
Engineering

Industrial & Management Engineering fields

Okayama University Year 2004

State space construction of reinforcement

learning agents based upon anticipated

sensory changes

Hisashi Handa
Okayama University

This paper is posted at eScholarship@OUDIR : Okayama University Digital Information
Repository.

http://escholarship.lib.okayama-u.ac.jp/industrial engineering/20

State Space Construction of Reinforcement Learning
Agents Based upon Anticipated Sensory Changes

Hisashi Handa
Department of Information Technology

Okayama University
Okayama 7008530, JAPAN

E-mail: handa@sdc.it.okayama-tJ.ac.jp

Abstract- We propose herein a new incremental state con-
struction method which consists of Fritzke’s Growing Neural
Gas algorithm and a Class Management Mechanism of GNG
units. The GNG algorithm condenses sensory inputs and learns
which areas are frequently sensed. The CMM yields a new state
based upon the anticipated behaviors of the agent, i.e., a couple
of actions by an agent and the resultant change in sensory inputs.
Computational simulations on the mountain-car task confirm the
effectiveness of the proposed method.

I. INTRODUCTION

Reinforcement learning is one of the most active research
areas in intelligent systems. Reinforcement learning agents try
to maximize the total amount of rewards in the future through
their interaction with a complex and uncertain environment.
The object of reinforcement. learning agents is to discover
effective policy by which agents may decide actions based
on any perceptual inputs in order to receive the greatest
reward. Several reinforcement learning algorithms, such as
Profit-sharing Q-Learning, TD (A) and SALSA, have been
developed and confirmed experimentally or theoretically to be
effective [I] , [31, [4].

In order to constitute reinforcement learning agents with
continuous inputs, it is very important to design adequate state
spaces for the agents. However, the design of the state space
is terribly difficult since the characteristics of the input-output
map of the agents must be taken into account. Moreover,
such design process require the parameters for acquiring the
adequate state space to be tuned through trial and error. That
is, if the designer of the agents prepares a fine-grained state
space, the agents have to learn a huge search space due to the
large number of states. On the other hand, if a coarse-grained
state space is provided to the agents, the perceptual alias
problem occurs: sensory inputs which should be recognized
as different states are recognized as the same state. Sutton’s
textbook [I] introduces reinforcement learning problems as a
problem class for which the state transitions are represented
by conditional probabilities. The reasons why state transitions
in the reinforcement learning problems should be treated as
a probabilistic model are (I) the incomplete capability of
sensors, which do not sufficiently capture the environment of
the agent, (2) noise of sensors and actuators, and (3) inade-

quate state space, as mentioned above. In the present paper,
we treat a sub-class of the reinforcement learning problems,
for which the agents receive sufficient perceptual information
to cany out tasks. We propose a state space construction
method that is based on the anticipated sensory inputs of an
agent in the problem subclass. The proposed method is an
incremental state space constitution algorithm which consists
of Fritzke’s Growing Neural Gas Algorithms (GNG) [2] and a
class management mechanism (CMM). The GNG condenses
sensory inputs and learns which areas are frequently sensed.
The CMM assign class labels to the references of GNG nodes
by refemng to anticipation vectors of sensory inputs at the
next time step and anticipation errors. The proposed method
can constitute the state space of agents while reinforcement
learning algorithms learn the policy for the agents.

The next section introduces conventional GNG algorithms
proposed by Fritzke. Section Ill describes the proposed method
in detail. Computational simulation of the mountain-car prob
lem is examined in section IV.

11. GROWING NEURAL GAS ALGORITHM

The Growing Neural Gas (GNG) algorithm is a type of
competitive learning neural network which consists of nodes
and edges [2]. The edges represent adjacency relationships
between the nodes. A weight vector of which the dimension
is the same as the input vector for neural networks is associated
to each node. The network topologies of neural networks
in the GNG is changed adaptively: a node is added for
reducing accumulated errors and is deleted when no adjacent
node exists. Furthermore, the adjacency relationship between
the nodes, which is represented by the edge, is dynamically
changed in accordance with activation frequencies of the node
and its neighboring nodes. In this paper, we adopt the GNG to
learn the input distribution and to condense the input vector,
which is an n-dimensional input vector, to discrete sets, i.e.,
nodes (neurons).

The learning procedure of the GNG algorithms is described
as follows:

I) An initial network, which consists of two nodes a and
b having weight vectors w. and wb, respectively, which

0-7803-8359-1/04/~20.00 02004 IEEE 1115

mailto:handa@sdc.it.okayama-tJ.ac.jp

Fig. 1 . A depiction of the weight madilkation of GNG nodes

are randomly generated, and an edge between the two
nodes is constituted. The age of the edge is set to be 0.

2) Find the nearest node s1 and the second nearest node
sa for an input vector E :

SI = argminle - wsiI

sz = argniin IF - we, 1,
S , , S i # ~ I

a i

where s indicates a set of nodes.

incremented by 1.

lated according to the following equation:

3) The age of all edges connected to the node S I is

4) The accumulated error E(s l) of the node SI is accumu-

AE(si) = 1 1 ~ s ~ - EllZ
5) Move the weight vector wgl of the node SI to the interior

division of the input vector E for which the interior
fraction is tb. In addition, all nodes connected n to the
node SI are moved to the interior division of the input
vector E for which the interior fraction is tn:

AWs, = eb(E - 7 U . q)

Awn = tn (E-wn) :

wh‘ere 0 < E , < E* < 1. Hence, the nearest node SI
approaches more than the neighboring nodes, as depicted
in Fig. 1.

6) If an edge exists between nodes s1 and SZ, the age of
the edge is reset to 0. Otherwise, a new edge of age 0
is added between the nodes.

7) Edges of age greater than amaz are removed. As a
consequence, nodes which are not connected to other
nodes are also removed.

8) At every X step, a new node is added to the network.
9) The accumulated errors for all nodes are decreased by

multiplication by a constant parameter d defined in
advance.

10) Go back to 2) if terminal conditions have not held.
The node addition in the step 8) in the above procedure is
carried out as follows:

First, find a node q with the maximum accumulated
error.
Next, find a node f which has the maximum accu-
mulated error among all nodes connected by the node
q. A new node T is then generated at the midpoint

Sa)

8b)

,,.=Growing :.,. Neural Gas

Fig. 2. An overview of the proposed method

between the nodes q and f , that is, the weight vector
of the node T is defined as follows:

w,. = 0.5 X (wp + w r)

The edge between nodes q, f is removed. Instead,
two new edges, i.e. the edge between nodes q,r
and the edge between nodes T , f. are added to the
network.
The accumulated error of the nodes q , f is reduced
by multiplication by a predefined constant value 7.
In addition, the accumulated error of the node r
is initialized as the accumulated error E(q) of the
node q:

AE(q) = - (I -?I)E(q)
AE(f) = - (l - ? ~) E (f)

E (T) = E (q)

A N INCREMENTAL STATE SPACE CONSTRUCTION
METHOD BASED ON ANTICIPATED SENSORY CHANGES

A. An Overview of the Proposed Method

As depicted in Fig, 2, the proposed method serves as “the
state recognition unit” which maps continuous n-dimensional
inputs to discrete states. The balloon area in this figure shows

1116

the constitution of the proposed method. In the proposed
method, the Growing Neural Gas (GNG) module, which is
identical to the conventional GNG algorithms mentioned in
the previous section, learns the topology of the input space
of the reinforcement learning agents. The Class Management
Mechanism (CMM) module administrates the lookup table
from nodes in the GNG module to states presented to the
action selection module in the reinforcement learning agent.
Because the GNG module is identical to the conventional GNG
algorithms, we will introduce the CMM module in the next
subsection.

B. Class Management Module

The CMM module has several groups of the references
of the GNG nodes. Each group corresponds to each action
of the agents. Hence, the number of groups is the same
as the number of actions. In addition, the CMM module
has several classes (states) for each group. The classes in
a group (action) a consist of the state-action value of each
class V (s , a) , an anticipation vector As,a of the class s, and
an anticipated error EA(s,a). Each reference U in a group
(action) a has an anticipation vector A,,,, and an index of the
member class (state) s. By referring to the anticipation error
of the class, the CMM module decides whether a new class is
generated. The following paragraphs describe the calculations
in the references, the calculations in the classes, and the class
management of the CMM module.

Reference-level behavior is described as follows: The antic-
ipation of a reference U belonging in a group (action) a
indicates an n-dimensional vector which estimates the sensory
changes by taking the action a in which the reference U is
activated. Suppose that j denotes the number of occurrences
of situations that take an action a in which the reference U is
activated. Moreover, let 6; be a sensory difference between the
time step ((tf), in which the ith occurrence is observed, and
its next time step is <(ti +I) , i.e. bi = <(ti + 1) -< (t ’) . The
anticipation vector is incrementally updated as follows:

AA”,, = ea(6 - &,a), (1)

where e, denotes a predefined constant value.

The anticipation vector
equation (I) :

The calculation in the class level is carried out as follows:
is updated by the same means in

AA,,, = ea(6--c,a),

Moreover, the anticipation error is accumulated for each
occurrence:

A E A (c , ~) = P(IIAc,a - Jjllz - Ea(c,a)), (2)

where ,8 is a predefined constant parameter. The method by
which to update the state-action values of class (state) depends
on the reinforcement learning algorithms. However, we can
adopt various kinds of conventional reinforcement learning
Algorithms, such as SALSA, TD(X), and Profit Sharing, to

~

11.17

combine with the proposed method, in this paper, we employ
the Q-Learning Method to update the state action values [3]:

A v (s t , a t) = 4 R t + l +Yma=V(st+l,at+d - V (S t , 4) ,

where the subscript t indicates the time step. In the calculation
of m a , V (s t + l , % + I) , st+l corresponds to classes (states) in
all groups (actions), for which the reference refers the same
GNG node activated in the time step t + 1.

The CMM module, at every predefined interval, divides a
class, such that its anticipation error is the highest among all
classes and is greater than the threshold, into two new classes.
The division procedure is described as follows:

I) Find a class c1 which has the maximum anticipation
error.

2) If the anticipation error Ea(c1,a) of the class c1 is
greater than E,, go to step 3). Otherwise, exit this
division procedure.

3) Find a reference u f for which the anticipation vector
is the farthest from the anticipation vector A,,,, of c1
among all references which have the index to the class
c1.

4) Generate a new class c, and move the reference uf from
class c1 to c,,.

5) For each reference U’ in the class cl , which is connected
to references in the class cn, if the distance between
the anticipation vectors and A,,,, is longer than
the distance between the anticipation vectors and
A,,,,, then the node U‘ is moved to class c,.

6) The previous step is recursively applied while the newly
moved references exist.

7) The anticipation error E ~ (c , , , a) of the class c,, is set
to be 0. The anticipation error E ~ (c 1 , a) of the class
CI is multiplied by a constant value g. Moreover, the
anticipation vectors Ac,,,a and A,,,, are set to be the
averaged vectors of the anticipation vectors in the classes
c,, and CI, respectively.

IV. COMPUTATIONAL SIMULATION

A. Pmblem Sertings

In this paper, we compare the proposed method to tile-
coding to examine the mountain-car task [I] . As depicted in
Fig. 3, the agent is surrounded by hills on both the left and
right sides. The agent’s task is to reach the hill on the right
side. However, the agent does not potentially have enough
power to reach the right hill, e.g., the agent cannot reach the
right hill using only the action “right” from the bottom of the
valley with the initial velocity = 0. In the mountain-car task
problems written in the textbook by Sutton [I], the agent can
perform three types of action: “go left”, “do nothing”, and “go
right”. In this paper, for simplicity, the agent can perform only
two types of action (cf. Fig. 6): “go left” and “go right”. The
agent can sense its current position and velocity, as shown on
the abscissa in Fig. 3. The agent is rewarded -1 at each time

Fig. 3. A depiction of the mountain-car taSk

TABLE 1
PARAMETERS FOR THE PROPOSE0 METHOD

tile SiZB = 7
tilesire=9 - - - - - ~

tile Sile = 11
tile size = 13 ~ ~ ~

0 20 40 60 80 1W 120 140 160 180 200
episodes

Fig. 4. Temporal changes in the moving average of the success ratio

amor
0.5
0.7
0.7

step. The state value of the goal state, i.e., the right end in
Fig. 3 is set to 0. One episode finishes either when the agent
achieves the goal state or the number of steps reaches 500.
For each run, 200 episodes are examined.

The parameter for the proposed method is summarized
in Table I. We adopt a Q-Learning as the reinforcement
learning algorithm for the proposed method. We compared the
proposed method to the conventional Q-Leaning method with
tile coding, in which the tile size was set to be 3, 5 , 7, 9, 1 I ,
13, or 15. The learning parameters 01 and y for the proposed
method and the conventional Q-Leaming are set lo he 0.9.

B. Experimental Results
Figure 4 and Fig. 5 show the temporal changes in the

moving average of the success ratio and the number of steps
required in order to achieve to the goal state, respectively. In
both graphs, the 5 axis denotes the number of episodes. In
Fig. 4, the y axis denotes the success ratio, which is defined
as the fraction of runs required in order to achieve the goal
state. In Fig. 5, the y axis denotes the number of steps. If
the agent cannot attain the goal state during a certain run,
the number of steps in the run is set to 500, which is the
same as the maximum episode length. The conventional Q-
learning with coarse-grained tile-coding, e.g., tile size = 3 or
5. shows worse performance than the proposed method and the
conventional Q-Learning with fine-grained tile-coding. In the

proposed method, the number of steps decreases faster than
for other algorithms.

Next, we investigate acquired state segmentations in a
typical run as delineated in Fig. 6. In this figure, a neural
network learned by the GNG module (upper graph), anticipa-
tion vectors for each references (middle graphs), and assigned
classes (lower graphs) are plotted. The left and right sides in
the middle and lower graphs indicates the results for the action
“left” and “right”, respectively. The horizontal and vertical
axes for all graphs represent the position and the velocity
of agents, respectively. The location depicted on these axes
is indicated as 0 on the other axes. In addition, we define
the zero point of the position of the agent as the bottom
point of the valley in Fig. 3. The dots in the upper graph
indicate nodes in the GNG module. The references in the
CMM module in the middle and lower graphs are located at the
same coordinates as corresponding nodes in the GNG module.
The numbers in the lower graphs indicate the assigned states.
Circled numbers indicate that the state-action value of that
reference is greater than the others. The distribution of nodes in
acquired neural networks by the GNG module is not uniform.
The GNG module does not yield nodes for unseen inputs so
that the shape of the resultant node distribution depends greatly
on the characteristics of an agent in a given environment.
For example, the agent in this problem cannot maintain high
speed at the top of mountains. Hence, the proposed method
generates no state for such inputs (i.e. the corners of the
graphs). Referring the lower graphs, the number of states for
the actions “left” and “right” in this run are 11 and 17. The
distribution of circled numbers indicates that the agent learns
a proper policy.

V. CONCLUSIONS

In this paper, we proposed an incremental state space
construction method for reinforcement learning agents, which
consists of Fritzke’s Growing Neural Gas algorithms and

1118

GNG nodes

Action “left” Action “right”

,

Fig. 6. Depictions of stale segmentation acquired by the proposed method: a neural network learned by the FNG module (upper graph). anticipation vectors
far each references (middle graphs), and assigned classes (lower graphs). The left and right sides of the middle and lower graphs indicate the results for
actions ‘‘left’’ and “right”, respectively. Horizontal and vertical axes for all graph3 represent the position and the velocity of agents, respectively.

1119

1w ’ I
O 20 40 60 60 1W 120 140 1MI 160 2W

episodes

Fig. 5.
required IO achieve the goal state

Temporal changes in the moving average of lhe number of steps

the Class Management Mechanism. The proposed method
constitutes a state space based on anticipated behaviors of
an agent, namely, a couple of actions by the agent and the
resultant change in sensory inputs. Computational simulations
using the mountain-car task clarified the effectiveness of the
proposed method. In future studies, we would like to apply
the proposed method to other kinds of reinforcement learning
problems, including real robots, and to extend the proposed
method, by for example incorporating rewards or control
variables into the anticipation vectors.

ACKNOWLEDGMENT
This research was supported in part by the Ministry of

Education, Science, Sports and Culture through a Grant-in-
Aid for Young Scientists (B), 15700159, 2003.

REFERENCES
[I] R. S. Sullon and A. G. Bano, “Reinforcement W i n g : An Inlroduc-

lion,’’ The MIT Press, 1998.
121 B. Fritzke. “A Growing Neural Gm Network Leams Topologies,” Ad-

vances in Neural Informotion Pmcessing Syslem 7, MIT Press, pp. 625-
632. 1995.

[31 C. I. C. H. Watkins, and P. Daym. “Technical note: Q-learning:’
Machine Lenming, vol. 8, pp. 279-292. 1992.

[4] R.Sunon, “Learning to Predict by the Method of Temporal Differences”,
Machine Learning, vol. 3, pp. 9-44, 1988.

1120

