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ABSTRACT 

In this paper, we discuss on new Coevolutionary Ge- 
netic Algorithm for Constraint Satisfaction. Our ba- 
sic idea is to explore effective genetic information in 
the population, i.e., schemata, and to  exploit the ge- 
netic information in order to  guide the population to  
better solutions. Our Coevolutiona,ry Genetic Algo- 
rithm (CGA) consists of two GA populations; the first 
GA, called ”H-GA”, searches for the solutions in a giv- 
en environment (problem), and the second GA, called 
”P-GA” , searches for effective genetic information in- 
volved in the H-GA, namely, good schemata. Thus, 
each individual in P-GA consists of alleles in H-GA or 
”don’t care” symbol representing a schema in the H- 
GA. These GA populations separately evolve in each 
genetic space at  different abstraction levels and affect 
with each other by two genetic operators: ”superposi- 
tion” and ”transcription”. We then applied our CGA 
to Constraint Satisfaction Problems (CSPs) incorpo- 
rating a new stochastic ”repair” operator for P-GA 
to raise the consistency of schemata with the (local) 
constraint conditions in CSPs. We carried out two 
experiments: First, we examined the performance of 
CGA on various ”general” CSPs that are generated 
randomly for a wide variety of ”density” and ”tight- 
ness” of constraint conditons in the CSPs that are the 
basic measures of characterizing CSPs. Next, we ex- 
amined ”structured” CSPs involving latent ”cluster” 
structures among the variables in the CSPs. For these 
experiments, computer. simulations confirmed us the 
effectiveness of our CGA. 

1. INTRODUCTION 

In this paper, we will introduce new Coevolution- 

ary Genetic Algorithm for solving Constraint Satis- 
faction Problems (CSPs). Our basic idea is to ex- 
plore effective genetic information in the population, 
i.e., schemata, and to  exploit the genetic information 
in order to  guide the population to better solution- 
s. Our Coevolutionary Genetic Algorithm (CGA) con- 

sists of two GA populations; the first GA, called “H- 
GA” (Host GA), searches for the solutions in a giv- 
en environment (problem), and the second GA, called 
“P-GA” (Parasite GA) , searches for effective genet- 
ic information involved in the H-GA, namely, good 
schemata. Thus, each individual in P-GA consists of 
alleles in H-GA or “don’t care symbol” representing 
a schema in the H-GA. These GA populations sepa- 
rately evolve in each genetic space at  different abstrac- 
tion levels and affect with each other by two genetic 
operators: “superposition” and “transcription”. The 
superposition operator copies the genetic information 
of a P-Individual, except for don’t care symbol, onto 
one of H-Individuals in order to  calculate the fitness of 
the P-Individual, where, an H-Individual ( “H-Indiv.”) 
and a P-Individual (“P-Indiv.”) denote an individual 
of H-GA population and an individual of P-GA popu- 
lation, respectively. The transcription operator serves 
as a mean for transmitting effective genetic informa- 
tion from P-GA to H-GA. We then applied our CGA 
to CSPs incorporating a new stochastic ”repair” opera- 
tor for P-GA to raise the consistency of schemata with 
the (local) constraint conditions in CSPs. Namely, in 
the P-GA, each schema which stands for a subspace 
in the solution space and is represented by a P-Indiv. 
is moved towrds a legal subspace by the repair oper- 
ator. Such schemata information guide the H-GA to 
satisfiable solutions by transmitting effective schema- 
t a  information to  H-GA by the transcription operator. 
Our CGA eventually yields a high search ability due to 
the ”symbiotic” co-evolution of these two populations. 

Related works are as follows: Coevolutionary ap- 
proach have been studied by many researchers [3], [16]. 
Especially, coevolutionary approach for solving Con- 
straint Satisfaction Problems is proposed by Paredis 

[15], [4]. He used two populations which has an in- 
verse fitness interaction, more precisely, the predator- 
prey relationship, between these populations. Al- 
so, schemata-oriented search methods in evolutionary 
computation have been adopted in several problem 
solving methods such as Cultural Algorithms and S- 
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Fig. 1. An example of CSP: graph coloring problem 

tochastic Schemata Exploiter [5], [6]. In Cultural Al- 
gorithm, usual GA model is associated with a belief 
space which is similar to the schema space and is used 
to promote directed evolution of individuals with the 
beliefs in the GA model. Our method is similar to 
Cultural Algorithm in the sense that both methods 
use additional mechanisms to promote the evolution 
of usual GA. However, the specificity of our approach 
is to use a coevolutionary mechanism. 

In next section, introduce Constraint Satisfaction 
Problems. Then, we explain our Coevolutionary Ge- 
netic Algorithms for Constraint Satisfaction in Section 
3. In Section 4, several computer simulations are ex- 
amined and confirm us effectiveness of our approaches, 
and finally, this paper is concluded. 

2. CONSTRAINT SATISFACTION 
PROBLEMS 

Constraint Satisfaction Problems (CSPs) are a class 
of problems consisted of variables and constraints on 
the variables. Especially, a class of the CSPs such that 
each of the constraints in the problems is related only 
to two variables are called binary CSPs. In this pa- 
per, we treat a class of discrete binary CSPs, where 
the word discrete means that each variable is associat- 
ed with a finite set of discrete values (labels) that are 
candidate values of the variable. An example of the 
graph coloring problem, one of binary CSPs, which is 
one of the benchmark problems in CSP is delineated 
in Fig. 1. As depicted in the figure, CSPs are defined 
by (U,L,T,R) ,  where U ,  L ,  T and R denote a set 
of units, a set of labels, unit constraint relations and 
unit-label constraint relations, respectively. In this 3- 
coloring problem, i.e., coloring with three colors, r, g 
and b, for instance, the set U of units consists of the 
nodes in the graph of the given problem. The elements 
in the set L of labels denote three colors to be used. 
The unit constraint relations T correspond to the edges 
in the graph of the given problem. The unit-label con- 
straint relation R is a set of 2-compound labels subject 
to the constraint relations, where a 2-compound label 
denote a tuple of labels attached to two variables that 

are consistent with the unit-label constraint relations. 
To solve CSPs is to  search for solutions such that no 
constraints are violated, where the graph representa- 
tion of CSP in Fig. l (b)  called Constraint Network is 
often used. 

We use two indices, tightness and density, for ana- 
lyzing the difficulties of CSPs [l]. The tightness of an 
edge ij is given as the ratio of the number of satisfying 
2-compound labels (in unit-label constraint relations) 
on the edge i j  to the number of all 2-compound labels 
on the edge ij. Furthermore, the tightness of a prob- 
lem is given by the average value of tightness of the 
edges in the problem. The density of a problem in- 
dicates the proportion of constraint relations that ac- 
tually exist between any pair of nodes. For instance, 
in Fig. 1, the tightness of the edge X Y  is calculat- 
ed as follows: all the constraints on the edge X Y  are 

the number of all constraints on the edge X Y  is equal 
to 6. Furthermore, the number of 2-compound labels 
on the edge X Y  is the same as the product of the num- 
ber of labels on each nodes, that is, 3 x 3. Hence, the 
tightness of the edge X Y  is calculated as 619 = 213 
Also, the density of the problem is defined as the ratio 
of the number of the unit constraint relations to the 
number of all combinations of two nodes among four 
nodes, namely, 5 / 4C2 = 5 / 6. 

givenas { ( r ,g ) ,  (.,b)l ( g , r ) ,  ( g , b ) ,  @,.I, ( h g ) ) ,  namely, 

3. COEVOLUTIONARY GENETIC 
ALGORITHM FOR CONSTRAINT 

SATISFACTION 

Framework 
We adopt Coevolutionary Genetic Algorithm to 

solve CSPs. As depicted in Fig.2, we have two GA 
populations: H-GA (Host GA) and P-GA (Parasite 
GA). The H-GA is a traditional GA, in other word- 
s, it searches for good solutions in the given problem. 
In this paper, as the traditional GA, we use SGA in- 
cluding roulette wheel selection with elite strategy, t-  
wo point crossover and normal mutation. The P-GA 
searches for the good schemata in the H-GA. Each indi- 
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vidual in P-GA consists of the alleles of H-Indiv.’s, and 
“*” representing a schema in the H-GA. As depicted 
in the figure, two genetic operators, i.e., superposition 
and transcription, play the role t.0 communicate (prop- 
agate) genetic information between the H-GA and the 
P-GA. These operators are described following subsec- 
tions. 

Superposition Operator 
The individuals of the P-GA called P-individuals 

(P-indiv.’s) represent schemata in the H-GA. Name- 
ly, each P-indiv. consists of the alleles used in H-GA 
and ‘k” (don’t care symbol), which represent a schema 
in the H-GA. The superposition operator copies the ge- 
netic information of a P-indiv.e xcept for “don’t care 
symbol” (“*”), onto one of the individuals of H-GA 
called H-individuals (H-indiv.’s) in order to calculate 
the fitness of the P-indiv. Thus, the evolutionary pro- 
cess of this layered population can be regard as a co- 
evolution of individual at  different levels of abstraction 
(cf. Fig. 2). 

Fitness Evaluation of P-GA 
P-GA searches for useful schemata in H-GA. Here, 

the useful schemata in H-GA may be defined as fol- 
lows: (1) undiscovered useful schemata or simply (2) 
useful schemata, i.e., those with high average fitness 
values. If we can discover schemata denoted in (l), 
the evolution of H-GA is promoted and guided into 
satisfiable solutions by suggesting the genetic informa- 
tion of the schemata. Also, from a point of view of 
constraint satisfaction, useful schemata in the sense of 
(2) are approximated by the evaluation of consistency 
between the specified gene. 

In this paper, we introduce three methods of the 
fitness evaluation for P-indivduals, called (a) Host- 

................. 5-zFa ................................ ..... P-GA 

H-GA 

Fig. 2. Process of Coevolutionary Genetic Algorithm 

Fig. 3. Mechanism of superposition operator 

H- I ndiv. 

(a) Host Dependent 

Random-Sampled 
Individual in the schem 

(b) Random-Sampling 

partial solution (schema) 

Consistency check 

(c) Constraint-Satisfaction 
d 

Fig. 4. Depictions of Fitness Evaluation for P-Indiv. 

Depended, (b) Random-Sampled, and (c) Constraint- 
Satisfaction, respectively. These methods are de- 
scribed as follows: 

(a)  Host-Dependent If a schema information discov- 
ered by P-GA is already discovered by H-GA, the 
H-GA will receive no effective information from 
this “discovery” by P-GA. Hence, we let P-GA to 
search for “undiscovered” useful schemata in H- 
GA, and the fitness evaluation of a P-indiv. is 
given as follows: First, the fitness value Fj of a 
P-indiv., say, j is calculated in the following way 
where the fitness function of H-indiv. i and P- 
indiv. j are represented as fi and Fj ,  respective- 
ly. The superposing (superposition) operation of 
each P-indiv. onto H-indiv.’s is carried out ntry 
times. (i) First, ntry  H-indiv.’s to be superposed 
by P-indiv. j are randomly selected. (ii) These se- 
lected H-indiv.’s are denoted as i l ,  .... i,, and the 
resultant superposed H-indiv.’s are denoted as ;I, 

P-indiv. j ,  the effect of each of the superposition 
operations is evaluated as the contribution of the 
superposition operation to  each H-indiv. defined 
as follows: 

FA,, = max(o,j;, -jik), ( I C  = 1 , .  .. ,n> . 

.... in. (iii) Then, to calculate the fitness value of 

, t r y  

k = l  

That is, “positive contribution” of this superposi- 
tion operation. If the difference is negative, then 
the contribution of this operation is regard to be 
0. 

(b )  Random-Sampling Generally speaking, the fit- 
ness value of a schema is calculated as the av- 
erage fitness value of all individuals belonging to  
the schema. It is difficult, however, t o  calculate 
the fitness values of all individuals when the order 



[ P-indiv. ] * 1 * 3 2 * 

[ordering] 

(choosing allel which is minimizing],--, 
the number of constraint violations 
against “3“ 

the number of constraint violations 

ke-order to original ordelring) * 4 * 3 1 * 

Fig. 5 .  Process of our Genetic Repair Operator for 
P-indiv. 

of schemata is small. In this manner, the fitness 
value is calculated as follows: (i) First, new ge- 
netic information IC is generated by substituting 
“don’t care symbol” to alleles randomly selected. 
Then, the fitness value of the genetic information 
is calculated ntry times iteratively and the fitness 
value of P-Indiv. is defined as the accumulation 
of the fitness values, that is, 

n t r y  

k= 1 

(c) Constraint-Satisfaction When we adopt GAS to  
solve CSPs, we can regard schemata as partial 
solutions, and can inspect the consistency of la- 
bels involved in the partial solution whether con- 
straints are satisfied or not. In this fitness e- 
valuation method, the satisfaction difficulty of 2- 
compound constraint between variables i, IC is de- 
fined as follows: 

- log & if constraint is violated 
” a k  = { log otherwise, 

where, Tik denote the proportion of negative con- 
straints. Hence, fitness of P-indiv. is given by 

= f P i k ,  
i ,k  Esp(j) 

where, sp(j) denote the set of specified gene loci 
in certain P-indiv. However, it should note that 
every partial satisfiable solutions are not always 
contained in satisfiable solutions. 

Transcription Operator 
The transcription operator serves as means of trans- 

mitting the effective genetic information searched by 
the P-GA to the H-GA. This operator propagate ge- 
netic information in P-GA to  H-Indiv. by probabilisti- 
cally replacing the original H-indiv. ik with superposed 

H-indiv. ir;. The probability of applying the transcrip- 
tion operation is given as 

where f m a z  and f m z n  denote the maximum fitness val- 
ue and the minimum fitness value in the H-GA, re- 
spectively, and hence Pparaszte is set to be constant 
such that 0 < Pparaszte < 1. 

Genetic Repair Operator 
P-GA is able to assemble good solutions from partial 

solutions effectively, provided that such partial solu- 
tions are consistent. Hence, we adopt Genetic Repair 
Operator (GRO) to keep consistency of P-individual, 
namely, partial solutions or schemata. As depicted in 
Fig. 5, the processes of this operator are carried out as 
follows: First, for each specified gene locus, the order- 
ing of repair is randomly assigned, where a specified 
gene locus denotes a gene locus which is not assigned 
to ‘don’t care symbols’. The reason why the order- 
ing is randomly assigned is to avoid converging into 
certain local optima. Next, according to this ordering, 
repair met hod based on consistency check is performed 
such that the number of constraint violations between 
a gene in the present order and genes in the previous 
order is minimized. 

In section 4, we will adopt two kinds of GRO as 
the genetic operator of the P-GA, namely, the GRO 
described above and GRO with mutation. The GRO 
with mutation adopts the ordinal mutation operator 
as pre processor of GRO in order to keep diverse and 
consistent genetic information in the P-GA population. 

4. EXPERIMENTAL RESULTS 

In this paper, we carry out several experiments based 
on various general CSPs that are generated random- 
ly for a wide variety of “density” and “tightness” of 
constraint conditions in the CSPs that are the basic 
measures of characterizing CSPs and are described in 
section 2. The general CSPs are randomly generated 
as follows: First, specify the tightness and density in 
the sense in section 2. Next, for all combination of t- 
wo indices, decide whether unit constraint relation is 
set to each of the pairs of variables by taking account 
of the value of density. Finally, for all unit constraint 
relations, the number of the unit-label constraint rela- 
tionships is set to be directly proportional to the tight- 
ness. 

In first and second experiments, general CSPs with 
50 variables such that the size of domains for each of 
variables is set to be 10 are examined. Also, as GA 
parameters, following settings are used: The popula- 
tion size of SGA, H-GA and P-GA are set to be 200, 
150 and 50, respectively. The GA parameters for the 
SGA and the H-GA are set to be of the same value, 
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Fig. 6. Temporal behavior of the maximum firnss in the populations: SGA (1st COLUMN), CGA with 
Host-Dependent (HD, 2nd COLUMN), CGA with Random-Sampling (RS, 3rd COLUMN) and CGA with 
Constraint-Satisfaction (CS, 4th COLUMN); the horizontal, vertical and depth axes in these graphs denote 
the variety of density and tightness, maximum fitness value and the number of generations 

the probability P, of crossover, the probability P, of 
mutation and the numbers of the elitist are set to be 
0.8, 0.01 and 5, respectively. Those for the P-GA are 
set to be P, = 0.8 and P, = 0.05. The elitist strategy 
is not used in the P-GA. Also, the number of runs for 
each of the tuple (tightness, densitg) is set to be 100. 

First of all, we compare SGA with each of our C- 
GAS using different fitness evaluation for P-indiv., i.e., 
host-dependent (HD) random-sampling (RS) and con- 
straint satisfaction (CS), in terms of the changes of best 
fitness for various values of density and tightness. In 
this experiments, the GRO described in previous sec- 
tion are not adopted. Fig. 7 shows simulation results 
for this experiment. The graphs in this figure denote 
the results for SGA, HD, RS and CS, respectively. The 
horizontal, vertical and depth axes of these graphs in- 
dicate the kinds of couples of density and tightness, 
maximum fitness value in the SGA or H-GA population 
for each generations, and the number of generations, 
respectively. As depicted in this figure, our CGA with 
HD outperforms the others. In tight problems, such 
tendencies are notable. In loose constraint problems, 
otherwise, the performance of them is almost similar. 
The reason why such phenomena are observed is re- 
garded as follows: it is easily possible that satisfiable 
partial solutions are contained in satisfiable solution- 
s in more tight problems. Moreover, it is difficult to 
discover such satisfiable partial solutions in more tight 
problems. That is, to find partial satisfiable solutions 
is very significant in more tight problems. Our host- 
dependent fitness evaluation method for the P-GA e- 
valuates the "contribution" of a superposition opera- 
tor. 

Next, we apply GRO and GRO with mutation to the 
CGA with HD. As depicted in Fig. 7, by applying the 
GRO to P-GA, CSPs are solved quite effectively. The 
GRO can discover partial satisfiable solutions rapidly, 

Fig. 7. Temporal behavior of the maximum firnss 
in the populations: HD with repair (HD+repair, 
1st COLUMN) and HD with repair + mutation 
(HD+repair+mut, 2nd COLUMN) 

hence the performance of the CGA is improved ex- 
tremely. Moreover, in loose constraint problems, the 
GRO with mutation can solve CSPs effectively. It is 
terrible difficult to solve such problems because, even if 
we can find partial satisfiable solutions, it is rarely in- 
volved in satisfiable solutions. Namely, almost optima 
in such problems are not global optima, i.e., satisfiable 
solutions, but local optima. However, by incorporating 
a mutation operator into Genetic Repair Operator, the 
P-GA population can keep both the diversity and the 
consistency of genetic information. 

Also, we investigate the sensitivity of the parameter 
nt ry  which denotes the number of the superposition 
operators for a P-individual. A comparison based on 
the changes of maritimum fitness in H-GA population 
and P-GA population is shown in Fig. 8. As depict- 
ed in this figure, the parameter ntry varies from 5 to 
50 for the couple (density and tightness) = (70, 70). 
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Generations 

Fig. 8. Experimental results on General CSP: the av- 
erage value of maximum fitness in the 8-GA (UP- 
PER) and the P-GA (LOWER) 

The upper graph and lower graph in the figure denote 
the changes of the maximum fitness in the H-GA pop- 
ulation and the P-GA population, respectively. The 
upper graph in this figure shows that the search per- 
formances against various ntry are roughly the same 
as each other. Because of computational effort, ntry is 
set to be 5. 

Finally, we examined “structured” CSPs involving 
latent “cluster” structures among the variables in the 
CSPs. That is, the variables in the CSPs are com- 
posed of several tightly interconnected clusters that 
are weakly connected with each other. As depicted 
in Fig. 9, cluster structured CSPs used in this paper 
are generated by two parameters p and q, where p de- 
note a proposition which decides connectivity between 
cluster CSPs, and q denote the tightness between two 
variables in certain cluster CSPs. In this paper, the 
parameters p and q are set to 30 and 80, respectively. 
Our CGA can solve such structured problems very well 
through detecting such clusters by naturally reflecting 
them as P-Indiv.’s (schemata in H-GA) as depicted in 
Fig. 10. The GRO with mutation might serve as a 
mean of detector for latent schemata strucure. 

5 .  CONCLUSION 

For various values of density and tightness, computer 
simulations confirmed us the effectiveness of our CGA 
in terms of the number of fitness evaluations and the 
success ratio. Especially, for tight CSPs, the repair 
operator worked quite effectively. In tight CSPs, it 
is usually very difficult to discover satisfiable schema- 
ta. Moreover, such satisfiable schemata involve useful 
information in searching for satisfiable solutions, pro- 
vided that such schemata could have been discovered. 
The repair operator could discover such schemata quite 
well. 

Also, we examined “structured” CSPs involving la- 
tent “cluster” structures among the variables in the C- 
SPs. That is, the variables in the CSPs are composed 

Fig. 9. 
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Fig. 10. the changes of maximum fitness in the H-GAS 
and SGA for structured CSPs 

of several tightly interconnected clusters that are weak- 
ly connected with each other. Our CGA could solve 
such structured problems very well through detecting 
such clusters by naturally reflecting them as P-Indiv. ’s 
(schemata in H-GA). We also examind various meth- 
ods of evaluating the fitness values of P-Indiv.’~, which 
elucidated the characteristics of our CGA. 
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