
Engineering

Industrial & Management Engineering fields

Okayama University Year 2002

Evolutionary constitution of game player

agents

Hisashi Handa∗ Tadashi Horiuchi†

∗Okayama University
†Matsue National College of Technology

This paper is posted at eScholarship@OUDIR : Okayama University Digital Information
Repository.

http://escholarship.lib.okayama-u.ac.jp/industrial engineering/30

TEA1 1-4
sice02-0663

Evolutionary Constitution of Game Player Agents
H. Handal and T. Horiuchi'

1 Okayama University, Tsushima-naka 3-1-1, Okayama 700-8530, JAPAN
2 Matsue National College of Technology, Nishi-ikuma 14-4, Matsue 6908518, JAPAN

handa0sdc.it.okayama-u.ac.jp horiuchi0it.matsue-ct.ac.jp

Abstract: In this paper, we propose a constitution method of game player agent that adopts
a neural network a.s a state evaluation function for the game player, and evolves its weights and
structure by Evolutionary Strategy (ES). In this method, we attempt to acquire better state
evaluation function by evolving weights and structure simultaneously.

Keywords: Evolutionary Computations, State Evaluation Function, Neural Networks

1. Introduction

The constitution of game player agents for Complete
information games such like Chess, Reversi and so
on have been studied extensively'). In the case of
the completeinformation games, the game tree, whose
nodes and edges indicate situations and moves for each
parent node, respectively, is adopted. To play game,
player agents, including human,players, must estimate
the value of each situation (node) and decide a move
(edge) for leading their wins. That is, the study with
respect to the construction of game player agents can he
classified into two categories: the game tree search and
the state evaluation function constitution (state-value
function approximation). In primitive AI researches,
there are plenty of the study of the tree-search algo-
rithms based upon a-@ method, min-max method, A'
Algorithms, and so on. Such studies assume that a
proper state evaluation function is given by using some
heuristics of expert players in advance. In general, we
must assign or approximate a considerable amount of
state values in order to constitute the state value fuuc-
tion. Therefore it is quite difficult to constitute the
adequate state value function by hand. Occasionally,
furthermore, some popular heuristics that everyone b e
lieves it is effective misleads to constitute the adequate
state value function.

In this paper, we tackle to constitute effective state
value functions by using Evolutionary Strategy. We
adopt a neural network as the function approximator
of the state value function of a game player agent. We
morwver use the Evolutionary Strategy to search ef-
fective weight vector of the neural network, that is, to
make the game player agent more strong. In order to
realize strong game playing agents, it is necessary to se-
lect relevant features that capture important informa-
tion about the current state of the game and to evaluate
the state using the selected features. Hence, the pro-
posed method incorporates a simple pruning mutation
operator in order to change the structure of the neural
network.

Now, we compare the proposed method with snme
conventional approaches: Conventional gameplaying
programs often use the linear combination of several

features (linear evaluation function) that characterize
the current game situation. Another approach to con-
struct the evaluation function is to the use of neural
network (NN) which serve as an state evaluation func-
tion. That is, the inputs are values of the features and
output is an evaluation value which describe the quality
of the current state of the game. But it is impossible
to use the well-known Back propagation (BP) method
for training the neural network, because it is difficult to
provide the exact value (teacher signal) of the evalua-
tion function. In such a case, reinforcement learning can
be regarded as one of the possible methods. In game-
playing, however, one episode (length from start to end
of game) is quite long and there are many branches in
a game tree. Therefore, it is difficult to exactly prop
agate backward the reward which is given only at the
end of game (credit assignment problem) and to realize
the efficient learning for gameplaying agent.

In this paper, we focus to the use of neural network
populations such that each network represents a state
evaluation function and evolves the weights and struc-
tures by Evolutionary Strategy (ES). In the proposed
method, we attempt t o acquire a better state evalua-
tion function by evolving weights and structures simul-
taneously. The next section introduces the proposed
method in detail. Section 3 explains the effectiveness of
the pruning mutation operator by showing the simula-
tion results of Tic-Tac-Toe and 6x6 Fleversi. Section 4
concludes this paper.

2. Proposed Method

2.1 Representation of Evaluation Func-
tion by NN

State evaluation in gameplaying programs means to
give a score for the current game situation. That is,
it is necessary to select relevant features that capture
important information about the current state of the
game and to give a score for the state using the selected
features. Most of conventional gameplaying programs
use the linear or non-linear combination of the features
in order to get the evaluation value for the game state.
In this paper, we adopt the way to represent the state

SICE u)M Aug. 5-7, ZOM, oraka 1609 "l"o0MMoI ww 0 2002 SICE WO1

http://handa0sdc.it.okayama-u.ac.jp
http://horiuchi0it.matsue-ct.ac.jp

evaluation function by using a neural network, whose
inputs are values of the features and output is an eval-
uation value for the game state.

For example, the input features in the experiment for
playing Reversi are as follows:

Local piece configuration on the board In this
case, the board is segmented to several partitions.
Each input value is calculated in accordance with
a ratio of pieces to opponents’ pieces in each
partition 4).

Differential i n the number of pieces: The pur-
pose of Reversi is to acquire more pieces at the end
of game. Hence, this input feature is considered
as one of most important ones.

P h a s e of game: In general, strategy to generate
moves should be changed during a play of game:
the opening moves, the middle game, and the end
game. This attribute simply presents such phases
of game.

N u m b e r of possible moves: This shows how many
kinds of possible moves for me/opponent can be
achieved in current state. It is well known that the
more kinds of possible moves you have, the more
chance of beating the opponent increases you have.

In this paper, we use the above neural network to
decide the next move. More concretely, we compute
the all evaluation values of the possible (legal) moves
from the current state, and we choose the move which
has best evaluation value among them (greedy method).

2.2 Evolution of Evaluation Function by
ES

Coding Method In order to evolve the state evalua-
tion function (neural network) by evolutionary compn-
tation approach, it is necessary to represent the neural
network as an individual. In this paper, we adopt the
way to assign the element of weight vector in a neural
network to each locus of the individual as depicted in
Fig. 1. This coding method enables us to easily recon-
struct a neural network which represents a state evalu-
ation function by decoding an individual.

j

10 --

Figure 1: The Coding Method of the Proposed Method

~

1610

Evolutionary Strategy with Pruning Muta t ion
We propose to evolve a population of neural networks,
where each network represents a state evaluation func-
tion, and evolve the weights and structures by Evolu-
tionary Strategy (ES) ’1. In other words, we aim to
generate individuals (neural networks) with high fitness
that represent good evaluation functions.

Details of the procedure (l+X)-ES are described in
the following:

Step 1. Create one parent randomly.

Step 2. Create their descendants by adding perturba-
tion depending on random numbers using normal
(Gaussian) distribution and also by applying the
pruning mutationwhich changes the value of weight
selected randomly to zero by force. The number of
descendants is A.

Step 3. Decode each genotype to phenotype (neural
network) and derive fitness values based on the re-
sult of game playing among the individuals.

S tep 4. Select the best individual among (1+X) indi-
viduals as a parent for the next generation.

Step 5. Go back to Step 2., if terminal conditions
have not satisfied yet.

One of the original points in the proposed method
is the introduction of pruning mutation. Mutation
based on random numbers using normal distribution
only changes the value of a certain weight in neural
network. However, pruning mutation which changes the
value of weight selected randomly to 0 means the cut
of link between two neurons. That is, it can change
the structure of neural network. By using both mu-
tations (standard mutation and pruning mutation), we
can evolve the weights and structure 01 neural network
simultaneously.

Fitness Evaluation by CO-evolution We adopt the
coevolutionary framework between two populations; one
is the population of the individuals which learn only
first (initiative) moves and another is the population
of the individuals which learn only second (following)
moves. The fitness value of each individual is calculated
as the sum of the score derived from the results of one
match again the parent in another population and nine
matches again the standard program as shown in Fig. 2.
Here, we used a program easily to get through Internet
as the standard program. The score of one match is set
up in the following: one can get higher (positive) score
if he/she wins with bigger differential in the number of
pieces, and one can get lower (negative) score if he/she
looses with bigger differential in the number of pieces.

Each individual is estimated its fitness value by ac-
cumulating the results of one play against the elitist in-
dividual in the opponents’ population and nine games
against the standard program, where each result is
weighted by logistic function taking into account the

(”first-move” population]! dsecond-move“ population)

I i 1 parent. des

I i
I I i v LI XI--_--- ,” \---.-“.“.“.-2

Figure 2 Game Plays for a Fitness Evaluation

differential of the number of pieces at the end game.
That is, the fitness F; of individual i is defined as

9

Fi = f (d d + x (d (j)) ,
j

where f(.) is the logistic function, d. and d (j) denote
the differential of the number of pieces at the end of
game against elitist individual in the opponents’ popu-
lation and j th play with the standard program.

3. Experiments and Results
Tic-Tac-Toe First, we examine the proposed method
on Tic-Tac-Toe. We employ following parameters p re
decided by trial-and-error for experiments: the proba-
bilities of normal (Gaussian) mutation and the pruning
mutation proposed in this paper are set to be 0.2 and
0.005. The 1/5-rule is adopted to control the magnitude
of the variance of the normal mutation. The initial vari-
ance for that mutation is set to be 0.05. The number
of decedents X is set to be 9. As the standard pro.
gram for Tic-Tac-Toe, we adopt well-known algorithm
for Tic-Tx-Toe such that it does never lost completely.

Figure 3 shows the temporal aspects of the number
of draws against the standard program. The solid lines
and dashed lines in these graphs denotes how many
times the elitist, respectively, in ES with the prune mu-
tation, and in ES without the prune mutation, draw
with the standard program for 50 games. Note that
games with the standard program in order to depict
these graphs don’t affect the evolutionary process in
experiments, and these graphs are averaged results over
10 runs. As depicted in these graphs, the proposed
method, i.e., “with pruning mutation”, shows higher
draw-rate.

Figure 3 shows the changes the number of eliminated
weights by pruning mutation. The solid line and the
dash line in this graph indicate the number of elimi-
nated weights, from the input layer to the hidden layer
and &om the hidden layer and the output layer, re-
spectiveiy. Furthermore, an evolved neural network is
shown in Fig. 5. Note that mean-less weights between
the input layer and the hidden layer, i.e., weights whose
subsequent weight between the hidden Iayer and the
output layer is eliminated, are omitted to depict in this
figure. In the case of Tic-Tac-Toe, the input attributes

first move
50

% 40 6 30

10 - With Pruning Mutation -- Without Pruning Mutation n -
250. 500

Generations

second move

- With Pruning Mutation -- Without Pruning Mutation
10

0
250 500

Generations

Figure 3: Experimental Results on Tic-Tac-Toe

From HiddenL. to Output L.-

250, 500
Generations

Figure 4: The Number of Eliminated Weights

consist of 7 attributes such as Att.0 state of marginals,
Att.1: state of corners, Att.2: state of a center, and so
on. As depicted in this figure, the evolved neural net-
work ignores the attribute 0 for making his decisions of
next-moves.

6 x 6 Reversi This subsection examines the proposed
method on 6 x 6 Reversi such that the size of the hoard
is set to be 6 x 6 . The reason why we do not examine
conventional 8 x 8 Reversi is that 8 x 8 Reversi causes
extensive computational time. We adopt the same set-

1611

Input Layer Hiddeen byer

AIL0 -0 0

Figure 5: An Example of Evolved Networks for Tic-Tac-
Toe

first move

tin@ of the parameters we mentioned in previous s u b
section exception that the number of decedents X is set
to be 19.

Figure 6 shows experimental results for first move
population (LEFT) and second move population
(RIGHT) on 6 x 6 Reversi. As the same as Fig. 3, the
solid lines and dashed lines in these graphs denotes how
many times the elitist beats with the standard program
for 100 games. This examination process is separately
carried out with the evolutionary process, too. As de-
lineated in these graphs, stronger players are evolved by
ES. The pruning mutation proposed in this paper works
well in both cases: first move and second move.

4. Conclusion
In this paper, we proposed a method to represent the
state evaluation function by using a neural network,
whose inputs are values of probable features and out-
put is an evaluation value for the game state, and to
evolve simultaneously its weights and structure by E v a
lutionary Strategy in order to acquire better state eval-
uation function. Throught the applications to Reversi,
we showed the effectivenes of the proposed method.

As future work, we will improve the proposed method
by incorporating the mechanism of not only the aut&
generation of attributes and the connection pruning be-
tween neurons but also the evolutionary acquisition of
the configuration of Neural Networks.

Acknowledgement
Authors would like to thank to Mr. Shigeoka in
Okayama University for his kindful support.

1 UUl I

1000 2000 3000
Generations

second move

1000 2000 3000
Generations

Figure 6: Experimental Results on 6 x 6 Reversi

2000.

121 D. E. Goldberg, Genetic Algorithm in Search, O p
timization, and Machine Learning, Addison-Wesley,
1989.

[3] G. Tesauro, Temporal Difference Learning and TD-
Gammon, Communications of the ACM, Vol. 38,

[4] K. Chellapilla and D. B. Fogel, Anaconda Defeats
Hoyle 60: A Case Study Competing an Evolved
Checkers Program against Commercially Available
Software, Proc. of the 2000 CEC, pp. 857463,2000,

[5] T. Back, Evolutionary Algorithm in Theory and
Practice, Oxford Press, 1996.

NO. 3, pp. 58-6~,1995.

References
[l] D. Ishikawa, Current Statements of Computer Re-

versi, (in japanese) bit Vol. 32, No. 5 pp. 59-64,

1612

