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Abstract - A p p l i c a t i o n  o f  p e r i o d i c  b o u n d a r y  
condi t ions  in the  ana lys i s  o f  three-dimensional  
magnetic f ie lds  by finite element methods leads to 
a substantial reduction of  computation labour and 
storage.  I n  th is  paper ,  the expansion of  the 
condit ion for  magnetostat ic  curl-curl  formulat ion 
with the magnetic vector potential employing edge 
t e trahedra l  e l ements  i s  d i scussed .  D i f f erences  
between the definitions of the condition for nodal 
and edge elements are  examined. Vectorial nature 
of edge elements i s  emphasized and arising from it 
diff icult ies  in the formulat ion and application of 
the condition are carefully analyzed and overcome. 
Details for computer implementation are given and 
a simple test problem to verify the validity of the 
software is proposed. Final ly ,  advantages gained 
when the condition is used for  TEAM Workshop 
problem 13 a s  an  example, are shown. 

L I"R0DUCI'ION 

The problem of exploiting geometrical symmetry in 3-D 
eddy current analysis with edge elements was examined in 
detail in [I]. In this work, a broad discussion of the case in 
which the source field does not share the symmetry of the 
system of conductors is performed. Due to the symmetry of 
the latter, the problem is decomposed into symmetry 
elements which constitute subproblems then solved 
separately and joined together by appropriate boundary 
conditions. 

In our case, we assume either coils and magnetic circuits to 
be periodically distributed in space along fixed rotation axis. 
Owning to the assumed geometry, the problem can be reduced 
to only one symmetry element with periodic boundary planes 
being axially symmetric with respect to a distinct rotation 
axis. Consequently, the flux density distribution on one 
periodic plane with respect to the local coordinate system 
assigned to that plane is identical on the other periodic plane, 
when referred to the coordinate system assigned to this plane. 
Although the case discussed in this paper is more restricted 
than the one considered in [l], it may be commonly 
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encountered in rotational electrical machines and other axially 
symmetric devices. Therefore, its practical importance seems 
to be well-founded. With regard to other boundary conditions, 
we want to point out at the moment that Dirichlet conditions 
remain unchanged in the analysis and must be properly set as 
in usual case. Neumann conditions are natural ones in the 
formulation and need not to be imposed explicitly. 

The choice of discrete variables associated with edges for 
the curl-curl formulation with the magnetic vector potential 
A stems from the physical interpretation of this vector, 
which is given in terms of a line integral. As proved in [2], 
edge-based interpolation contrary to node-based one, does not 
overconstrain A by forcing its normal component to be con- 
tinuous across the interface between two different materials; 
the condition not required by the formulation. Furthermore, 
edge element codes have been found in one study [4] to 
provide cheaper and more accurate solutions. 

II. PERIODIC BOUNDARY CONDlTION 

From now on, we will assume the flux distribution to be 
periodically distributed in space with the z-axis as the 
revolution line. We shall further refer to the dihedral angle 
formed by two closest periodic boundary planes as a period 
angle a. In order to facilitate the comparison between the 
edge and nodal definitions of the condition, either of them 
will be given in the two subsequent subsections. 

A. Edge Elements 

One should remember that in case of tangentially- 
continuous edge-based methods degrees of freedom are 
vectors, and not scalars [2]. With this in mind, we have (see 
Fig. 1): 

la) Setting of edges on one of the periodic boundary 
planes is obtained by the revolution of the setting of 
edges of the other boundary plane about the z-axis 
through the period angle a. Then, directions of 
degrees of freedom along symmetrical edges on both 
planes are rotational symmetric; 
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periodic boundaries periodic boundaries 

Fig. 1 .  Periodic boundary condition for edge elements. Fig. 2. Periodic boundary condition for nodal elements. 

2a) Moduli of degrees of freedom along symmetrical 
edges are the same 

where Ah, Ah’, A,, A,’, Ad,  Ad’ are circulations 
of the vector potential A along symmetrical pairs 
of edges 1-l’, 2-2‘, 3-3‘, as depicted in Fig. 1; 

are assigned to each symmetrical pair of 
degrees of freedom in a fashion in which a degree 
of freedom located on one boundary points out in the 
direction identical to the one indicated by its 
symmetrical partner lying on the other boundary, 
while rotated about the z-axis through the period 
angle a. 

3a) 

This definition may also be concluded from [ 11, where it is 
given in the context described in the introduction. 

B .  Nodal Elements 

In order to implement periodic conditions for nodal 
elements, the usual set of rules must be considered (see Fig. 
2): 

lb) Setting of nodes on one of the periodic boundary 
planes (node p )  is obtained by the revolution of the 
setting of nodes of the other boundary plane (node q) 
about the z-axis through the period angle a ;  

2b) Directions of the components A,, Aqy and A,, of 
the vector A at the node q remain parallel to the 
global coordinate system and their values are 
govemed by the transformation equations of the form 

A x  = A p x ,  Aqx = Ax cosa - A sina 
Ay,’ = A p y ,  Aqy = A ’sina + A y  cosa (2) 

, 
y , 

x, 
A Z  = Apz,  Aqz = A Z  

, , ,  
where A X ,  A , ,  AZ denote components of the 
vector A m the local coordinate system that is 
rotationally symmetric to the global one. 

C. Discussion 

Points la and lb account for the main node-edge difference 
between both definitions. In case of nodal elements, node- 
symmetry is needed for periodic boundaries; edges require 
edge-symmetry. This requirement should be taken into an 
account while generating mesh for a problem in which we 
want to employ periodicity conditions. From points 2a and 
3a, we immediately have the modifications for the finite 
element code - set signs at paired edges according to point 3a 
of the definition, assign to both of them the same global 
number of the degree of freedom and remove one of them 
from the system of equations. There are two issues, the 
explanation of which we owe to the reader. Firstly, in 
standard edge element codes, the vectorial character of global 
degrees of freedom is included by setting their directions in a 
specific manner in relation to the global node numbering 
(e.g. the degree of freedom points from the lower global node 
number to the higher) [3]. For the degrees of freedom located 
on periodic boundaries however, their resultant directions 
must be consistent with point 3a of the definition. Secondly, 
in order to assign signs properly, it is helpful to introduce a 
coordinate system with respect to which directions are easily 
identified. No matter how large the period angle 01 is, one of 
such systems is radially outwards and upwards. 

KC SIMPLETEST PROBLEM 

A quarter of an air cored coil - Fig. 3 - was used in the first 
stage of numerical tests. In this case the period angle a is 

Z 

Fig. 3 .  Geometry of the test model. 
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method 
type. of element 

Fig. 4. Setting of edges on periodic boundaries. 

A-method 
edge on tetrahedron 

equal to x.  Such a model may be considered as a test 
problem for periodic boundary condition in general sense, 
although we chose it because of several reasons. First, the 
definition of the periodicity condition may be easily 
accommodated. Second, the solution with periodic conditions 
imposed on the boundary plane x = 0 on which flux density 
is periodic may be easily verified by comparison with the one 
with a zero Dirichlet constraint set at this plane. Third, it 
geometrically corresponds to Workshop problem 13. And at 
last, it is very simple and well illustrates the definition. In 
Fig. 4, setting of edges on periodic boundaries conformal 
with point la of the definition is shown. When we deal with 
the period angle Q equal to n and tetrahedral elements, then 
the simplest way to generate mesh with rotational symmetric 
edges on periodic boundaries is the following - subdivide a 
half of the quarter ( x ,  y, z 2 0 ) first, and next get its second 
half ( x, z 2 0, y < 0 ) as a mirror image (in the plane y = 0 
in this specific case). The inconvenience reported here is 
absent however, when nodal or hexahedral-edge elements are 
used. Fig. 5 illustrates the last point of the definition. It is 
not significant how the directions of a given pair of degrees 
of freedom are directed (e.g. radially outward or inward), but 
they must be arranged similarly. 

periodic boundary condition 
number of elements 
number of edges 
number of unknowns 
number of non-zero entries 
storage (Mbytes) 
number of Newton- Raphson 

IV. APPLICATION OF THE PERIODIC CONDITION To TEAM 
WORKSHOP PROBLEM 13 

not imposed imposed 
42768 21384 

53905 27565 
48339 24 174 

399160 199087 

15.4 7.7 

12 12 

The TEAM Workshop problem 13 [5] - Fig. 6 - is a 3-D 
nonlinear, magnetostatic problem with z = 0 symmetry plane 
and rotational symmetry along z-axis. Due to its geometry, 
one quarter ( x ,  z 2 0, y - free ) of the model is sufficient to 

1'5 
94 t 

1'5 
16 t 

7 - Y  
15 t 

Fig. 5. 
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Setting of signs of degrees of freedom on periodic boundaries. 
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(b) planview i T t e r  plate (steel) 

DC coil channel (steel) 
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3.2 4.2 3.2 

(a) front view 

Fig. 6. Geometry of TEAM Workshop problem 13. 

perform the analysis, Periodic conditions are imposed on 
x = 0 boundary. The magnetic fields calculated with and 
without periodic condition are naturally the same. The 
computer performances of both solutions are listed in Table 
1. By comparing numbers in this Table, one can easily 
notice obtained advantages. The computer storage and CPU 
time are reduced approximately by a half. 

TABLE I 
MESH AND COMPUTATIONAL DATA OF THE SOLuTIolrJs WlTH AND 

WITHOUT PERIODIC BOUNDARY "DlTION FOR TEAM 
WORKSHOP PROBLEM 13 

iterations I I 
CPU (ICCG) time (s) I 1960(1760) I 952(846) 
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In general, reduction of storage depends on to what 
fraction a problem may be reduced when periodic conditions 
are applied. Most of the CPU time, as indicated by numbers 
in brackets in the last raw of the Table 1, is consumed for 
solving finite element matrix equation. From that reason 
savings in computational labor are essentially dependent on 
the type of solver and relation how solution time varies with 
the number of unknowns. Our solver employs pre- 
conditioned conjugate gradient method. Theoretical estimate 
of computational labor derived in [6] for the ICCG method is 
of the order O(N1.l7) for N simultaneous equations. Thus, 
time needed for solving is. almost linearly proportional to the 
number of degrees of freedom for this method. This estimate 
stands well in accord with either the results for Workshop 
problem 13 and the results of numerical tests shown in Fig. 
7. Only a small part of the CPU time is used for the matrix 
assembly. 

- 300 3 
W !4 
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Although the above relations may differ from one solution 
method to another, the advantage due to reduction in 
problem's size is evident. 

V. CONCLUSIONS 

Definition of the periodic boundary condition for edge 
elements is presented and compared with the one for nodal 
elements. Difficulties encountered in the application of the 
condition to a simple test problem are exposed and the way of 
resolving them is discussed in detail. Finally, benefits gained 
when the condition is used for Workshop problem 13 as an 
example, are shown and analyzed quantitatively. 


