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Abstract

A control-criented uncertainty modeling on frequency
domain is presented for a class of spectral systems with
unknown high-order modal parameters. At any user-
specified frequency, the set of all the feasible frequency
responses is characterized on the complex plane where
it is said to be feasible if partial modal parameters of a
system are given and the other unknown modal param-
eters meet certain conditions. We emphasize that such
a characterization enables us to quantify the least up-
per bounds of errors for any nominal models, and also
to develop further efficient results using additional in-
formation. It is shown in the paper that, the dc gain
information of the system reduces the size of the feasi-
ble set to the half or smaller, for any frequencies. The
efficiency of the presented scheme is demonstrated by a
simple example of ideal flexible beam.

1 Introduction

For controller design synthesis in view of robust control
theory, it is necessary to specify a nominal model de-
scribing essential dynamics of the plant and alse bounds
of magnitudes of the uncertainty for the plant[l]. Ef
forts have been made on bounding uncertainty using not
only physical knowledge or first principles{2] but also
input-output data of the plant. Efficient numerical tech-
niques have been developed for uncertainty with upper
and lower bounds of modal parameters|3]. Most bound-
ing results so far have been obtained, however, by eval-
nating the norm of the error, that is, the size of a ball
covering the feasible set; this may overestimate the un-
certzinty and may cause possible conservatisms on sub-
sequent controller design.

In this paper we present characterization of frequency
responses in & geometric fashion on the complex plane,
and democnstrate that it enables us to develop new results
using information like dc gain of the system, which can
effectively shrink the size of uncertainty. By an ideal flex-
ible beam example, we will see that if the plant is phys-
ically governed by elastic equation with Kelvin-Voigt
damping, then all the parameters needed for the bound-
ing can easily be determined in the process of modal
analysis using finite element methods as well as param-
eter estimation from data.

Notation: By ch(A) we denote a convex hull of a set
A on a complex plane, that is, a minimum convex set
which contains A.

2 The problem and preliminaries

Large flexible structures, plates, and strings, are formu-
lated actually for control problems by linear elastic vi-
brating systems, and it is well known that they are mod-
eled by superposition of simple vibrating modes[4]

o ki
Gle) = ; 1+ 2¢i(s/wi) + (s/wi)? W

where § < w; <wg <--- - 0 and
o0
Siki<e (2)
i=1

for some given p > 0. Here w; is & resonant (angu-
lar) frequency, k; a resonant multiplier, and ¢; a damp-
ing factor. We assume for clarity that first £ triples of
{kiywi, (i) where ¢ = 1,..., ¢, are known but all the rest
(i=£+1,...,) unknown. Furthermore, let us assume it
is verified that

Gi> vy, and w;y > v fori > £ (3)
for some given v > 0 and v > wy. .

QOur problem is, then, to characterize the set of all the

possible frequency responses G(jw) as a domain on the

complex plane, at any specified frequency w.

Denote the ¢-th partial sum of G(s}, the known part, by
t

ki
Gels) = Z 1+ 2¢i(s/wi) + (sfuy)?’ @

i=1
and by P} the set of all the systems written as equation
(1) that satisfy the conditions presented above; that is,

oy
P o=

oo k;
{G(s) =21 2(sfwi) + (s/wi)?

=]
Zlkjls;»;wjzu(jw)}. 3)
i=1

We call the P as a feasible set, and P (jw) a feasible
set at frequency w, which is the set of all the frequency
responses corresponding to the elements of P{*.

Now, if we define % := p — ):;=1 ki, we see

Pyt = {G(S) = Guls) + G(5)|Gls) € Pg“’w} )

and the feasible set 'Pg( T at frequency w is characterized
es ch {{£p9 Hp(jw)|0 > v}] where

1
Holo) = T ooy
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This implies that the set P} (Z)"’(jw) is depicted on
the complex plane as the convex hull of the two cir-
cle segments A; = {FOHy(jw}),0 > v} snd A =
{~pOHy(jw), 6 = v}.

Remark 1. Based on the above results, we can immedi-
ately give alternate proof of the fact shown in {3] that, for
each frequency w, a complex number G,(w) that mini-
mizes Supgepp+ |G(jw) — Gn(w)l is Ge(jw), and the min-
imum ming, wjec Supgeps 1G(jw) — Gofw)| is given by
P - sup, <g | Ha(jw)| where

o [1{2w), forwze
,5,213 \Ha(juw)| = { | (juw)|, for w < v.

3 Main results

Generally, the more information about the plant we have,
the less size of the feasible set it should be. Here we
consider the case where the de gain

GO) =3 k(= d)

is given. Many researchers have attacked to improve the
precision of reduced order models using such dec gain in-
formation so far 5], but to the best of author’s knowl-
edge, few discussions have ever been focused on the ef-
fectiveness of using dc gain in high frequency range nor
other theoretical consequences.

The feasible set that corresponds to this case is Pf’"’d =
P Dy where Dy = {G{s)|G(0) = d}-

We define @ = d ~ Zf=1 k;, and the relation
pod 2 ~ 54, 3
PEod = 1 Gs) = Guls) + G(s)|Gls) € PET#° L ()

" reveals that it is enough for our problem to character-

ize P7"%(jw) for given r, v, and § since PIM(Gw) =
—(6) ,, T .

PP (jw) + Gatjw).

As the main result, a geometric characterization of

'Pg""" (jw) is presented in the following

Theorem 1. For a user-specified frequency w, let us

define v3 := w?/(1 + 4y%w?). Then, P5*(jw) coincide

with the convex hull of the union of the following six

circle segments

Ao = {(d=p)2- B} + (d+ p)/2- Haliw)| 8 > v},
A = {{d p/2- Holjw) + (d+ 0)/2 - Hyoolju)] 6 2 v},
Aza = {{d+0)/2- Ho(j) + (d— p)/2 - HolGio)| 6 > 4},
Ay 1= {(d+p)/2- Holjw) + (d = £)/2 Hyoa(Gu)l8 2 v},
A 1= {pHe(jw) + {d — p)/(4vjw}iv < 8 < wp},

Ay 1= {—pHg(jw) + {d + p) /{4vjw)| v £ 8 S 1y}.

that is, P{,’""d( jw) = ch A1, N AN Aga MAN AN Agy)
where the equality is in the sense of set theoretic.

Note that the sets A;, and A3, become empty for v < v.

A brief sketch of proof: We can show the problem is
reduced to the *two term” inclusion problems, as in the

Lemma 1. The following relation holds:
PE () = ch [S544(jw)] (8)

where §2¥4(jw) 1= (ke Ho, (jw) + ko Ho, (jo)|wp 2 we >
v, ka+ky = d, |kg|+]ks] = p} is a set of candidate extreme
points for PL™%(juw).

We can see the convex hull in (8) is characterized by
circle segments as shown next

Lemma 2. S{"*(jw) consists of the union of (1) and
(52) as follows. For v > 1,

(S1) the region enclosed by circle segments Ay, Ay, and
Albt

(S2) the region by Ay, Azq, Az,

and, for v < vy,

(51) the region by Ag, A1q, A1s, Aip,

(82) the region by Ay, Aze, Az, A2,

where Ay := {d - Hg(jw)| 0 > v}.

Figure 1: The feasible sets with and without dc information
{ w = 62 rad/sec, as in the example).

From the theorem, a result corresponding to Remark 1
follows immediately.

Corollary 1. For each frequency w, a complex number
Go(w) that minimizes SUPGepp v IG(jw) — Gulw)] is

=(8)
d
Ge(juw) + - (Hy(jw)+ Hyooljw)), for v 2 vy, and

Guljw) + @)/ (ryj), for v < w0,
and the minimum is given by

min su G(jw) — Gnlw
Gn(w)ECGEP’:}?v,dl () @)l

_ [ (79/2) |H,(ju) - Hioo(jw)l, for v > 1,
7 [ (4w), for v < 1.

‘We can prove the Corollary by considering two most dis-
tant points in P2*%(jw). Note that this gives funda-
mental limitation on the error bounds to any nominal
models, and we call the minimum as the radius of the
feasible set.

As a further consequence of Theorem 1, a rational nomi-
nal model using information of the dc gain d with explicit
least upper bounds of the error is given by the following,.
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Corollary 2. Let Gy(s) i= Gg(s) + E(C)H,fw(s) as a
nominal model. Then, the mirimum radius of a disk
which contains P9 is given by

@ +[@71)/2 |Hyooljw) = Ho(juw)| for v > v, and
— (¢ . .
B0 + @D/ (4) - 11 — 4wl poo ()| for v < w.

Figure 2: Comparison between sizes of feasible sets and the
bound :

4 Example

We consider an example for modeling of an ideal flexd-
ble beam. Dynamics of bending motion of canti-levered
beam where sensors and actuators may not be collocated
is described as

vee (2, £} + 2vvgeeer (€, €) + vegee(t, £) = 3(€ — &)u(t)

0<E<l) (9.a)
’U(t, 0) = 'L’g(t,ﬂ) = UEE(tl 1) = ’Ugfg(t, =0 (9.5)
y(t) = v(t, &) (9.¢)

where 8(¢) is Dirac’s delta function. Furthermore v =
1 x107%, and & = 1 and £, = 0.5 represent the location
of point input and output, respectively.

1t is well-known that a countable infinite number of non-
trivial solutions to the eigenvalue problem

@"E) = mpl) (0<E<1)
@(0) = ' (0) = ¢"(1) =" (1) =0
exist, and let the real eigenvalues are ordered as 0 <

1 < pa < --- and corresponding eigenfunction be p;(£).
The transfer function can be written as

o0 ’b:‘ .
G(s) = gll_rf'__“/_"}___

1
25 4 82 (10)

where ¢; = ¢i(é,) and b = (&) Teking i =
Gi = ywy, and k; = ¢;b; /p;, this is reduced to {1).

We also have
oo
3 lesfunl = ne, (€0)

i=1
where ¢, (£) is a solution to the following boundary value
problem:

ng (€)= 6§ - &), 0<é<1
g, (0) = n¢ (0) = (1) = (1) = O
7. (€} can be defined similarly, and

oo
S lbifwsl? = ng, (&)
i=1

. We obtain an evaluation

P =1 (&) neddo)

as in [3]. We suppose the situstion where just first
two modes are known as follows: £ = 2, vy = 3.516,
wy = 22.03, k1 = 0.1099, k; = —5.88 % 1073, d = 0.104,
p=0118, 70 = 211 x 103, @ = 1.89 x 10~%. The
construction of feasible set at frequency w = 62 rad/sec
is depicted inFigure 1. The frequency characteristic of
the radii of the feasible set with and without dc gain
are compared in Figure 2. Error bounds of the proposed
nominal model in Corollary 2 is also plotted in the same
figure.

5 Conclusion

In this paper we proposed a modeling of uncertainty in
elastic vibrating systems. Here we presented a method to
characterize uncertainty as a feasible set in the frequency
domain. We showed that the shape of the bounded set
of all the complex numbers of frequency responses of the
systems that satisfy the condision is depicted by several
circle segments.

Theoretical limitation was clarified about the minimum
additive uncertainty of any nominal models under the
information given. The set theoretic characterization en-
ables us to develope new results that the information of
dc gain of the system will effectively shrink the size of
the feasible set.
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