galois, locally Galois, and G-locally Galois are all
equivarent. In §3, we shall deal with intermediate rings which are locally
Galois over A. In §4, we shall deal with subrings whose extensions B are
locally Galois. In the last section §3, we shall present some Galois theory of
semisimple rings with Galois groups which are not locally compact. These
are some generalizations of §1.

Now, if Vg(A) is semisimple and m = [Vg(A)] then the set of idempo-
tents in Vp(A) is of the cardinal number 2™. When this is the case, noting
Z(B) C Z(Vg(A)) we see that the idempotents of Z(Vp(A)) are contained
in Z(B) if and only if m = n(= [B]).

In this note, we assume that Vp(A) is semisimple and [Vg(A4)] = n(=
[B]). (In another words, A is regular in B.) Moreover, we write Vg(4) =
Vi@ - & V,, where the V; are simple rings. Then P is the set of all
central primitive idempotents of Vg(A). Thus, we may assume that for
each i, Vi = Vpe,(Ae;) and e; is a unit of V;. (In this case, the Ae; are
simple rings since each Ae; is semisimple and Z(Ae;) C Z(V;) = field.)
Moreover, we shall use the following conventions: B; = Be;, A; = Ae;, and
G; = Aut(Bi/Ai). C=2Z(B),V =Vg(A), and H = VB(V). And we set
the following. B; =}, Dieg? where the {egi) | s,t} are matrix units of B;
and the D; = VBi({eg? | s,t}) division rings. V; =3, D,’-g,(,? where the
{g},? | p,q} are matrix units of V; and the D} = V\/i({g&) | p,q}) division
rings.

1 Galois theory of semisimple rings with Galois Groups
which are Locally Compact.

In [9], T. Nagahara and H. Tominaga have obtained a Galois theory
for simple rings as following:

Let B/A be Galois as simple rings and locally finite, and V/C left finite.
Then G is locally compact and there exists a 1-1 dual correspondence in the
usual sense of Galois theory between closed regular subgroups of G and
regular intermediate rings of B/A. (Cf. [9. Lemma 1.7, Theorem 4.2 and
Corollary 4.2])

In this section, we extend this theory to semisimple rings. Firstly by
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making use of the same methods as in the proof of [3. Lemma 9], we obtain
the next proposition.

Proposition 1.1. If K is a subgroup of G, then Bi(K({e;})|s,) =
B(K)e; for alli. In particular, if B/A is Galois then, for each i, B;/A; is
o Galois eztension of simple rings.

Remark 1.2, Let T be an intermediate ring of B/A. Then the fol-
lowing conditions are equivalent.
(1) T is regular in B.
(2) T is semisimple and the Vg (Te;) are simple rings.
(3) The Te; are regular in B;.

The next lemma is used very often in the subsequent study.

Lemma 1.3. (1) Let A= Afi® - ® Afr, where the Af; are simple
rings and the f; are identity elements of Af;. Then f; € C.

(2) If B/A is locally finite then all the B;/A; are locally finite.

(3) If B/A is Galois and A is a simple ring. Then for any permutation o
on the set {1,...,n} there ezists 6, € G such that d,(e;) = eq(;) for all
i.

(4) Let A= Af1®- - ® Afym where the Af; are simple rings and the f; are
identity elements of Af;. If all the Bf;j/Af; are locally Galois, then
B/A is locally Galois.

(5) Let A= Af1®- - ® Afym where the Af; are simple rings and the f; are
identity elements of Af;. If all the Bf;/Af; are Aut(Bf;/Af;)-locally
Galois, then B/A is G-locally Galois.

(6) Let T,T',T*, be subrings of B. Let T = > Deij where {e;li, 5}
is a matriz units and D = Vp({e;|i,j}) o division ring. If T' is an
Artindan ring and T 2 Vi (T*) D {eijli, 5}, then Vi (T*) is o simple
Ting.

(7) Let T be a simple subring of B and T =}, : De;; where {e;li,j} is
a matriz units and D = Vp({e;|i,j}) a division ring. If T D T' D
{eili, 7} and T' is Artinian, then T’ is a simple ring.

Proof. (1) Clearly, f; € Z(A) C Z(V) = Z(V1)®: - -®Z(Vy). Otherwise
each idempotent of Z(V') is an idempotent of C since the cardinal number
of the set of idempotents in Z(V) = Z(V}) @& --- & Z(V,) and the cardinal
number of the set of idempotents in C = Z(B;1) ®---® Z(By,) are both 2".
Thus f; € C.
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(2) Let F be a finite subset of B;. Then A[F]/A is left finite. Thus
A[Fe1/A; is left finite and A[F)e; = A;1[F]. Thus B;/A; is locally finite.
Similarly all the B;/A; are locally finite.

(3) Since G is transitive on the set P, there exists a subset {é;,...,0,}
of G such that d;(e;) = ey(;)- Now we define a map 6, : B — B by

50(6) = 51(b61) +-o 4+ an(ben)

for all b € B. Then 4, is an A-automorphism of B and ds(e;) = e,(;) for
all 4.

(4) Let F be a finite subset of B. Then, for each j, there exists an
intermediate semisimple ring N; of Bf;/Af;[F f;] such that N;/Af; is Ga-
lois and left finite. Thus, N1 @ --- @& N /A is Galois and left finite, and
N ®---6N, D F.

(5) Let F' be a finite subset of B. Then, for each j, there exists
an intermediate semisimple ring N; of Bf;/Af;[Ff;] such that N;/Af;
is Galois and left finite, and Aut(Bf;/Afj)|n; 2 Aut(N;/Af;). Thus,
N, ®---© Ny /A is Galois and left finite, and Ny & --- @ Ny, D F. More-
over.

Glv@--@Nn = Aut(Bfi/Af1)|n X -+ X Aut(B fim/Afm)|IN..
D Aut(N1/Af1) x -+« x Aut(Npm/Afm)
= Aut(N; @ -+ © Nm/A).

(6) As is easily seen, Vp(T*) = 3} ;;D'e;; where D' =
V. (r+)({eijli, 5}) € D. Let d be a nonzero element of D'. Then,d e T
since d € T' and T is an Artinian ring. Thus d™! € Vp(T*). Thus
d~! € D'. Thus D’ is a division ring.

(7) If T* = C then Vp(T*) = T'. Thus by (6), T' is a simple ring.

By Lemma 1.3 (3), and by making use of the same methods as in the
proof of [5. §3. L. (iii)], we obtain the following proposition.

Proposition 1.4. Let B/A be a Galois eztension and A a simple ring.

Then, for any permutation o on the set {1,...,n} there ezists 6, € G
such that §,(e;) = es(;) for all i. Moreover, let 6, be an element of G as
above, K = {0, | o runs over all the permutations on the set {1,...,n}},

and K' =Gy x+-+x Gn. Then G=K'K = KK'.

Lemma 1.5. Let B/A be Galois and T a regular intermediate ring
of B/A. We assume that for each i, Bi(Gi(Te;)) = Te; and Gi|re; 2
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G'(Te;i/Ai), where G'(Te;[A;) signifies the set of all A;-ring isomorphisms
of Te; into B;. Then B(G(T)) =T.

Proof. Let fi,...,fr be central primitive idempotents of T. Then
B(G(T)) = Bfi(Aut(Bfi/Th)) @ & Bfy(Aut(Bf, /T fr)).

Thus we may assume that T and A are simple rings. We set T* = Te; &
<+ ®Tey,. Since B;(Gi(Te;)) = Te;, B(G(T)) C T*. On the other hand
T ~ Te; (t + te;) since T is a simple ring, for every i. Obviously, there
exists a T-automorphism 7 of T* such that 7(e;) = ;41 (1 <i < n—1)
and 7(e,) = e;. Then we have T*(7) = T. By Proposition 1.4, there
is an A-automorphism p of B such that ulf, ..} = Tlie,,...en)- Hence
such that v|p- = p~ 7|7+, Then pr € G and pv
and T*(uv) =T. Hence B(G(T)) =T.

Proposition 1.6. Let B/A be Galois and locally finite, and let V/C
be left finite. Let T be a regular intermediate ring of B/A. Then B/T is
Galois.

1

r- = 7. Thus pv € G(T)

Proof. By Proposition 1.1 and Lemma 1.3 (2), for each i, B;/A; is
Galois and locally finite, and V;/Z(B;) left finite. Thus, by [9. Lemma 2.2,
Theorem 2.3], each B;/A; is locally Galois and V;/Z(B;) left finite. Thus,
by [8. Theorem 4.2 (ii)], the B;/Te; are Galois. Moreover, by [8. Theo-
rem 4.2 ()], Gilre; 2 G'(Te;/A;) for all i, where the G'(Te;/A;) signifie
the sets of all A;-ring isomorphisms of T'e; into B;. Thus, by Lemma 1.5,
B/T is Galois.

Lemma 1.7. Let K be a regular subgroup of G. Then each K({e;})
is a regular subgroup of G; for all i.

B;

Proof. By the definition of regular, each B;(K({e;})|p;) and
Vp,(Bi(K({ei})|B;)) are simple rings for all i. Moreover, by the hypoth-
esis, K D (Vg(B(K))). Since each e; € Z(B), K({ei}) 2 (Vs(B(K))).
Otherwise Vg(B(K)) = Vg,(B(K)ei) ® Vp(1—¢,;)(B(K)(1 — e;)). Thus

K({e:})|s; 2 (Va(B(K)))|5;
= (Vi (B(K)e)
= (VB,(Bi(K({e:})|5:)))

Lemma 1.8. Let K be a fat and closed subgroup of G. Then each
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K({ei})|B; is a closed subgroup of G; for all 1.

Proof. Let o be an element of G; \ K({e;})|s,. Now, we define a map
o1 of B to B by

o1(b) = o(be;) + b(1 — ;)

for all b € B. Then 0, € G and 04|, = 0. Thus o1 ¢ K({e;}). Now,
o1 ¢ K since o;(e;) = o(e;) = e;. Because K is closed, there is a finite
subset X of B such that

{r €G|r(z)=01(z) forallz € X} NK = ¢.
Now, we shall show that
{7 € Gi|(ze;) = o(ze;) for all z € X} N (K ({e;})];) = ¢

The proof is by contradiction. Assume the assertion were false. Then we
would have that there is some element

10 € {1 € Gi|T(ze;) = o(ze;) for all z € X} N (K ({e;i})|B;)-
We define a map 71 of B to B by
71(b) = 70(be;) + b(1 — ¢;).
Then
7ilB; = 70 € K({e:})|s; € K|,
and
T1|B(1-e;) = ¥d|B(1-e;) € K|B(1-¢:)-

Thus, 71 € K since K is fat. Moreover 71(z) = o1(z) for all z € X. This
is a contradiction. Thus each K({e;})|p; is closed in G;.

Lemma 1.9. Let K be a fat subgroup of G. If Gi(B;(K({e:})|B,)) =
K({e;})|B; for all i, then G(B(K)) = K.

Proof. We may assume that K{e1} = {e1,...,em} (m < n). Then
> ,ei =€ € B(K). Let 0 € G(B(K)). Since g(e) = e, there is some
¢ such that o(e;) = e; where 1 < i < m. Now, there is an element 7 of
K such that 7(e;) = e;. Since 70 € G(B(K)) and 7o(e1) = e1, 7olp, €
G1(B(K)e1) = Gi(Ber(K({er)ler) = K({e1})lpey. Thus, 70|pe, €
K|Be, and o|ge, € K|pe,. Similarly, o|p, € K|p, for all i. Thus, 0 € K
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since K is fat.

Proposition 1.10. Let B/A be Galois and locally finite, and V/C left
finite. Let K be a fat and closed regular subgroup of G. Then G(B(K)) =
K.

Proof. By Lemma 1.7 and Lemma 1.8, the K({e;})|p; are closed reg-
ular subgroup of G;. Otherwise, by Proposition 1.1 and Lemma 1.3 (2),
the B;/A; are Galois and locally finite. Moreover, the V;/Z(B;) are left
fintie. Thus by [9. Lemma 1.7 and Corollary 4.2], G;(B;(K({ei})|B;)) =
K({e;})|B;- Thus, by Lemma 1.9, G(B(K)) = K since K is fat.

Proposition 1.11. If all the G; are locally compact then G is locally
compact.

Proof. Since G is a topology group, it suffices to prove for special
one element only. We put idg € G. Since the G; are locally compact,
there exist some finite subsets F; C B; such that Cl{r; € Gi|7i(b;)) =
idp, (b;) for all b; € F;} are compact for all i. Here, we may assume that
for each 7, F; 3 e;. Let {Ti € GilTi(bi) = T:dB;(bi) for all b; € Fi} = U; for
all i. Now

Cl{r € G| 7(b) = idp(b) for all b € U; F;}
= {r € G| 7(b) = idp(b) for all b € U;F;}
=Up - xUp
= ClU, % -+ x ClU,

Thus Cl{r € G | 7(b) = idp(b) for all b € U;F;} is compact. Hence G is
locally compact.

Theorem 1.12. Let B/A be Galois and locally finite, and V/C left
finite. Then G is locally compact and the following conditions are satisfied;
(1) Let T be a regular intermediate ring of B/A. Then B(G(T)) =T, and

G(T) is a fat and closed regular subgroup.

(2) Let K be a subgroup which is fat and closed regular. Then G(B(K)) =

K. Moreover, B(K) is regular in B.

Proof. At first, for any intermediate ring T', G(T') is fat closed and
G(T) D (Ve(G(T))). Let T be a regular intermediate ring of B/A. Then,
by Proposition 1.6, B(G(T')) = T. Hence, for each i, B;((G(T)({ei}))|s:;) =
Te; and Vg, (B;((G(T)({ei}))|B;)) = VB,(Te;) by Proposition 1.1. Thus for

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 38/iss1/5



Tanabe: Infinite Galois Theory of Semisimple Rings

INFINITE GALOIS THEORY OF SEMISIMPLE RINGS 61

each 7, Bi((G(T)({e:}))|s;) and Vi, (Bi((G(T)({ei}))| ;) are simple rings.
Thus G(T) is a regular subgroup. Next, let K be a regular subgroup of G
and B(K) =T. Then T is regular in B. Let K be a fat and closed regular
subgroup of G. Then G(B(K)) = K by Proposition 1.10. At last, we shall
prove that G is locally compact. By Lemma 1.3 (2), the B;/A; are locally
finite, and V;/Z(B;) are left finite for all <. Thus, by [9. Lemma 1.7], the
G; are locally compact. Thus, by Proposition 1.11, G is locally compact.

Theorem 1.13. Let B/A be Galois and locally finite and V/C left
finite. Let V = D] @ --- & Dy, where each D} is a division ring. Then G
is locally compact and the following conditions are satisfied;

(1) For each intermediate ring T of BJ/A, T is semisimple and B(G(T)) =

T. Moreover G(T) is a fat and closed regular subgroup.

(2) Let K be a subgroup which is fat and closed regular, then G(B(K)) =

K. :

Proof. By Proposition 1.1 and [9. Lemma 2.2 and Theorem 2.3], we
know that all the B;/A; are locally Galois. Let T be an intermediate ring
of B/A. By [8. Theorem 1.1], each Te; is a simple ring. Thus, T is a
semisimple ring, since T is a subdirect sum of Te;,... ,Te,. Moreover each
Vp,(Te;) is a division ring since D} D Vpg,(Te;). Thus, by Theorem 1.12,
this theorem is proved.

Remark 1.14. Let B/A be locally finite. As is shown in the proof of
Theorem 1.12, if V/C is left finite, then G is locally compact. Conversely,
if G is locally compact, then each G; is locally compact. Whence, by [9.
Lemma 1.7], each V;/Z(B;) is left finite. Thus V/C is left finite. Therefore,
it follows that G is locally compact if and only if V/C is left finite. This is
a generalization of [9. Lemma 1.7] to semisimple rings.

In the last of this section, we consider the extensions of automorphisms.
The following Proposition 1.15 and Corollary 1.16 are some generalizations
of [8. Theorem 4.2 (i)] to semisimple rings.

Proposition 1.15. Let B/A be Galois and locally finite, and V/C left
finite. For each regular intermediate rings T1, T2 of B[A1 ®---® A, every

A-ring isomorphism of T1 onto Ty can be extended to an automorphism of
B.

Proof. We may assume that A is a simple ring. Let ¢ be an A-ring
isomorphism of T} onto T>. Then o(P) = P since P the set of all central
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primitive idempotents of 7} and T5. By Lemma 1.3 (3), there exists an
element 7 € @ such that 7(e;) = o(e;) for all i. Then each 77 1o|p, is
an A;-ring isomorphism of Tye; onto Tye;. Now, by Proposition 1.1 and [9.
Lemma 2.2], the B;/A; are locally Galois. Thus, by [8. Theorem 4.2], there
exist the automorphisms §; of B; which are extensions of 77 o|1ye;. Now
we define a map 6 : B — B by

5(b) = 51(1)61) + -+ 5n(ben)

for all b € B. Then é|7, = 77'0. Thus 74 is an automorphism of B and
Té|lr, = 0.

Corollary 1.16. Let B/A be Galois and locally finite, and V/C left
finite. Moreover, let A be a simple ring. Then for each intermediate simple
rings T1, Ty of B/A which are regular in B, every A-ring isomorphism of
T, onto Ty can be extended to an automorphism of B.

Proof. Let o be an A-ring isomorphism of 77 onto Tp. Now Ty ~ Tie;
(bl “ ble,;) and Ty ~ Tre; (b2 © bge,-) for all ¢ where b; € 71 and by € T
since 7} and 7% are simple rings. Thus the isomorphisms o; : T1e; — Tae;,
(ci(bre;) = o(b1)e;) are well-defined. Now, we define a map

o :Tyey+ -+ Tien — Taer +--- + Taen
by
cr'(t161 + 4 tnen) = Gl(t]_e]) +-.- +Jn(tnen)

for all ¢; € T;. Then o' is an extension of 0. Now, by Proposition 1.15,
there exists an element 7 € G which is an extension of ¢’ and thus 7|7, = 0.

2 The some relations of Galois, locally Galois, and G-locally
Galois.

In [9], T. Nagahara and H. Tominaga have obtained the following the-
orems.

(a) B/A is G-locally Galois as simple rings if and only if B/A is Galois
and locally Galois as simple rings.

(8) If B and A are simple rings, B/A locally finite, and V/C left finite
then, the conditions Galois, locally Galois, and G-locally Galois are all
equivarent.
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In this section we will generalize these theorems to semisimple rings
(Theorem 2.3 and Theorem 2.17) and we shall present some conditions
which induce the condition G-locally Galois (Proposition 2.5 and Proposi-
tion 2.6).

Lemma 2.1. Let B/A be Galois and let each B;/A; be G;-locally Ga-
lois. Then BJA is G-locally Galois.

Proof. By Lemma 1.3 (5), we may assume that A is a simple ring.
Then, by Lemma 1.3 (3), there exist the automorphisms 4; of B; onto
B; such that d;(ae;) = ae; (a € A), for all i. Here we may assume that
d; = idp,. Let F be a finite subset of B. Let F' = Uiéi’l(Fe,-). Then
there exists an intermediate simple ring NV of By/A;[F'] such that N/A, is
Galois and left finite, and G|y 2 Aut(N/A;). Let N; = §;(N). Then the
N;/A; are Galois and left finite, and G;|n; 2 Aut(N;/4;). Thus N1 ®--- &
Np/A1 & -+ ® A, is Galois and left finite, and N; & --- & N, DO F. Now
we defineamap 012 : N1 ®--- N, > N1 ®--- O N,, by

S19(by 4 -+ by) = Ga(by) + 65 (b2) + b3+ + by,

for all b; € N;. Then 612 € Aut(N1 & --- @ Ny /A). Let b be an element of
(N1 ®--®Np)(Aut(N1©--- @D N, /A)). Since Ni@---®Np /A1 ®--- B Ay
is Galois, we get the expression b = aje; + - -+ + anen (a; € A). Then

aie; + -+ anen = 012(a1e1 + -+ anen)

= aiez +age; + -+ aneyn.

Thus ajes = ages. Similarly aje; = aje; for all . Thus b = a; € A.
Thus N} & --- ® N, /A is Galois and left finite. Now let 7 be an element
of Aut(N; & --- @ N,/A). Then there exists some permutation ¢ on the
set {1,...,n} such that 77'(e;) = ey;). Let 6 = Y 6a(i)6{1|3i. Then
SEG, 6(N1® - BNy =N1®:--@ Ny, and 67(N;) = N; for all i. Since
Giln; 2 Aut(N;/A;), there exists 7; € G; such that 7;|n;, = d7|n, for each
i. Now we define a map 7' : ‘B = B by

7' = 1(bey) + - -+ + T, (ben)

for all b € B. Then 7 € G and 7'|y,g--@n, = 67. Thus 717" € G and
77| ny@--@n, = 7. Thus B/A is G-locally Galois.

Lemma 2.2. Let B/A be locally Galois. Then the B;/A; are locally
Galois as simple rings.
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Proof. Tt suffices to prove that Bj/4; is locally Galois as simple rings.
Let F be a finite subset of B;. Then there exists a semisimple subring N of
B such that N/A is Galois and left finite, and N D A[F, {eg) | s,t}, {gﬁ,}l) |
p,q}]. Since N 5 e, Nej/A; is Galois and By 2 Ne; 2 A;. Obviously
Ne; D Fand Nej /A, is left finite. By Lemma 1.3 (7), Ne; is a simple ring
since B; D Ne; 2 Al[{eg? | s,t}]. Moreover, by Lemma 1.3 (6), Ve, (41)
is a simple ring since Vg, (A1) 2 Ve, (41) 2 {g,(,? | p,q}. Thus By/A; is
locally Galois as simple rings.

Theorem 2.3. B/A is G-locally Galois if and only if B/A is Galois
and locally Galois.

Proof. The only if part is clear. Let B/A be Galois and locally Galois.
Then, by Proposition 1.1 and Lemma 2.2, the B,-I/Ai are Galois and locally
Galois. Thus, by [9. Theorem 2.3], the B;/A; are Gj-locally Galois. Then,
by Lemma 2.1, B/A is G-locally Galois.

Corollary 2.4. Let B/A be G-locally Galois. Then the B;[A; are G;-
locally Galois as simple rings.

Proof. By Theorem 2.3, B/A is Galois and locally Galois. Thus, by
Proposition 1.1 and Lemma 2.2, all the B;/A; are Galois and locally Galois.
Thus, by [9. Theorem 2.3], the B;/A; are G;-locally Galois.

The next proposition is a generalization of [9. Theorem 2.4] to semisim-
ple rings.

Proposition 2.5. Let B/A be Galois and locally finite, and V/Z(V)
left finite. Then B/A is G-locally Galois.

Proof. By Proposition 1.1 and Lemma 1.3 (2), the B;/A; are Galois
and locally finite. Moreover the V;/Z(V;) are left finite. Thus, by [9.
Theorem 2.4], the B;/A; are G;-locally Galois. Thus, by Lemma 2.1, B/A
is G-locally Galois.

Proposition 2.6. Let B/A be Galois and each B;/A; locally Galois.
Then B/A is G-locally Galois.

Proof. By Proposition 1.1, the B;/A; are Galois. Thus, by [9. The-
orem 2.3], the B;/A; are G;-locally Galois. Thus, by Lemma 2.1, B/A is
G-locally Galois.
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Next, we give some lemmas and propositions to obtain some general-
ization of (3) to semisimple rings. At first, we give the next proposition.
This proposition is a generalization of {8. Theorem 1.1] to semisimple rings.

Proposition 2.7. Let B/A be locally Galois. Then the following con-
ditions are equivalent.
(i) Ewvery intermediate ring of B/A is a semisimple ring.
(i) V=D @--- & D;, where the D; are division rings.

Proof. (ii)=>(i). Let T be an intermediate ring of B/A. By Lemma 2.2,
the B;/A; are locally Galois as simple rings. By [8. Theorem 1.1], the Te;
are simple rings since the V; = D; are division rings. Thus T is a semisimple
ring since T is a subdirect sum of Te;,...,Te,.

(i)=(ii). We fix for some i. As is easily seen, every intermediate ring of
B;/A; is a semisimple ring. Let T; be an intermediate ring of B;/A;. By the
assumption, 7} is a semisimple ring. We now assume that T; = S, @---®S,,
where the S; are simple rings and m > 1. Let the f; are identity elements
of Sj. Now let TV = > ., fuBify and I = 3, ., fuBify. Then T' is an
intermediate ring of B; /4—1, I a nonzero ideal of T, and I™ = 0. Thus T'
is not a semisimple ring. This is a contradiction. Thus every intermediate
ring of B;/A; is a simple ring for each 7. Thus, by [8. Theorem 1.1], the
V; are division rings. Thus V = D] & --- ® D;, where the D] are division
rings.

Corollary 2.8. Let B be a simple ring. If every intermediate ting of
B/A is a semisimple ring, then every intermediate ring of B/A is a simple
Ting.

Proof. We may prove this corollary by the same methods as in the
proof of (i)=>(ii) of Proposition 2.7.

Lemma 2.9. Let B/A be locally Galois. Let N be a regular interme-
diate ring of B/A which is left finite over A then B/N is locally Galois.

Proof. Let { f&lv) | u,v} be the matrix units of Vp,(Ne;). Let F be
a finite subset of B. Then there exists an intermediate semisimple ring
N’ of B/N[F,{f,gﬁ,),g,(,? | u,v,p,q,i}] such that N'/A is a finite Galois.
Now, by Lemma 1.3 (6), the Ve, (Ne;) are simple rings since Vp.(Ne;) 2
Vnte;(Nei) 2 { f,(ﬁ,) | u,v}. Thus N'e; are also simple rings. Moreover,
by Lemma 1.3 (6), the V¢, (A;) are simple rings since V; 2 Vv, (4;) 2
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{g},f,) | p,q}. Now, by [9. Lemma 1.5], the Ve, (A:)/Z(N'e;) are left finite
since the N'e;/A; are left finite. Thus Vy/(A)/Z(N') is left finite. Thus,
by Proposition 1.6, N’/N is finite Galois. Thus B/N is locally Galois.

Corollary 2.10. Let B/A be locally Galois. Let A* be an intermediate
semisimple ring of B/A such that A* is left finite over A and the Vp,(A*e;)
are division rings. Then each intermediate ring of B/A* is a semisimple
ring.

Proof. By Lemma 2.9, B/A* is locally Galois. Thus, by Proposi-
tion 2.7, each intermediate ring of B/A* is a semisimple ring.

The next lemma is a generalization of [8. Corollary 1.1] to semisimple
rings. '

Lemma 2.11. Let B be outer Galois and finite over A. If N is an
intermediate ring of B/A1 & -+ & Ap and N/A is Galois, then G|y C
Aut(N/A).

Proof. At first, by Proposition 2.7 and Corollary 2.8, the Ne; are simple
rings. Let {f1,..., fr} be the set of all central primitive idempotents of A.
Then G = Aut(Bfi/Afr) x - x Aut(Bfr/Afy) and N=Nf1®-- - &N fr.
Thus GN = Aut(Bfi/Afi)Nfi @ --- & Aut(Bf,/Afr)Nfr. Since each
Bfi/Af; satisfies the assumptions of this lemma, we may assume that A is
a simple ring. Now, let o be an element of G. By Lemma 1.3 (3), there
exists 7 € Aut(IN/A) such that 7(e;) = o(e;), since N is a Galois extension
of a simple ring A. Now, by [8. Theorem 4.2 (i)], there exist automorphisms

5iiBi_)Bi

which are extensions of 0=17|ye, : Ne; = 07 }(N)e;, since each B;/A4; is
outer Galois and finite. Then J; € G;. By (8. Corollary 1.1], §;(Ne;) = Ne;
since each Ne;/A; is Galois. Thus o(Ne;) = 7(Ne;) = N7(e;). Thus
o(Ne;) C N. Thus, o(N) =o(Ney®---® Ne,) CN.

Lemma 2.12. Let B/A be locally finite outer Galois. Let N be an
intermediate ring of B/A1 ®---® A,. If N/A is Galois and left finite then
G|y = Aut(N/A).

Proof. By [11. Lemma 5.2], there exists an intermediate ring N’ of
B/N such that N'/A is (outer)Galois and left finite, and Aut(N’/A) D
G|n'. By Lemma 2.11, Aut(N/A) D Aut(N'/A)|n. Thus Aut(N/A) D
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G|n. Otherwise, by Proposition 1.15, G|y 2 Aut(N/A). Thus G|y =
Aut(N/A).

The next proposition is a generalization of Lemma 2.11 to infinite outer
case.

Proposition 2.13. Let B/A be locally finite outer Galois. Let N be
an intermediate ring of B/A1 ® -+ ® A,. If N/A is Galois, then G|y =
Aut(N/A).

Proof. Now, N/A is locally finite outer Galois. Let F be a finite subset
of N. Then, by [11. Lemma 5.2], there exists an intermediate ring T of
N/A such that T D A[F,ey,...,ey], T/A is left finite, and Aut(T/A) D
Aut(N/A)|r. Whence T/A is Galois and left finite. Thus, by Lemma 2.12,
G|t = Aut(T/A). Thus for any 0 € G, o(F) CT C N. Thus G|y C
Aut(N/A). On the other hand, by Proposition 1.15, G|xy 2 Aut(N/A).
Thus G|y = Aut(N/A).

Lemma 2.14. Let B2 T*DT' DT D Aand T =Te; ®--- @ Te,
where each Te; is a simple ring. Let T*,T' be semisimple rings and all the
Ve, (Ai), Ve, (Ai) simple rings. Moreover we assume That Vg(T) = C.
(1) Let

Gr = {o € Aut(T'/A) | o|r € Aut(T/A)}

Gr- = {7 € Awt(T*/A) | 7|7 € Aut(T/A)}.

IfT*/A, T'/A are Galois and left finite then G+ = Gp-|p.
(ii) If T*/T' is left finite then | {7 € Aut(T*/A) | 7|7 = 0} |< oo for all
o € Aut(T'/A).

Proof. We may assume that A is a simple rings.

(i) By Proposition 1.15, Gr+|7» 2 G1. Let 0 € G-. Then, by Propo-
sition 1.15, there exists an element 7 € Aut(T'/A) such that 7|7 = o|r
since o|pr € Aut(T/A). Thus, by Proposition 1.15, there exists an ele-
ment 7' € Aut(T*/A) such that v'|;» = 7. Now, (7')7lo € Aut(T*/A)
and (')~ lo|r = idp. Thus 7 'o € Aut(T*/T). Now, by [8. Theo-
rem 4.2 (ii)], The T*e;/Te; and T"e; /Te; are outer Galois and finite. Thus
T*/T and T'/T are outer Galois and left finite since T'=Te; @ --- @ Te,.
By Lemma 2.11, T’ is Aut(7*/T)-invariant. Thus (7/)"lo(T") = T’ and
O’(T') =T'. Thus O|T' € Gqv. Thus GT-|TI = Gy.
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(ii) Let 71,72 € Aut(T*/A), and | = 7| = 0. Since T inlr =
idpr, 7172 € Aut(T*/T’). Now, by [9. Lemma 1.6], Aut(T*/T") is a finite
set since T*/T" is left finite and Vp-(T") = Z(T*). Thus {7 € Aut(T*/A) |
7|l = o} is a finite set.

The following Lemma 2.15 and Proposition 2.16 are some generaliza-
tions of [8. Lemma 4.2 and Theorem 4.1} to semisimple rings.

Lemma 2.15. Let B/A be locally Galois and V = C. Then B/A is
Galois.

Proof. Let T' O T be the semisimple intermediate rings of B/A; &
-+ @ A, such that T'/A and T/A are Galois and left finite. Then, by
Lemma 2.12, Aut(T'/A)|r = Aut(T/A). Moreover, by Lemma 2.14.(ii),
Aut(T/A) is a finite group since T/A is outer Galois and left finite. Now
let G' be the inverse limit of the system

{Auwt(T/A) | B2 T D A1®---® Ay, such that T/A is Galois and left finite}.

Then, G' may be regarded as an automorphism group of B. Since each
Aut(T/A) is finite and there hold Aut(T"/A)|r = Aut(T/A) for T' D T,
[2. Chapter 8. Corollary 3.9], yields at once G'|p = Aut(T/A). Thus
B(G') = A and B/A is Galois.

Proposition 2.16. Let B/A be locally Galois and V/C left finite.
Then B/A is Galois.

Proof. At first, there exists an intermediate semisimple ring 7" of B/A
such that T = Te; ®- - -®Te,, Vg(T) = C, and T/ A is Galois and left finite,
since B/A is locally Galois and V/C is left finite. Then, by Lemma 2.9,
B/T is locally Galois. Thus, by Lemma 2.15, B/T is Galois. Now, let o be
an element of Aut(7T/A) and T” an intermediate ring of B/T such that T"/A
is Galois and left finite. Moreover, let G, = {7 € Awt(T'/A4) | 7|7 =
o}. Then, by Proposition 1.15 and Lemma 2.14.(ii), 0 <| G |[< oc.
Moreover, by Lemma 2.14 (i), Gp- |1 = G o for any subring T* 2 T' D
T such that T*/A and T’/A are both Galois and left finite. Let G, be the
inverse limit of the system

{Gr s | B2 T 2T such that T'/A is Galois and left finite}.

Then, G, may be regarded as a subset of automorphisms of B. By [2.
Chapter 8. Theorem 3.6], G, # ¢ and G,|T = 0. Thus for any elements of
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Aut(T/A) can be extended to an automorphism of B. Thus B/A is Galois
since B/T and T'/A are Galois.

Theorem 2.17. Let V/C be left finite. Then the following conditions
are equivalent.
(i) B/A is Galois and locally finite.
(ii) B/A is locally Galois.
(ili) B/A is G-locally Galois.

Proof. By Proposition 2.16, (ii) induces (i). By the definition of G-
locally Galois, (iii) induces (ii). Now we assume the condition (i). Then,
by Proposition 2.5, B/A is G-locally Galois.

Remark 2.18. Let B/A be Galois and left finite. Then, by Proposi-
tion 1.1 and [15 Theorem 1], B is separable over A' = A; ®---® Ay, in the
sense of [3. §2]. Moreover, as is easily seen, A’ is separable over A. Thus,
by [3. Proposition 2.5], B is separable over A. Hence, if B/A is locally
Galois then, B is the direct limit of the system of the subrings which are
separable over A.

3 The subrings which are locally Galois over A.

If B/A is locally Galois as simple rings, then H/A is Galois([9.

Lemma 2.4]). In this section we shall present some generalizations of this -

lemma to semisimple rings.

Lemma 3.1. Let B/A be locally Galois, and let N be a regular inter-
mediate ring of Bf{A; & -+ - ® Ap, which is left finite over A. Then for each
finite subset F C B, there ezists a semisimple subring N' O N[F] such that
N'/A is Galois and left finite, and Aut(N'/A)|ny 2 Aut(N/A).

Proof. Let { f},i) | u,v} be the matrix units of Vp,(Ne;). Then there

1

exists a semisimple subring N’ D N[F, {eg?, g,(,?, 7 | p,q,u,v,s,t,i}] such
that N'/A is Galois and left finite. Then for each ¢, by lemma 1.3.(6) and
(7), N'e; and Viyre, (A;) are simple rings, since N'e; D {eg?, g,(,f,) | s,t,p,q,}.
Thus the Ve, (Ai)/Z(N'e;) are left finite by [9. Lemma 1.5]. Moreover, by
Lemma 1.3.(6), the Vi, (Ne;) are simple rings since Ve, (Ne;) D { fl(ﬁ,) |
u,v}. Thus N is regular in N’. Hence by Proposition 1.15, Aut(N’/A)|x 2
Aut(N/A).
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Next, we consider the following lemma. This lemma is a generalization
of [8.Lemma 4.1].

Lemma 3.2. Let B/A be locally Galois, and let N be a regular in-
termediate ring of B/A, ® --- & Ap which is left finite over A, and A* a
semisimple subring of N. Let H* = Vg(Vg(A*)). If 7 € Aut(N/A) and
7(A*) = A*, then T(NN H*) C H*.

Proof. The proof is by contradiction. Assume the assertion were false.
Then we would have that there is a some element a € N N H* such that
7(a) ¢ H*. Then there exists v € Vp(A*) such that v7(a) # 7(a)v. By
Lemma 3.1, there exists a semisimple subring N’ O N[v] such that N'/A
is Galois and left finite, and Aut(N'/A)|ny 2 Aut(N/A). Thus there exists
8 € Aut(N’/A) such that 6|5 = 7. Since §—1(A*) = A*, §~1(v) € Vg(4*).
Then 6~ 1(v)a = ad~1(v). Thus v7(a) = 6(6~!(v)a) = §(ad~1(v)) = 7(a)v.
This is a contradiction.

Lemma 3.3. Let B/A be locally Galois. Let A* be a regular inter-
mediate Ting of B/A; @ - +- @ An which is Galois and left finite over A.
Let H* = Vg(V(A*)). If A is reqular in H* then H*/A is Galois, locally
Galois, and Aut(H*/A)-locally Galois.

Proof. At first, we shall show that H*/A is locally Galois. By
Lemma 2.9, B/A* is locally Galois. Thus, by Lemma 2.2, the B;/A*e;
are locally Galois as simple rings. Thus, by [9. Lemma 2.4], the H*e; are
simple rings. Let U®, V@ and W) be the matrix units of the H*e;,
Vi-e;(Ai), and Vp,(A*e;), respectively. Let F be a finite subset of H*.
Then, by Lemma 3.1, there exists a semisimple subring N D A*[F, {gg,) |
p,q,71, UG V® W (1 < i < n)] such that N/A is Galois and left fi-
nite, and Aut(N/A4)|4- 2 Aut(A*/A). Here, N = Ne; & --- ® Ney, and
NNH*=NNHYe @& (N N He,. Now, we shall prove that all the
Ne;, (NNH*)e;, VB, (Nei), Ve, (A%€i), Vinnm-)e; (Ai), and Vinap-ye, (A€s)
are simple rings. Since Ne; D {g,(,? | p,q}, the Vg, (Ne;) are division rings.
Thus the Z(Ne;) are fields and the Ne; are simple rings. By Lemma 1.3 (6),
the Vive,(A*e;) are simple rings since Vp,(A*e;) 2 Ve, (A%e;) 2 w®,
By Lemma 1.3 (6), the V{yng-)e; (4i) are simple rings since Ve, (Ai) 2
Vinna=ye; (4i) 2 V@, By Lemma 1.3 (7), the (N N H*)e; are simple rings
since H*e; O (NN H*)e; D U® and the (N N H*)e;/A; are left finite.
Since the Ve, (A*e;) are fields, the V.(Non)e‘.(A*ei) are fields. Hence A,
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A*, and N are regular in N N H*, N, and B, respectively. Moreover, A*
is regular in N N H*. Now, by Proposition 1.6, N/A* is Galois. Thus by
Lemma 3.2, Aut(N/A*)|(z-nn) € Aut(H* N N/A*). Thus N N H*/A* is
Galois. Next, let 0 € Aut(A*/A). Then there exists 7 € Aut(N/A) such
that 7|4 = 0. Then, by Lemma 3.2, 7(H*NN) C H* N N. Thus any ele-
ment of Aut(A*/A) can be extended to an automorphism of H* N N. Thus
we may induce that H*N.N/A is Galois and left finite, since H*NN/A* and
A*/A are Galois and left finite. Thus H*/A is locally Galois. Moreover,
by [9. Lemma 1.5], the Vg.¢,(A;)/Vh-¢;(A*e;) are left finite since A*/A
are left finite. Thus Vi-(A)/Vh-(A*) is left finite. Thus Vg+(A)/Z(H*) is
left finite. Thus, by Theorem 2.17, H*/A is Galois and Aut(H*/A)-locally
Galois.

Next theorem is a generalization of [9. Lemma 2.4] to semisimple rings.

Theorem 3.4. Let B/A be locally Galois. Then H/A is Galois, locally
Galois, and Aut(H/A)-locally Galois.

Proof. Let A*=A,&--® A,. Then H = Vg(Vg(A4*)), A* is regular
in B, A*/A is Galois and left finite, and A is regular in H. Thus, by
Lemma 3.3, H/A is Galois, locally Galois, and Aut(H/A)-locally Galois.

Theorem 3.5. Let B/A be locally Galois. Let A* be a semisimple in-
termediate ring of B/ A which contains {g,(,lq) |p,q,i}. Let H* = Vg(Vp(A*)).
If A*/A is Galois and left finite, then H*[A is Galois, locally Galois, and
Aut(H*/A)-locally Galois.

Proof. Since A* D {g,(,f,) |p, q,1}, the Vg, (A*e;) are division rings. Thus
A* is regular in B. Hence, by the same argument as in the proof of
Lemma 3.3, the H*e; are simple rings. Moreover, by Lemma 1.3 (6), the
Vi-e;(A;i) are simple rings since H* 2 {g},f,)|p, g,t}. Thus A is regular in
H*. Hence, by Lemma 3.3, H*/A is Galois, locally Galois, and Aut(H*/A)-
locally Galois.

The following theorem is a generalization of [9. Lemma 4.2] to semisim-
ple rings.

Theorem 3.6. Let B/A be locally Galois. Then for each finite subset
F of B, there ezists an intermediate semisimple ring T of B/H|[F] which
satisfing the following conditions:
(i) Vr(A)/Z(T) and T/H are left finite.
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(i) T/A is Galois, locally Galois, and Aut(T/A)-locally Galois.

Proof. Without loss of generality, we may assume that A is a simple
ring. Since B/A is locally Galois, there exists an intermediate semisimple
ring A* of B/A[F, {g%) | p, q,4}] such that A*/A is Galois and left finite. Let
Vg(Vg(A*)) = H*. Then, H* D F. Moreover, by Theorem 3.5 and of this
proof, we know that H*/A is Aut(H*/A)-locally Galois, Vy-(A)/Z(H*) is
left finite, and the V-, (He;) = V¢, (A;) are simple rings. Now, by The-
orem 3.4, H/A is Galois. Thus by Lemma 1.3,(3), there exist the automor-
phisms o; of Aut(H/A) such that o;(e;) = e;. Thus by Proposition 1.15,
there exist the automorphisms §; of Aut(H*/A) such that §;|g = o0;. Let
F' = U;6; ! (Fe;). Now, by Lemma 2.2, By /4, is locally Galois. Thus by
[9. Lemma 4.2}, there exists an intermediate simple ring T} of By/He;[F']
such that T}/ He, is left finite and T1/A,; is Galois extension. Now, there
exists a finite subset F of B such that T} = He;[E]. Since B/A is lo-
cally Galois, there exists an intermediate semisimple ring A** of B/A*(E]
such that A**/A is Galois and left finite. Let H** = Vp(Vp(A**)). Then,
H** D Ty. Moreover, by the same argument as in the above, we obtain that
H** /A is Aut(H**/A)-locally Galois, V.- (A)/Z(H**) is left finite, and the
Vie=e;(He;) = Vieose;(A;) are simple rings. Moreover, the Vi, (H”e;) are
division rings since H* 2 {g,(,? | p,q,i}. Thus by Proposition 1.15, there
exist the automorphisms 4] of Aut(H**/A) such that &}|y- = &;. Here,
we may assume that 8] = idy... Let T; = §j(T1). Then, for each i,
T;/A; is Galois extension and T;/He; is left finite since d;(He;) = He; and
0i(A;)=A;. Let T=T1®:--®T,. Then T D H[F), T/H is left finite, and
T/A1&---® A, is Galois extension. Now we define a map ;2 : 7T — T by

Sia(ti+ - +ta) = 8(t1) + 6 (t2) +ts+ -+ tn

for all ¢; € T;. Then 61,2 € Aut(T/A). Let b be an element of T'(Aut(T/A)).
Since T/A1 - --® Ay, is Galois, we get the expression b = aje; + - +anen
(a; € A). Then

aje; + -+ aney = d12(are1 + -+ + aney)
= a1ez + agzey + -+ + anén.
Thus aies = ages. Similarly aje; = aje; for all . Thus b = a; € A.
Thus T/A is Galois. Moreover, since T/H is left finite, Vr(H) is finitely

generated over Z(T'). Thus V7 (A)/Z(T) is left finite since Vp(H) = Vr(A).
Thus by Theorem 2.17, T'/A is Galois, locally Galois, and G-locally Galois.
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4 The subrings whose extensions B are locally Galois.

In section 3, we considered the intermediate rings which are locally
Galois over A. Next, in this section we shall deal with intermediate rings
whose extensions B are locally Galois.

Lemma 4.1. Let B/A be locally Galois and V/C left finite. If T is a
regular intermediate ring of B/A, then B/T is a Galois extension.

Proof. By Proposition 2.16, B/A is Galois. Thus, by Proposition 1.6,
B/T is Galois.

Lemma 4.2. Let B/A be locally Galois and V/C left finite. If T is a
regular intermediate ring of B/A1 @ -+ ® Ap, then B/T is locally Galois.

Proof. By Lemma 2.2, the B;/A; are locally Galois. Thus, by [8.
Theorem 4.2 (ii)], the B;/Te; are locally Galois. Thus, by Lemma 1.3 (4),
B/T is locally Galois.

The next theorem is a generalization of [8. Theorem 4.2 (ii)] to semisim-
ple rings.

Theorem 4.3. Let B/A be locally Galois and V/C left finite. If T is
a regular intermediate ring of B/ A, then B/T is Galois, locally Galois, and
G(T)-locally Galois.

Proof. By Lemma 4.1, B/T is Galois. By Lemma 4.2, B/Te1®---®Tey,
is locally Galois. Thus B/Te; @ --- @ Te, is locally finite. Thus B/T is
locally finite. Thus, by Theorem 2.17, B/T is locally Galois and G(T)-
locally Galois.

Corollary 4.4. Let B/A be locally Galois and V/C left finite. Let A*
be an intermediate semisimple ring of B/A such that all the Vg, (A*e;) are
division rings. Then each intermediate ring of B/A* is a semisimple ring.

Proof. By Theorem 4.3, B/A* is locally Galois. Thus, by Proposi-
tion 2.7, each intermediate ring of B/A* is a semisimple ring.

Combining Theorem 3.5 and Theorem 4.3, we get the next theorem.
This theorem is a generalization of Lemma 2.9.

Theorem 4.5. Let B/A be locally Galois. Let A* be an intermediate
ring of B/A which is left finite over A. Let H* = Vg(Vg(A*)). If A" is
an intermediate ring of H* /A which is regular in B, then B/A’ is locally
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Gualois.

Proof. For each ¢, let { 7 | u,v} be a matrix units of Vp,(A'e;). Let
F be any finite subset of B. Then there exists an intermediate semisimple
ring A** of B/A*(F, {fl(;,), ,(f;,) | u,v,p,q,1}] such that A**/A is Galois and
left finite. Let H** = Vp(Vp(A4**)). Then, by Theorem 3.5, H**/A is
locally Galois. And by the some argument as in the proof of Lemma 3.3,
Vy--(A)/Z(H**) are left finite, and the H**e; and Vi.-¢,(A;) are simple
rings. Moreover, by Lemma 1.3 (6), the Vy-+¢.(A’e;) are simple rings since
Vi, (A'e;) D Viere:(A'e;) 2 {f&) | u,v}. Thus, by Theorem 4.3, H**/A' is
locally Galois and H** D F. Thus B/A’ is locally Galois.

The next theorem is a generalization of [9. Theorem 4.3 (i)] to semisim-
ple rings.

Theorem 4.6. If B/A is locally Galois then B/H is G(H)-locally Ga-
lois.

Proof. By Theorem 4.5, B/H is locally Galois. Moreover B/H is
Galois since H is a centralizer of V in B. Thus, by Theorem 2.3, B/H is
G(H)-locally Galois.

Proposition 4.7. Let B/A be G-locally Galois. Let N be a regular
intermediate ring of B/A which is left finite over A, then B/N is G(N)-
locally Galots.

Proof. Let {fl(ﬁ,) | u,v} be the matrix units of Vp,(Ne;). Let F be a
finite subset of B. Then there exists an intermediate semisimple ring N’ of
B/N[F,{f,6%9 | u,v,p, q,i}] such that N’/A is a finite Galois and G|y D
Aut(N'/A). Then, by the same argument as in the proof of Lemma 2.9,
N'/N is Galois and left finite. Moreover G|y D Aut(N’/A) 2O Aut(N’/N).
Thus G(N)|y+ 2 Aut(N'/N). Thus B/N is G(N)-locally Galois.

5 Galois theory of semisimple rings with Galois groups
which are not locally compact.

In §1, we considered about Galois extensions whose Galois groups are
locally compact. In this section we shall consider some Galois extensions
whose Galois groups are not locally compact. The theorems in this section
are generalizations of [9. §3 and §4] to semisimple rings. At first, we give
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the some definitions which are used in this section. Let K be a subgroup

of G and T be an intermediate ring of B/A. If each Vg, (B(K)e;) is simple

and K 2 (Vp(B(K))) then K is called a (*)-regular subgroup. If K is

(*)-regular and V is finitely generated as a right Vg(B(K))-module, then

K is called (*y)-regular. If K is regular and (*s)-regular then K is called

f-regular. T will be called to be f-regular if T is regular and V is finitely

generated as right Vg(T')-module(abr. right finite). Moreover, B/A is said
to be hereditarily Galois(abr. h-Galois) if the following two conditions are
fulfilled:

(i) For each regular intermediate ring A’ of B/A which is left finite over
A, B/A' is Galois and the Vp,(Vp,(A’e;)) are simple.

(ii) If B’ is a regular intermediate ring of B/H which is left finite over H,
then for each i, the cardinal number of linearly independent He;-left
basis of B'e; is equal to the cardinal number of linearly independent
Vg, (B'e;)-right basis of V; and Vp(Vp(B')) = B'.

Remark 5.1. Let B/A be locally finite. Let T be a regular interme-
diate ring of B/A. Then T is an f-regular intermediate ring of B/A if and
only if there exists an intermediate ring A’ of B/A such that A’/A is left
finite and Vp(Vp(A')) D T.

Combining Theorem 4.5 and the preceding Remark 5.1, we get the next
conclusion.

Conclusion 5.2. Let B/A be locally Galois. If A' is an f-regular in-
termediate ring of B/ A, then B/A' is locally Galois.

Now, we shall present the next proposition which are analogous to that
of Lemma 1.7 and Lemma 1.8.

Proposition 5.3.(1) If K is ()-regular in G then each K({e;})|p,
is (*)-regular in G;.
(ii) If K 1is (xs)-regular in G then each K({e;})|p; is (*s)-regular in G;.
(iii) If K is f-regular in G then each K({e;})|B; is f-regular in G;.

Proof. (i) By the same methods as in the proof of Lemma 1.7, we
obtain the (7).

(4%) Since V; = Ve; and Vg, (K({ei})|B;) = VB(B(K))e;, V; is finitely
generated as right Vg, (K ({ei})|B;)-module. Thus, by (¢), each K ({e:})|s;
is (*y)-regular in G;.

(#47) By Lemma 1.7, each K({e;})|s; is regular in G;. By (ii), each
K({ei})|B; is (*f)-regular in G;. Thus, each K({e;})|p; is f-regular in Gi.
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The next proposition is a generalization of [9. Theorem 2.8] to semisim-
ple rings.

Proposition 5.4. If B/A is G-locally Galois, then any (*f)-regular
subgroup of G is f-regular.

Proof. Let K be a (xj)-regular subgroup of G. Then, by Corol-
lary 2.4 and Proposition 5.3 (i¢), each B;/A; is G;-locally Galois and
each K({e;})|p; is (xs)-regular in G;. Thus, by [9. Theorem 2.8,
each K({ei})|p; is f-regular in G;. Thus the B;(K({e;})|p;) and the
Vb, (Bi(K({ei})|B;)) are simple rings. Thus B(K) and Vg(B(K)) are
semisimple rings. Thus K is regular and (*s)-regular. Thus K is f-regular.

The next proposition is a generalization of [9. Corollary 2.7] to
semisimple rings. '

Proposition 5.5. If B/A is Galois and locally finite, and V/C is left
finite. Then any (x)-regular subgroup of G is regular.

Proof. Let K be a (x)-regular subgroup of G. Then, by Proposi-
tion 5.3 (4ii), each K ({e;})|p; is (#)-regular in G;. Thus, by [9. Corol-
lary 2.7], each K({ei})|p; is regular in G;. Thus, the B;(K({e;:})|s;) and
the Vp,(Bi(K({ei})|B;)) are simple rings. Thus B(K) and Vg(B(K)) are
semisimple rings. Thus K is regular.

As is easily seen, Vg(Vp(T)) = VB, (Vs,(Te1)) ® - -- & Vg, (Vg, (Tey))
and Vg(T) = Vp,(Te1) ® -+- ® Vp,(Te,) for any intermediate ring T of
B/A. Thus, by birtue of Proposition 1.1, we may induce next lemma. It is
an analogous to that of Proposition 1.1, Lemma 2.2, and Corollary 2.4.

Lemma 5.6. If B/A is h-Galois then the B;/A; are h-Galois.
The next proposition is an analogous to that of Lemma 2.9 and Propo-
sition 4.7.

Proposition 5.7. If B/A is locally finite and h-Gualois then so is B/ A’
for each regqular intermediate ring A’ of B/A which is left finite over A.

Proof. Let A* be a regular intermediate ring of B/A' which is left
finite over A’. Then A* is a regular intermediate ring of B/A which is left
finite over A since A’/A is left finite. Thus B/A’ satisfies the condition (i)
of h-Galois. Next, by Lemma 1.3 (2) and Lemma 3.6, the B;/A; are locally
finite and h-Galois. Thus, by [9. Corollary 3.1], the B;/A’e; are locally
finite and h-Galois. Thus B/A' satisfies the condition (ii) of h-Galois.
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Lemma 5.8. Let B/A be locally finite and h-Galois. If T is an f-
regular intermediate ring of B/A then B/T is locally finite.

Proof. By Lemma 1.3 (2) and Lemma 5.6, the B;/A; are locally finite
h-Galois. Thus, by [9. Corollary 3.3 (i)], the B;/Te; are locally finite. Thus
B/Te, &+ @ Tey is locally finite. Since Te; @ --- @ Te, /T is left finite,
B/T is locally finite.

Lemma 5.9. Let B/A be locally finite and h-Galois. If K is fat closed
f-regular then G(B(K)) = K.

Proof. By Lemma 1.8 and Proposition 5.3 (i), each K({e;})|s; is
closed f-regular in G;. Thus, by [9. Corollary 3.3], G;(B;(K({ei})|s,)) =
K({e;})|B;.- Thus, by Lemma 1.9, G(B(K)) = K.

The following theorem is a generalization of [9. Theorem 3.4] to
semisimple rings and some generalization of Theorem 1.12.

Theorem 5.10. Let B/A be locally finite and h-Galois, and let B be
countably generated as H-left module. Then there ezists a 1-1 dual corre-
spondence between fat and closed f-regular subgroups of G and f-regular
intermediate rings of B/A, in the usual sense of Galois theory.

Proof. By Lemma 1.3 (2) and Lemma 5.6, the B;/A; are locally finite
h-Galois. Moreover each B; has a countable linearly independent He;-left
basis. Let T be an f-regular intermediate rings of B/A. Then, by [9. The-
orem 3.4], B;(G;(Te;)) = Te; since each Te; is an f-regular intermediate
ring of B;/A;. Thus, by Lemma 1.5 and [9.Theorem 3.5), B(G(T)) = T.
Let K be a fat and closed f-regular subgroups of G. Then, by Lemma 5.9,
G(B(K)) = K. Moreover, by the definitions of f-regular subgroup and
f-regular intermediate ring, G(T) is an f-regular subgroup and B(K) is
an f-regular intermediate ring. Moreover, as is easily seen that G(T') is fat
and closed.

The following theorem is a generalization of [9.Theorem 3.3] to
semisimple rings and a partial generalization of Proposition 5.7.

Theorem 5.11. Let B/A be locally finite and h-Galois, and let B be
countably generated as H-left module. If T is an f-regular intermediate
ring of B/A then B/T is locally finite and h-Galois.
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Proof. At first, by Lemma 5.8, B/T is locally finite. Let T’ be a regular
intermediate ring of B/T which is left finite over T. Then Vp(T)/Vp(T")
is right finite since 7”/T is left finite and B/T is locally finite. Since T is
f-regular, V/Vp(T) is right finite. Thus V/Vg(T") is right finite. Thus T"
is an f-regular intermediate ring of B/A. Thus, by Theorem 5.10, B/T"’ is
Galois. Otherwise, by Lemma 1.3 (2) and Lemma 5.6, the B;/A; are locally
finite h-Galois. Moreover each B; has a countable linearly independent He;-
left basis. Thus, by [9. Theorem 3.3], the B/Te; are h-Galois. Thus, the
VB, (VB,(T'e;)) are simple rings and the conditions (ii) of the definition of
h-Galois are satisfied.

In the next, we consider the extensions of automorphisms. The follow-
ing Propositions and Corollaries for extensions of automorphisms are some
generalizations of Proposition 1.15 and Corollary 1.16.

Lemma 5.12. Let B/A be Galois and A', A* be regular intermediate
rings of B/A; ®--- @& A,,. We assume that for each i, and each A;-ring
isomorphism f; of A'e; onto A*e; there exists an automorphism g; of B;
which is extension of fi;. Then for each A-ring isomorphism f of A’ onto
A* is extended to an automorphism of B.

Proof. We may assume that A is a simple ring. At first, f(P) = P
since P is the set of all central primitive idempotents of A’ and A*. Since
B/A is Galois, there exists an element 7 € G such that 7(e;) = f(e;) for all
i. Then each 77! f| 4r¢, is an A;-ring isomorphism of A'e; onto A*e;. Thus
there exists an automorphism d; of B; which is an extension of 771 f| 4,
for each i. Now we define a map § : B — B by

5(b) = d1(bey) + -+ + d,(ben)

for all b € B. Then 6|4 = 771f. Thus 76 is an automorphism of B and
7'(5|_4/ = f

The following Proposition 5.13 and Corollary 5.14 are generalizations
of [9. Corollary 3.7] to semisimple rings.

Proposition 5.13. Let B/A be locally finite and h-Galois, and let A’
and A* be regular intermediate rings of B/A1®---® A, which are left finite
over A. If o is an A-ring isomorphism of A' onto A* then o is contained
in Gla.
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Proof. By Lemma 1.3 (2) and Lemma 5.6, the B;/A; are locally finite
h-Galois. Hence, by [9. Corollary 3.7], for each 7, and for each Aj;-ring
isomorphism f; of A’e; onto A*e; is extended to an automorphism of B;.
Thus, by Lemma 5.12, this proposition is proved.

Corollary 5.14. Let B/A be locally finite and h-Galois, and let A’
and A* be regular intermediate simple rings of B/A which are left finite
over A. If o is an A-ring isomorphism of A' onto A* then o is contained
nG ‘ Al

Proof. For each i, A’ ~ A'e; (by ¢ bie;) and A* ~ A*e; (b < boe;)
where b; € A’ and by € A*, since A’ and A* are simple rings. Thus the

isomorphisms o; : A'e; = A*e;, (0i(bre;) = a(by)e;) are well-defined. Now,
we define a map

o' Aley+---+Aleyp— A%ep + - + A¥e,
by
o'(tier + -+ + tnen) = o1(t1e1) + - - + onltaen)

for all ; € A’. Then o is an extension of . Now, by Proposition 5.13,
there exists an element 7 € G which is an extension of ¢’ and thus 7|4 = 0.

The following Proposition 5.15 and Corollary 5.16 are generalizations
of [9. Theorem 3.5] to semisimple rings.

Proposition 5.15. Let B/A be locally finite and h-Galois, and let B
be countably generated as H-left module. Let A' and A* be f-regular in-
termediate rings of B/A1 @ --- ® A,. If 0 is an A-ring isomorphism of A’
onto A* then o is contained in G| .

Proof. By Lemma 1.3 (2) and Lemma 5.6, the B;/A; are locally finite
h-Galois. Moreover each B; has a countable linearly independent He;-left
basis. Thus, by [9. Theorem 3.5] and Lemma 5.12, this theorem is proved.

Corollary 5.16. Let B/A be locally finite and h-Galois, and let B be
countably generated as H-left module. Let A' and A* be f-regular interme-
diate simple rings of BJ/A. If o is an A-ring isomorphism of A' onto A*
then o is contained in G|a.

Proof. By the same argument as in the proof of Corollary 5.14, we
may prove this corollary.

Produced by The Berkeley Electronic Press, 1996

27



Mathematical Journal of Okayama University, Vol. 38 [1996], Iss. 1, Art. 5

80 K. TANABE

In the last of this paper, we shall deal with G-locally Galois extensions.
This extension is one example of h-Galois.

Lemma 5.17. If B/A is G-locally Galois, then B/A is h-Galois.

Proof. Let A’ be an intermediate regular ring of B/A which is left
finite over A. Then B/A’ is Galois by Proposition 4.7. By [9. Corollary 2.2,
Corollary 2.3, Corollary 2.5] and Corollary 2.4, another conditions of the
definition of h-Galois are proofed.

The next proposition is a generalizations of [9. Theorem 4.2] to
semisimple rings, and one example of Theorem 5.10.

Proposition 5.18. Let B/A be G-locally Galois and B be countably
generated as H-left module. Then the following conditions are satisfied;
(1) Let T be an intermediate f-regular ring of B/A. Then B(G(T)) =T,

and G(T') is a fat, closed, and f-regular subgroup.

(2) Let K be a subgroup which is fat, closed, and (*y)-regular, then

G(B(K)) = K. Moreover B(K) is an f-regular intermediate ring of

B/A.

Proof. By Lemma 5.17, B/A is h-Galois. Thus, by birtue of Proposi-
tion 5.4 and Theorem 5.10, this proposition is proved.

The next corollary is a generalization of [9. Corollary 4.1] to semisimple
rings. And this corollary is an analogous of Theorem 5.11.

Corollary 5.19. Let B/A be G-locally Galois and B be countably gen-
erated as H-left module. Then B/T is G(T)-locally Galois for each inter-
mediate f-regular ring of B/A.

Proof. By Proposition 5.18, B/T is Galois. By Conclusion 5.2, B/T
is locally Galois. Thus, by Theorem 2.3, B/T is G(T)-locally Galois.

The next theorem is a generalization of [9. Theorem 4.4] to semisimple
rings and some generalization of Proposition 2.16.

Theorem 5.20. Let B/A be locally Galois and B be countably gener-
ated as H-left module. Then B/A is G-locally Galois.

Proof. Let B be generated by the countable set {z1,2z2,...} as H-
left module. Then we can construct inductively an ascending chain of
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semisimple rings
AN c AD c 4B ...

such that A%) D {g,(,fl) | pyg,i}, A S {z1,...zx}, and A(k)/A is
Galois and left finite. Let H®) = Vg(Vg(A®))). Then, by Theo-
rem 3.5 and of this proof, the H*)/A are Aut(H)/A)-locally Galois
and the Vi) (A)/Z(H®) are left finite. Thus, by Proposition 1.15,
Aut(HE+D/A) gy 2 Aut(H)/A) and Uy H®) = B. Thus for any k,
every element of Aut(H®*)/A) can be extended to an automorphism of B.
Thus B/A is Galois. Thus, by Theorem 2.3, B/A is G-locally Galois.

Combining Proposition 2.5 and Theorem 5.20, we get the next corol-
lary. This corollary is a generalization of Theorem 2.17

Corollary 5.21. If V/Z(V) is left finite, B/A is locally finite, and B
is countably generated as H-left module then, the conditions Galois, locally
Galois, and G-locally Galois are all equivalent.
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