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A line search was combined with the Newton–Raphson method to accelerate the convergence of the iterative calculation in nonlinear
magnetic field analysis. As a method for determining a step size for update, the minimization of an energy functional and a square
of 2-norm of residual obtained from the finite-element discretization was investigated. It was demonstrated that the energy functional
minimization is superior to the residual minimization from the viewpoint of computational cost. The line search is effective even in the
magnetic vector potential formulation, which is said to be stable usually.

Index Terms—Energy functional, line search, minimization, Newton–Raphson method, nonlinear magnetic field analysis, residual.

I. INTRODUCTION

I N order to take account of the nonlinearity of magnetic
properties of magnetic materials, such as electrical steel

sheets and permanent magnets, the iterative calculation using
the Newton–Raphson method is adopted in general. However,
in the case of strong nonlinearity, a large number of iterations
may be required, and the iterative procedure will be failed
to converge in the worst. The convergence characteristic is
also dependent on a kind of unknown variable selected for
discretization. In [1] and [2], it was reported that the nonlinear
iteration was failed to converge, when the TEAM Workshop
Problem 13 (a nonlinear magnetostatic model) was analyzed by
using the magnetic scalar potential formulation. Then, simple
under-relaxation was introduced to get the stable convergence
by utilizing a square of 2-norm of residual. An under-relaxed
step size for update is determined at every iteration so that the
residual obtained from the finite element discretization can
decrease monotonously with iteration. It was fairly effective to
the analysis of Problem 13 using the magnetic scalar potential
formulation. However, it is not so attractive to the other prob-
lems having relatively good convergence characteristic because
it allows only the under-relaxation.

In this paper, a method combining a line search [3], [4] with
the Newton–Raphson method was investigated to improve the
convergence characteristic by allowing over-relaxation as well
as under-relaxation even in case of well-posed problems. In the
line search procedure, a step size for update was determined by
minimizing an objective function such as an energy functional
or a square of 2-norm of residual. A typical electromagnet model
was analyzed to examine behavior of the objective function and
the step size during the nonlinear iteration. Computational cost
was also compared.
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II. NONLINEAR MAGNETIC FIELD ANALYSIS BASED

ON THE NEWTON–RAPHSON METHOD

In this section, first, the ordinary Newton–Raphson method
is described briefly to understand the following explanation
clearly. Second, the Newton–Raphson method with a line search
is discussed. In the finite element discretization, the magnetic
vector potential formulation is used. In order to determine a
step size for update in the line search procedure, the energy
functional or the square of 2-norm of residual is adopted.

A. Ordinary Newton–Raphson Method

Fig. 1 shows the flowchart of nonlinear magnetic field anal-
ysis based on the Newton–Raphson method. is the magnetic
vector potential. is the reluctivity. is the flux density. is
the residual. is the coefficient matrix. is the incre-
ment of . is the step size for update. is the
increment of . Step 5 is required only in case of the line search
to determine an effective at every iteration. in the ordinary
Newton–Raphson method is equal to unity. Explanations of the
other steps are skipped because they are nothing special. In this
paper, the ordinary Newton–Raphson method is abbreviated to
“normal NR.”

B. Newton–Raphson Method With a Line Search

In the iterative procedure for the Newton–Raphson method
with a line search, only step 5 mentioned above is added to the
ordinary Newton–Raphson procedure. At step 5, a step size for
update is determined at every iteration so that an objective func-
tion can decrease monotonously or can be minimized in the di-
rection of the increment of solution. Hereinafter, two methods
are investigated, in which a square of 2-norm of residual or an
energy functional is used as the objective function.

1) Square of 2-Norm of Residual:
a) Step Size With Monotonous Decrease: When the non-

linear iteration can reach to the converged state, the residual for
each unknown approaches to zero ideally. Therefore, as one of
the robust methods, a step size for update is determined at every
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Fig. 1. Flowchart of nonlinear magnetic field analysis based on the
Newton–Raphson method.

iteration so that a square of 2-norm of residual can de-
crease monotonously with iteration [3]. Fig. 2 shows the calcula-
tion procedure. The initial value of step size at the th nonlinear
iteration is set to be unity. If at the th
iteration is larger than is reduced to half of the
previous value. As the finally obtained is less than unity,
the update is under-relaxed at every iteration. Therefore, when
the ordinary Newton–Raphson method can perform the monot-
onous decrease of , the introduction of the above-men-
tioned method has no meaning. However, the method is fairly
effective to ill-posed problems because of the guarantee of the
monotonous decrease of . The method is abbreviated to
“simple NR.”

b) Optimal Step Size Obtained From Minimiza-
tion: seems to have a minimum. Therefore, the
optimal step size, , can be calculated by the minimization
of using the following equation:

(1)

where is the number of unknowns. The superscript means
the transpose. The subscripts and correspond to the unknown
numbers. As the method has no restrictions on a search range

Fig. 2. Method for determining a step size in the simple NR.

Fig. 3. Method for determining a step size by using linearization.

of , over-relaxation, as well as under-relaxation, can be
performed.

If has complete quadratic change with
become a linear function and can

be represented by using two values at arbitrary two s.
Therefore, can be calculated easily. Even in the case when
the change of is not completely quadratic, an
approximated value can be obtained by the linearization
of at typical two s of, for example,
0.5 and 1.0, as shown in Fig. 3. means the objective
function and corresponds to . The method is
abbreviated to “residual NR.”

2) Energy Functional: It seems that the energy functional
can be an alternative to because the solution is searched
by minimizing in the finite element method [4]. can be
obtained from the following equation. The way to calculate the
approximated value of is the same as before. The
method is abbreviated to “functional NR”

(2)

III. TEST EXAMPLE

An electromagnet with a small gap shown in Fig. 4 was se-
lected as a test example. One second of the whole model is
illustrated because of the symmetry. The material of yoke is
S45C steel used for structural purposes. Its magnetic property
is shown in Fig. 5 and Table I. The property of
T ( : flux density) obtained from the measurement was inter-
polated by using piecewise cubic polynomials. In the region of
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Fig. 4. Analyzed model.

Fig. 5. Magnetic property of S45C steel.

2.048 T ( : saturation flux density), a quadratic
polynomial was assigned. In the region of , the mag-
netic field strength changes monotonously with of which
the slope is ( : permeability of vacuum). A dc current of

ampere-turns/m was applied to the winding and then
the 2-D magnetostatic analysis was carried out. The initial value
of relative permeability of yoke was set to be 1000. As boundary
conditions, the Neumann condition is assigned on the boundary
of symmetry. The other boundaries have the fixed condition of

. Fig. 6 shows the mesh. The numbers of elements, nodes,
and unknowns of the first order triangular mesh are 6948, 3506,
and 3496, respectively. Linear equations were solved by both the
Gaussian elimination method and ICCG method. Fig. 7 shows
the flux distribution and distribution of flux density to under-
stand saturation level.

IV. RESULTS AND DISCUSSION

Fig. 8 shows the changes of and
with in the ordinary Newton–Rap-

shon procedure. Results at the first iteration shown in Fig. 8 (a)
are identical to those obtained from the linear analysis because
the initial value of is set to be zero.
is linearized at two s of 0.5 and 1.0. A step size obtained
from the linearization is different from . However,

as s at and are very close to
each other, it is not problematic from the practical viewpoint.

TABLE I
DETAILS OF MAGNETIC PROPERTY OF S45C STEEL.

(a) MEASURED DATA. (b) EXTRAPOLATED DATA

Fig. 6. Mesh.

(a) (b)

Fig. 7. Analyzed results. (a) Flux distribution. (b) Distribution of flux density
vectors.

At the first iteration, the update can be under-relaxed because
of . At the fifth iteration, the update can be
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Fig. 8. Changes of a square of 2-norm of residual and its derivative with
step size. (a) First iteration (� = 0:10; � = 0:34). (b) Fifth iteration
(� = 1:47; � = 1:21).

Fig. 9. Changes of square of 2-norm of residual and step size with iteration.
(a) Square of 2-norm of residual. (b) Step size.

over-relaxed because of . The changes of and
with have a similar tendency.

Fig. 9(a) shows the convergence characteristic of .
When the change of the flux density is less than T for each
element, the nonlinear iteration is terminated. The functional
and residual NRs require the six iterations, whereas the normal
NR requires the ten iterations. Therefore, the former is superior
to the latter. It is noted that the simple NR is not performed in this
calculation because the normal NR could give the monotonous
decrease of .

Fig. 9(b) shows the behavior of during the nonlinear it-
eration. The update at the first iteration is under-relaxed in both

TABLE II
COMPUTATIONAL COST

the functional and residual NRs because the flux density is over-
estimated in the linear analysis. From the second iteration, the
updates are over-relaxed and finally approaches to unity.
It is understood from Fig. 9 that the residual NR is practically
equivalent to the functional NR.

Table II shows the number of nonlinear iterations and CPU
time required to get the convergence. The value in parentheses
means that it is normalized by the value obtained from the
normal NR. The functional NR requires the shorter CPU time
for calculating a step size than the residual NR. This is also
obvious from the comparison of (1) and (2). Therefore, the
functional NR is superior to the residual NR from the viewpoint
of computational cost. In case of the Gaussian elimination
method, about 40% of the CPU time is reduced. In case of the
ICCG method, about 30% is reduced. As the ICCG method
can solve linear equations for considerably shorter time than
the Gauss elimination method, the percentage of the time for
calculating a step size become larger. When larger-scale prob-
lems are solved, the reduction of time for the ICCG method
approaches to the same value as the Gaussian elimination
method.

V. CONCLUSION

In order to improve the convergence characteristic of the non-
linear magnetic field analysis, a line search was combined with
the Newton–Raphson method, in which an energy functional or
a square of 2-norm of residual was selected as an objective func-
tion and minimized. It can be concluded that the line search is
fairly effective, and the minimization of the energy functional is
superior to the residual minimization from the viewpoint of the
computational cost.
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