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Abstract- We propose herein a new incremental state con- 
struction method which consists of Fritzke’s Growing Neural 
Gas algorithm and a Class Management Mechanism of GNG 
units. The GNG algorithm condenses sensory inputs and learns 
which areas are frequently sensed. The CMM yields a new state 
based upon the anticipated behaviors of the agent, i.e., a couple 
of actions by an agent and the resultant change in sensory inputs. 
Computational simulations on the mountain-car task confirm the 
effectiveness of the proposed method. 

I. INTRODUCTION 

Reinforcement learning is one of the most active research 
areas in intelligent systems. Reinforcement learning agents try 
to maximize the total amount of rewards in the future through 
their interaction with a complex and uncertain environment. 
The object of reinforcement. learning agents is to discover 
effective policy by which agents may decide actions based 
on any perceptual inputs in order to receive the greatest 
reward. Several reinforcement learning algorithms, such as 
Profit-sharing Q-Learning, TD (A )  and SALSA, have been 
developed and confirmed experimentally or theoretically to be 
effective [ I ] ,  [31, [4]. 

In order to constitute reinforcement learning agents with 
continuous inputs, it is very important to design adequate state 
spaces for the agents. However, the design of the state space 
is terribly difficult since the characteristics of the input-output 
map of the agents must be taken into account. Moreover, 
such design process require the parameters for acquiring the 
adequate state space to be tuned through trial and error. That 
is, if the designer of the agents prepares a fine-grained state 
space, the agents have to learn a huge search space due to the 
large number of states. On the other hand, if a coarse-grained 
state space is provided to the agents, the perceptual alias 
problem occurs: sensory inputs which should be recognized 
as different states are recognized as the same state. Sutton’s 
textbook [I] introduces reinforcement learning problems as a 
problem class for which the state transitions are represented 
by conditional probabilities. The reasons why state transitions 
in the reinforcement learning problems should be treated as 
a probabilistic model are ( I )  the incomplete capability of 
sensors, which do not sufficiently capture the environment of 
the agent, (2) noise of sensors and actuators, and (3) inade- 

quate state space, as mentioned above. In the present paper, 
we treat a sub-class of the reinforcement learning problems, 
for which the agents receive sufficient perceptual information 
to cany out tasks. We propose a state space construction 
method that is based on the anticipated sensory inputs of an 
agent in  the problem subclass. The proposed method is an 
incremental state space constitution algorithm which consists 
of Fritzke’s Growing Neural Gas Algorithms (GNG) [2] and a 
class management mechanism (CMM). The GNG condenses 
sensory inputs and learns which areas are frequently sensed. 
The CMM assign class labels to the references of GNG nodes 
by refemng to anticipation vectors of sensory inputs at the 
next time step and anticipation errors. The proposed method 
can constitute the state space of agents while reinforcement 
learning algorithms learn the policy for the agents. 

The next section introduces conventional GNG algorithms 
proposed by Fritzke. Section Ill describes the proposed method 
in detail. Computational simulation of the mountain-car prob  
lem is examined in section IV. 

11. GROWING NEURAL GAS ALGORITHM 

The Growing Neural Gas (GNG) algorithm is a type of 
competitive learning neural network which consists of nodes 
and edges [2]. The edges represent adjacency relationships 
between the nodes. A weight vector of which the dimension 
is the same as the input vector for neural networks is associated 
to each node. The network topologies of neural networks 
in the GNG is changed adaptively: a node is added for 
reducing accumulated errors and is deleted when no adjacent 
node exists. Furthermore, the adjacency relationship between 
the nodes, which is represented by the edge, is dynamically 
changed in accordance with activation frequencies of the node 
and its neighboring nodes. In this paper, we adopt the GNG to 
learn the input distribution and to condense the input vector, 
which is an n-dimensional input vector, to discrete sets, i.e., 
nodes (neurons). 

The learning procedure of the GNG algorithms is described 
as follows: 

I )  An initial network, which consists of two nodes a and 
b having weight vectors w. and wb, respectively, which 
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Fig. 1 .  A depiction of the weight madilkation of GNG nodes 

are randomly generated, and an edge between the two 
nodes is constituted. The age of the edge is set to be 0. 

2) Find the nearest node s1 and the second nearest node 
sa for an input vector E :  

SI = argminle - wsiI 

sz = argniin IF - we, 1, 
S , , S i # ~ I  

a i  

where s indicates a set of nodes. 

incremented by 1. 

lated according to the following equation: 

3) The age of all edges connected to the node S I  is 

4) The accumulated error E(s l )  of the node SI is accumu- 

AE(si)  = 1 1 ~ s ~  - EllZ 
5 )  Move the weight vector wgl of the node SI to the interior 

division of the input vector E for which the interior 
fraction is tb. In addition, all nodes connected n to the 
node SI are moved to the interior division of the input 
vector E for which the interior fraction is tn:  

AWs, = eb(E  - 7 U . q )  

Awn = tn (E-wn) :  

wh‘ere 0 < E ,  < E* < 1. Hence, the nearest node SI 
approaches more than the neighboring nodes, as depicted 
in Fig. 1. 

6) If an edge exists between nodes s1 and SZ, the age of 
the edge is reset to 0. Otherwise, a new edge of age 0 
is added between the nodes. 

7) Edges of age greater than amaz are removed. As a 
consequence, nodes which are not connected to other 
nodes are also removed. 

8) At every X step, a new node is added to the network. 
9) The accumulated errors for all nodes are decreased by 

multiplication by a constant parameter d defined in 
advance. 

10) Go back to 2) if terminal conditions have not held. 
The node addition in the step 8) in the above procedure is 
carried out as follows: 

First, find a node q with the maximum accumulated 
error. 
Next, find a node f which has the maximum accu- 
mulated error among all nodes connected by the node 
q. A new node T is then generated at the midpoint 

Sa) 

8b) 
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Fig. 2. An overview of the proposed method 

between the nodes q and f ,  that is, the weight vector 
of the node T is defined as follows: 

w,. = 0.5 X (wp + w r )  

The edge between nodes q, f is removed. Instead, 
two new edges, i.e. the edge between nodes q,r  
and the edge between nodes T ,  f. are added to the 
network. 
The accumulated error of the nodes q ,  f is reduced 
by multiplication by a predefined constant value 7. 
In addition, the accumulated error of the node r 
is initialized as the accumulated error E(q)  of the 
node q: 

AE(q) = - ( I  -?I)E(q) 
AE(f)  = - ( l - ? ~ ) E ( f )  

E (T)  = E ( q )  

A N  INCREMENTAL STATE SPACE CONSTRUCTION 
METHOD BASED ON ANTICIPATED SENSORY CHANGES 

A. An Overview of the Proposed Method 

As depicted in Fig, 2, the proposed method serves as “the 
state recognition unit” which maps continuous n-dimensional 
inputs to discrete states. The balloon area in this figure shows 
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the constitution of the proposed method. In the proposed 
method, the Growing Neural Gas (GNG) module, which is 
identical to the conventional GNG algorithms mentioned in 
the previous section, learns the topology of the input space 
of the reinforcement learning agents. The Class Management 
Mechanism (CMM) module administrates the lookup table 
from nodes in the GNG module to states presented to the 
action selection module in the reinforcement learning agent. 
Because the GNG module is identical to the conventional GNG 
algorithms, we will introduce the CMM module in the next 
subsection. 

B. Class Management Module 

The CMM module has several groups of the references 
of the GNG nodes. Each group corresponds to each action 
of the agents. Hence, the number of groups is the same 
as the number of actions. In addition, the CMM module 
has several classes (states) for each group. The classes in 
a group (action) a consist of the state-action value of each 
class V ( s , a ) ,  an anticipation vector As,a of the class s, and 
an anticipated error EA(s,a). Each reference U in a group 
(action) a has an anticipation vector A,,,, and an index of the 
member class (state) s. By referring to the anticipation error 
of the class, the CMM module decides whether a new class is 
generated. The following paragraphs describe the calculations 
in the references, the calculations in the classes, and the class 
management of the CMM module. 

Reference-level behavior is described as follows: The antic- 
ipation of a reference U belonging in a group (action) a 
indicates an n-dimensional vector which estimates the sensory 
changes by taking the action a in which the reference U is 
activated. Suppose that j denotes the number of occurrences 
of situations that take an action a in which the reference U is 
activated. Moreover, let 6; be a sensory difference between the 
time step ((tf), in which the ith occurrence is observed, and 
its next time step is <(ti +I ) ,  i.e. bi = <(ti + 1) -< ( t ’ ) .  The 
anticipation vector is incrementally updated as follows: 

AA”,, = ea(6 - &,a), (1) 

where e, denotes a predefined constant value. 

The anticipation vector 
equation (I) :  

The calculation in the class level is carried out as follows: 
is updated by the same means in 

AA,,, = ea(6--c,a), 

Moreover, the anticipation error is accumulated for each 
occurrence: 

A E A ( c , ~ )  = P(IIAc,a - Jjllz - Ea(c,a)), (2) 

where ,8 is a predefined constant parameter. The method by 
which to update the state-action values of class (state) depends 
on the reinforcement learning algorithms. However, we can 
adopt various kinds of conventional reinforcement learning 
Algorithms, such as SALSA, TD(X), and Profit Sharing, to 

~ 
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combine with the proposed method, in this paper, we employ 
the Q-Learning Method to update the state action values [3]: 

A v ( s t , a t )  = 4 R t + l  +Yma=V(st+l,at+d - V ( S t , 4 ) ,  

where the subscript t indicates the time step. In the calculation 
of m a ,  V ( s t + l ,  % + I ) ,  st+l corresponds to classes (states) in 
all groups (actions), for which the reference refers the same 
GNG node activated in the time step t + 1. 

The CMM module, at every predefined interval, divides a 
class, such that its anticipation error is the highest among all 
classes and is greater than the threshold, into two new classes. 
The division procedure is described as follows: 

I )  Find a class c1 which has the maximum anticipation 
error. 

2) If the anticipation error Ea(c1,a) of the class c1 is 
greater than E,, go to step 3). Otherwise, exit this 
division procedure. 

3) Find a reference u f  for which the anticipation vector 
is the farthest from the anticipation vector A,,,, of c1 
among all references which have the index to the class 
c1. 

4) Generate a new class c,  and move the reference uf from 
class c1 to c,,. 

5 )  For each reference U’ in the class cl ,  which is connected 
to references in the class cn, if the distance between 
the anticipation vectors and A,,,, is longer than 
the distance between the anticipation vectors and 
A,,,,, then the node U‘ is moved to class c,. 

6) The previous step is recursively applied while the newly 
moved references exist. 

7) The anticipation error E ~ ( c , , , a )  of the class c,, is set 
to be 0. The anticipation error E ~ ( c 1 , a )  of the class 
CI is multiplied by a constant value g. Moreover, the 
anticipation vectors Ac,,,a and A,,,, are set to be the 
averaged vectors of the anticipation vectors in the classes 
c,, and CI,  respectively. 

IV. COMPUTATIONAL SIMULATION 

A. Pmblem Sertings 

In this paper, we compare the proposed method to tile- 
coding to examine the mountain-car task [ I ] .  As depicted in 
Fig. 3, the agent is surrounded by hills on both the left and 
right sides. The agent’s task is to reach the hill on the right 
side. However, the agent does not potentially have enough 
power to reach the right hill, e.g., the agent cannot reach the 
right hill using only the action “right” from the bottom of the 
valley with the initial velocity = 0. In the mountain-car task 
problems written in the textbook by Sutton [I], the agent can 
perform three types of action: “go left”, “do nothing”, and “go 
right”. In this paper, for simplicity, the agent can perform only 
two types of action (cf. Fig. 6): “go left” and “go right”. The 
agent can sense its current position and velocity, as shown on 
the abscissa in Fig. 3. The agent is rewarded -1 at each time 



Fig. 3. A depiction of the mountain-car taSk 

TABLE 1 
PARAMETERS FOR THE PROPOSE0 METHOD 

tile SiZB = 7 
tilesire=9 - - - - - ~  

tile Sile = 11 
tile size = 13 ~ ~ ~ 

0 20 40 60 80 1W 120 140 160 180 200 
episodes 

Fig. 4. Temporal changes in the moving average of the success ratio 

amor 
0.5 
0.7 
0.7 

step. The state value of the goal state, i.e., the right end in 
Fig. 3 is set to 0. One episode finishes either when the agent 
achieves the goal state or the number of steps reaches 500. 
For each run, 200 episodes are examined. 

The parameter for the proposed method is summarized 
in Table I. We adopt a Q-Learning as the reinforcement 
learning algorithm for the proposed method. We compared the 
proposed method to the conventional Q-Leaning method with 
tile coding, in which the tile size was set to be 3, 5 ,  7, 9, 1 I ,  
13, or 15. The learning parameters 01 and y for the proposed 
method and the conventional Q-Leaming are set lo he 0.9. 

B. Experimental Results 
Figure 4 and Fig. 5 show the temporal changes in the 

moving average of the success ratio and the number of steps 
required in order to achieve to the goal state, respectively. In 
both graphs, the 5 axis denotes the number of episodes. In 
Fig. 4, the y axis denotes the success ratio, which is defined 
as the fraction of runs required in order to achieve the goal 
state. In Fig. 5, the y axis denotes the number of steps. If 
the agent cannot attain the goal state during a certain run, 
the number of steps in the run is set to 500, which is the 
same as the maximum episode length. The conventional Q- 
learning with coarse-grained tile-coding, e.g., tile size = 3 or 
5. shows worse performance than the proposed method and the 
conventional Q-Learning with fine-grained tile-coding. In the 

proposed method, the number of steps decreases faster than 
for other algorithms. 

Next, we investigate acquired state segmentations in a 
typical run as delineated in Fig. 6. In this figure, a neural 
network learned by the GNG module (upper graph), anticipa- 
tion vectors for each references (middle graphs), and assigned 
classes (lower graphs) are plotted. The left and right sides in 
the middle and lower graphs indicates the results for the action 
“left” and “right”, respectively. The horizontal and vertical 
axes for all graphs represent the position and the velocity 
of agents, respectively. The location depicted on these axes 
is indicated as 0 on the other axes. In addition, we define 
the zero point of the position of the agent as the bottom 
point of the valley in Fig. 3. The dots in the upper graph 
indicate nodes in the GNG module. The references in the 
CMM module in the middle and lower graphs are located at the 
same coordinates as corresponding nodes in the GNG module. 
The numbers in the lower graphs indicate the assigned states. 
Circled numbers indicate that the state-action value of that 
reference is greater than the others. The distribution of nodes in 
acquired neural networks by the GNG module is not uniform. 
The GNG module does not yield nodes for unseen inputs so 
that the shape of the resultant node distribution depends greatly 
on the characteristics of an agent in a given environment. 
For example, the agent in this problem cannot maintain high 
speed at the top of mountains. Hence, the proposed method 
generates no state for such inputs (i.e. the corners of the 
graphs). Referring the lower graphs, the number of states for 
the actions “left” and “right” in this run are 11 and 17. The 
distribution of circled numbers indicates that the agent learns 
a proper policy. 

V. CONCLUSIONS 

In this paper, we proposed an incremental state space 
construction method for reinforcement learning agents, which 
consists of Fritzke’s Growing Neural Gas algorithms and 
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GNG nodes 

Action “left” Action “right” 

, 

Fig. 6. Depictions of stale segmentation acquired by the proposed method: a neural network learned by the FNG module (upper graph). anticipation vectors 
far each references (middle graphs), and assigned classes (lower graphs). The left and right sides of the middle and lower graphs indicate the results for 
actions ‘‘left’’ and “right”, respectively. Horizontal and vertical axes for all graph3 represent the position and the velocity of agents, respectively. 
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the Class Management Mechanism. The proposed method 
constitutes a state space based on anticipated behaviors of 
an agent, namely, a couple of actions by the agent and the 
resultant change in sensory inputs. Computational simulations 
using the mountain-car task clarified the effectiveness of the 
proposed method. In future studies, we would like to apply 
the proposed method to other kinds of reinforcement learning 
problems, including real robots, and to extend the proposed 
method, by for example incorporating rewards or control 
variables into the anticipation vectors. 
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