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Abstract - This paper describes an analysis of three-
dimensional eddy current distribution by a boundary
element method using field vector variables. In the
boundary element method, a triangular element is used
as a boundary element. An electric field vector and a
magnetic flux density vector are defined as unknown
vectors and are assumed to be constant vectors on each
triangular element. For forming simultaneous equations,
the computation point on the triangular element is set
at the null point, where the triangular element itself
doesn't induce tangential components of the electric
field and the magnetic flux density.

INTRODUCTION

Boundary integral methods, which are known as
boundary element method and integral equation method,
are often used for the analysis of three-dimensional
electric field and magnetic field because of their good
applicability. Authors have proposed a boundary
element method using vector variables[1]. In this
paper, new techniques of the boundary element method
for three-dimensional eddy current problems is
presented.

The formulation of the boundary element method for
the analysis of eddy current distribution is based on
Maxwell's equations and is performed by the use of
vector Green's theorem[2]. In the boundary element
method, the boundary surfaces are divided into a number
of triangular elements. Electric field vectors and
magnetic flux density vectors are used as unknown
vector variables in the boundary element method. And
simultaneous equations are formed by evaluating
boundary integrals.

Lastly, the boundary element method is applied to
the conducting hollow sphere model and the conducting
sphere model. :

FORMULATION

Maxwell's equations for sinusoidal time dependence
are given by
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where is the electric field

is the magnetic flux density

is the source current density

is the permeability

is the complex permittivity

is the angular frequency

is the complex operator

¢* in Eq. (2) is a complex number given by
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where € is the permittivity
O is the conductivity >
Accordingly, the term of eddy current density, oE,
appears on right side of Eq. (2) and the eddy current
>

density, Je' in conductor is given by
>
J <ok : (6)
e
By the use of the vector Green's theorem[2],
> ->
electric field, Ei, and magnetic flux density, Bi' in

the region, V, which is enclosed by the surface, S, are
obtained as follows:
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where Qi is the solid angle at computation point, i, _r:
is the unit normal vector at source point, and ¢ is the
fundamental solution. And ¢ and V¢ are given by

o = exp(-jkr) )
4T
s > .
W = (=1-jkr)r exp(-jkr) (10)
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where r is the distance between a source point and a
computation point. And k 1is given by
k = whe* = wule-jo/w) 1)

The boundary conditions for electric field and
magnetic flux density on the boundary surface, S, which

is the boundary between material 1 and material 2, are
given by

3 .2 3.
et o= .
TR PR
> > > > > > > >

3% % ‘1 o=F % 12
E11 1"u i2 u’ i1l v i2 v (12)
> > > >
0T BT
> > > > > > > >

. = . . =B, *t (13)
Bi‘l_)tu/u'l Byt b /iy s Byt fu =Bty

where t and t are the unit tangential vectors which
u

intersect perpendicularly to each other.

The Boundary surface, S, is divided into a number
of triangular elements, and a electric field vector and
a magnetic flux density vector are assumed to be
constant vectors on each triangular element.

>
Therefore the electric field Ee and the magnetic

>
flux density 8° on the triangular element, e, are
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defined by constant vectors as follows:

B =E (14)
1

B°-3, (15)
1

where i is the computation point on the triangular
element.

For numerical computation of the electric field
vectors and the magnetic flux density vectors, the
final simultaneous equations are formed by using Egs.
(7) and (8). After introducing boundary conditions
for electric field and magnetic flux density, the
unknown electric field vectors and unknown magnetic
flux density are determined(1].

INTEGRATION OF FUNDAMENTAL SOLUTION

In Egs. (7) and (8), the integrals to be evaluated
for the triangular element, e, are given by

I1 = fe¢dS (16)
T =17 vas 7
2 e

When the computation point is on the element, e, I, and
>
12 include a singular point at r=0. In proposed method,

the field point on the element, e, for forming the
simultaneous equations is set at the null point, where

>
12 becomes zero vector., The coordinates of the null

point are obtained as the solutions of the following
simultaneous equations[3];

(12)u =0 }

(12)V =0

where (12)u and (12)v are the tangential components of

(18)

>
12 which intersect perpendicularly to each other. The

solutions for Eg. (14) can be obtained easily by using
Newton-Raphson method. When approximating
exp(-jkr)=1, I, at the null point, N, is obtained
analytically by
+si 1+si
1, (1 51n61)( 51n02)

1= ?1‘"(1-sine1)(1-sinez)
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2 1-sinb 1-si
(1-sinl 3)( 31n64)

+

+l (1+sin95)(1+sin66)

21
3 r(1-sin95)(1—sin66) (19)

Fig. 1

A triangular element.
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where 1¢, 1,, 13 are the lengths of the sides of the

triangular element, and 61, veese 5 B, and 86 are the

5
angles shown in Fig. 1.
>
I, and 12 without singular point are computed by

numerical integrations using the Gaussian quadrature
formula with seven sampling points.

COMPUTATION RESULTS

In order to examine the accuracy of proposed
method, a conducting hollow sphere model[4] and a
conducting sphere model were chosen as three-
dimensional eddy current problems.

Conducting hollow sphere model

The hollow sphere model in a uniform alternating
magnetic field is shown in Fig. 2. The number of
triangular elements in a twenty-fourth part of the
spheres is 50. The computation results of eddy current
density and magnetic flux density almost agree with
analytical solutions[5] as shown in Fig. 3 and Fig. 4.
And the computation results of eddy current density
vectors and magnetic flux density vectors are shown in
Fig. 5 and 6, respectively.

By=(0,0,1), £=50 (Hz)

z
yi
x
r=0.05 r=0,055
Fig. 2 A conducting hollow sphere model.
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Fig. 3 Distributions of eddy current density
in the hollow sphere, on x-y plane.
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magnetic flux density (T)
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Fig. 4 Distributions of magnetic flux density
in the hollow sphere, on x-y plane.

(b)
Fig. 5 Distributions of eddy current density

vectors in the hollow sphere, (a) real part,
(b) imaginary part.
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Fig. 6 Distributions of magnetic flux density
vectors in the hollow sphere model, (a) real
part, (b) imaginary part.

Conducting sphere model
In the conducting sphere model, the sphere has the
same radius as the outer sphere of the conducting
hollow sphere model. And a uniform alternating magnetic
field is impressed. Figure 7 shows the conducting
sphere model. The number of triangular elements in an
eighth part of the sphere is 36. The computation
results of eddy current distributions and magnetic flux
distributions are shown in Fig. 8. The computed eddy
current densities agree with analytical solutions[6].
z

302(010$1)) £=50 (Hz)

X

Fig. 7 A conducting sphere model.
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CONCLUSION

In this paper, the new techniques of the boundary
element method for computing three-dimensional eddy
current distributions were described.

The techniques are concerned with the evaluation
of the boundary integral and can be summarized as
follows:

(1) In the boundary element method, the boundary
surfaces are divided into a number of triangular

: real (analytical) \ elements on which electric field and magnetic flux
o : (BEM) density are assumed to be constant.

—-~=: imaginary (analytical) (2) PFor forming simultaneous equations, the computa-
(BEM) tion point on the triangular element is set at the null
D) L (a) point, where the triangular element itself doesn't
induce tangential components of the electric field and
the magnetic flux density.
(3) Boundary integrals are evaluated by analytical
2+ solutions for the element with singular point and by
numerical integrations for the element without singular
point.

eddy current density (x108 A/n?)
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Fig. 8 Distributions of eddy current density and
magnetic flux density in the sphere model on
x-y plane, (a) eddy current density, f=50 Hz,
(b) magnetic flux density, £=50 Hz, (c) eddy
current density, f£=500 Hz, (d) magnetic flux
density, £=500 Hz.



