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Abstract 

This paper gives a concise parametrization of all iden- 
tity interactors of a discrete-time multivariable square 
system. This is performed by means of a state-space 
description computed from a given particular inter- 
actor of the system. The paper then proposes a se- 
lect8ion of the parameter which leads to an all-pass 
closed-loop transfer matrix. This closed-loop system 
turns out to be equivalent to a certain LQ (linear 
quadratic) optimal feedback system. A numerical ex- 
ample is given to illustrate the results. 

1. Introduction 

A ripecial polynomial matrix called an interactor 
plays an essential role in various fields of multivari- 
able control; see [2], (61, [9], just to name a few. This 
matrix was originally defined by [9] as follows: Let 
T ( z )  be a given m x m transfer matrix. A polyno- 
mial matrix is called an interactor iff 

for some constant nonsingular matrix MT, where 

and 
1 

w4 = ( hij[zl '.. 1) (3) 

with h;j[z] being appropriate polynomials of certain 
degrees. 

The interactor is introduced in order to generalize 
the (concept of the relative degree of scalar systems 
into the multivariable case. In this sense, however, 

it is enough to pose Condition (1); the lower triangu- 
lar structure in (2) and (3) is required only because of 
algorithmic simplicity as well as guaranteeing unique- 
ness. Various modifications of this concept have thus 
been attempted in literature [3], [4], [5].  

A natural definition in this context has been given by 
[3]; namely, a polynomial matrix L T [ ~ ]  is called an 
identity interactor iff 

lim L ~ [ z l T ( z )  =Im 
2-00 

(4) 

with I,,, denoting the identity matrix. This appears 
to be more useful than the original definition (1) - 
(3) in the following sense. In the design of EMM (Ex- 
act Model Matching) or MRACS (Model Reference 
Adaptive Control Systems), the feedback system is 
often designed so that the closed-loop transfer matrix 
coincides with L~[z] - l ,  see for example [2]. Hence it 
is less advantageous to require additional conditions 
as in (2) and (3), which may reduce the degree of 
freedom in the design. 

An important feature of the identity interactor is non- 
uniqueness. In this sense, it should be more desir- 
able to  parametrize the set of all possible LT[L] which 
are identity interactors for a given T ( t ) ,  rather than 
studying a specific one of them. It is also desirable if 
we can give some guidelines aa to which identity in- 
teractor should be selected when designing a control 
system. 

The objective of this paper is as follows. For a 
discrete-time invertible (not necessarily known) plant 
T(z) ,  suppose that we are given a polynomial matrix 
&[z] and a constant matrix MT in (l), (2), and (3). 
In what follows, &r[z ]  is called a particular interactor, 
in order to distinguish it from the identity interactor. 
Then, we 

i) parametrize the set of all identity interactors LT[.z] 
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for fixed T(z) ;  

ii) select, in this set, a parameter such that N ( z )  := 
LT[Z]-' satisfies 

NT(z- ' )N(r)  = 0 vz E Q: (5)  

for some constant a; and 

iii) show that the feedback achieving N ( z )  as a closed- 
loop transfer matrix is LQ optimal for some weight- 
ings. 

The item i) enables us to design &[z] by adjusting 
this parameter: for example, we can allocate closed- 
loop poles at specified points other than the origin. In 
this paper, however, we use this degree of freedom for 
achieving the item ii). This condition corresponds to 
what is called the all-pass property in the continuous- 
time case, and guarantees that llN(z)11 is constant at 
all frequencies. In the design of EMM, we usually 
apply a feedback so as to  cancel invariant zeros inside 
the unit disk, and put a pre-compensator C ( z )  so that 
N ( z ) C ( z )  has a desirable frequency property (see Fig. 
1). In such a case, we may want N ( z )  to  have a Bode 
gain-plot as flat as possible, although a phase lag is 
inevitable because of time delay. 

Figure 1: A block diagram of EMM 

In fact, for diagonalizable systems (i.e., the case 
where HT[z]  = Im), it is natural to adopt a diago- 
nal interactor with zf1, . . ., z fm in diagonal entries. 
In this case, Condition (5) is automatically satisfied. 
In view of this fact, the item ii) gives a natural gen- 
eralization of the diagonal interactor into the non- 
diagonalizable case. All-pass interactor is also found 
in [4 ] ,  by the name of unitary interactor, in the con- 
text of explicit formula of the LQ optimal control. 

The item iii) is given in order to clarify the control- 
theoretic meaning of the obtained interactor. 

Throughout the paper we use the bracket [ .]  as in A[%] 
for polynomial matrices, and the parenthesis (.) as in 

A( z )  for rational function matrices, in order to  avoid 
confusion of these two different categories. 

2. Parametrization of Interactors 

Consider the discrete-time system 

Z E R " ,  uEIRm, y E I R m .  

Throughout the paper, we assume that the (square) 
transfer matrix " ( 2 )  = C(zln - A)-'B is nonsingu- 
lar on the field of all rational functions, and that this 
system has no unstable invariant zeros. We will not 
use the explicit values of ( A , B , C )  but will use only 
the knowledge of a corresponding particular interac- 
tor <T[z]  together with M T ,  so that the result may be 
applied to adaptive control design in future work. 

Lemma 1 Consider E T [ z ]  and MT in (l), (2), and (3) 
for a system (6), (7). Then, any polynomial matrix 
LT[L]  is an identity interactor iff 

2'00 lim ~ T [ r ] t T [ z ] - '  = MT-'. (8) 

Proof (Necessity) If LT[z]  is an identity interactor, 
then we have 

lim ~ T [ z ] t T [ z ] - '  
Z'OO 

= (lim L T [ z ] T ( z ) ) (  lim ET[Z]T(Z)) - '  
Z'CO Z'OO 

= MT-' 

by definition. Hence (8) holds. Sufficiency can also 
be shown similarly. 0 

Lemma 2 Consider &[z] and MT in (l), (2), and 
(3). Since &[z]-' is strictly proper, there exists a 

minimal realization, denoted by (A, B, e) : 
&.[z]-l = C(Z1, - A)-1B, 

s[t] := (Zld - A)-'Bt&] 

(9) 

where d is the McMillan degree of &[z]- l .  Then 

(10) 

is a polynomial matrix. Furthermore, any identity 
interactor &[z]  is parametrized as 

LT[4  = MT-I(<T[Z]  + RS[Z]) (11) 

in terms of a constant parameter matrix R 
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Proof First, consider the coprime factorization 

(dd - A)-lB = ~ ? [ ~ ] e [ ~ ] - ~  
by polynomial matrices. In view of (9), it follows that 

E[%] = (T[%]U[%], er[%] = U[%] 

for some unimodular polynomial matrix U[%]. Hence 

S [ 4  = r [ z ] ~ [ z ] - l ,  
which is a polynomial matrix. 

The latter half is a direct consequence of the condi- 
tBon (8 )  and an elementary property of polynomial 
matrices [8]. 13 

R.emark 1 Lemmas 1 and 2 are nothing but a gen- 
eralization of the fact that "For a scalar system of 
relative degree d, any polynomial of degree d can be 
tamken as an interactor." 

Remark 2 S[z]  is the numerator polynomial ma- 
trix that is known in the polynomial matrix approach 
[8]l. This matrix, however, does not necessarily have 
the well-known arranged structure with monomials 
1, z, z2, - . in block-diagonal entries. This is because 

ST[%] is not column proper in general nor is (A, B, C) 
in the reachability canonical form. 

Remark 3 In practice, it is necessary to choose a 
Hurwitz polynomial matrix L*[z] (i.e., det L*[t] # 0 
if Izl 2 1) among those satisfying ( l l ) ,  so that the 
closed-loop system LT[%]-* is stable. Taking this into 
co:nsideration, we may say that "the identity interac- 
toirs are parametrized by R such that La"[%] is Hur- 
witz." 

3. Selection of An Interactor 

In this section we show how to select an interac- 
tor LT[%] such that the closed-loop transfer matrix 
N ( z )  = LT[%]-' has the all-pass property (5). This 
is done by making full use of the degree of freedom of 
the identity interactors revealed in Section 2. 

Theorem 1 Consider ( ~ [ z ]  and MT in (I), (2), and 

(3), and the realization (A,B,C) as in Lemma 2. 
Co:mpute a positive semi-definite solution P to the 
discrete-time Riccati equation 

P iiii A T P A - A T ~ B ( B T P B ) - l B T P A ~ ~ T ~ ,  (12) 

ancl obtain the LQ optimal gain 

Finally, take an identity interactor 

LT[z] := MT-~(&[z] + ROS[z]). (14) 

Then, the closed-loop transfer matrix N ( z )  := 
LT[%]-' satisfies ( 5 )  for 

o := M T ~ B ~ P B M T .  

Proof It is well known (e.g., [l]) that if zo is given 
by (12) and (13), then the Kalman equation 

WT(z-')BTPBW(z) = gT(z-')cTc'Z(z) (15) 

holds, where 

W(%> := I, + EoZ(t), Z( r )  := (%Id - A)-- lB.  

Also, note that in this case 

CZ(%) = ST[%]-' 

from (9) and the definition of g(z). 
Kalman equation (15) is reduced to 

Hence the 

WT(r-')BTPBW(2) = ( & - [ Z - ' ] - ' ) ~ & [ Z ] - ~ .  (16) 

On the other hand, by substituting (10) into (14) we 
have 

MTLT[%](T[%]-' = 1, + Eo(%Id - A)-'B = w(Z). 

Hence by pre- and post-multiplying (16) respectively 
by [ ~ ~ [ z - ' ]  and &[z],  we have 

t*T[%-l]M*TBTPBMTLT[r] = I, 

Thus LT[%] satisfies the condition. 0 

We briefly mention a method for numerically com- 
puting LT[z] given above. First, note that HT[z] is 
unimodular, and hence, H*[z]-' is a polynomial ma- 
trix. Then we see that 

&[z]-' = diag(zf', a ,  zf")-'H~[z]-' 

gives a left coprime factorization by polynomial ma- 
trices. By using this factorization, a realization for 
&-[z]-l can easily be derived in the observable canoni- 
cal form. For example, when the particular interactor 
is diagonal (i.e., HT[%] = Im), then the tripplet 

A = block-diag 
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is such a realization. Here e p  is the unit m- 
dimensional vector with unity only in the p-th en- 
try, and the sizes of the diagonal blocks in A are 
fi,. , fm, respectively. If, on the other hand, the 
particular interactor is non-diagonal, then it suffices 
to  construct B by putting the coefficients of H T [ I ' ] - ~  
in suitable positions. 

It is fairly easy to solve the Riccati equation in this 
case, as will be shown in a later example. We should 
note here that if a particular interactor is diagonal, 
then the equation has a trivial solution P = I d ,  xo = 
0, and hence 

~ T [ z ]  = diag(zfl , . . . ,zfm) 

is the very LT[z] that we want. In other words, for 
the diagonalizabIe case, the particular interactor itself 
gives the all-pass property ( 5 )  (see Section 1). 

4. LQ optimality 

Now we should note that K O  introduced in Section 

3 is a mere imaginary gain for (A,l?,c) and not 
an actual feedback law. The feedback corresponding 
to the resulting L T [ ~ ] ,  however, turns out to be LQ 
optimal in reality. This section is devoted to showing 
this. 

Theorem 2 Let the system ( 6 )  be reachable. Apply 
a stabilizing feedback U = -Kx to this system, and 
define 

N ( z )  := C(zI,, - A + BK)-'B. 

Then, if N ( z )  satisfies 

N T ( z - I ) N ( z )  = @ v z  E Q: (17) 

for some positive definite constant matrix a, then I< 
is expressed as 

K = ( B ~ P B ) - ~ B ~ P A ,  (18) 

where P is a positive semi-definite solution of the Ric- 
cati equation 

P = P A  - P B ( B ~  PB) -l B~ P A  + cT C. (19) 

Proof This can be regarded as a special case of 
the inverse problem of optimal control. We can not 
apply, however, an existing solution technique given 
in [7], since the control weighting R was assumed to  
be positive definite there, while R = 0 in the present 
problem. Instead, we will show it in the following 
way. Define 

A K : = A - B K .  

Then AK is stable, and hence the Lyapunov equation 

P = A K T P A ~  + Q (20) 

admits a positive definite solution P, where Q := 
CTC. Using this P ,  we will show (18). To this end, 
we expand 

N ( z )  = CBr-l+ C A K B Z - ~  + C A K ~ B Z - ~  + ..- 
Then we substitute it into (17), and compare the both 
hand sides with respect to z: 

constant term B ~ Q B  + B ~ A ~ ~ Q A ~ B  

+ B ~ A ~ ~ ~ Q A ~ ~ B  + -.. = cp, 

t - l  term B ~ Q A ~ B  + B T A ~ ~ Q A ~ ~ B  

+ B T A ~ 2 T Q A ~ 3 B  + a . *  = 0, 

z-2 term B T & A ~ ' B  + B T A ~ T & A ~ 3 B  

+ B T A ~ 2 T Q A ~ 4 B  + * e *  = 0, 

... ... 
(21) 

where AKZT = (AK')*. Now observe that, from (20), 
we have 

00 

P = C ( A ~ ~ ) ' Q A ~ ' .  
i=O 

Hence we have 

B ~ P B  = cp 
(22) 
\ I  

B ~ P A ~ [ B ,  AKB,  A K ~ B , . . . ]  = o 

from (21). By the first equality BTPB is positive def- 
inite. By the second one, together with reachability 
of the pair ( A K ,  B), 

0 = BTPAK = BTP(A - B K )  = BTPA - BTPBK 

holds. Pre-multiplying the both hand-sides in this 
equality by (BTPB)- ' ,  we obtain (18). Finally, sub- 
stituting (18) into (20), we see that P is a solution to 
the Riccati equation (19). 0 

Corollary In particular, if we construct EMM by 
means of the identity interactor given in Theorem 1, 
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thein the closed-loop transfer matrix coincides with 
the one by an optimal regulator. 

Proof Since we have assumed that the plant T(z)  
is nionsingular, so is N ( z )  and hence @ cannot be sin- 
gular. This means that all assumptions in Theorem 
2 are satisfied. 0 

5. An Example 

Consider the 2 x 2 transfer matrix of a plant 

and assume that the relative degrees of t l l  and t21  
are iunity, while those of tlz and t 2 2  are two. Then 
this system does not have a diagonal interactor, but 
has ;a particular interactor of the form, say 

( ~ [ z ]  = ( ) diag(z, z2)>. (23) 
2 z + 5  1 

Supose that, for simplicity, MT = I2 in this case. 

We now apply the algorithm given in Sections 2 and 
3. f:, begin with, a minimal realization of < ~ [ z ] - ~  is 
givexi by 

0 0 0  

0 1 0  
ji=( o o o ) ,  B=( -2 :5 0 Y ) ,  (24) 

Next we solve the discrete-time Riccati equation. 
This is rather easy to solve since A is a nilpotent 
matrix. Take Po = I d  and set 

pk+1 = ATPkk; - ATPkB(BT&B)-lBTfjkA + CTc 

k=O, l , . ’ . .  (26) 
recursively. Then the sequence converges to  P in fi- 
nite times of recursion (in this case, twice). Hence we 
have 

1 0 0  

0 0 1  
P = =  (0 0.2 o ) ,  go= (; -Oa4 -2 0 0). 

(27) 
On the ohter hand, from (10) it follows that 

1 0  
S[4 = ( ; ; ) , 

and hence 

0.21 -0.4% 

2 r 2 + z  2- 2% 
L T [ . f ]  = 

is the desired interactor. 
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