
Engineering

Industrial & Management Engineering fields

Okayama University Year 1999

Coevolutionary genetic algorithm for

constraint satisfaction with a genetic

repair operator for effective schemata

formation

Hisashi Yamamoto Katsuyuki Watanabe Osamu Katai
Okayama University Kyoto University Kyoto University

Tadataka Konishi Mitsuru Baba
Okayama University Okayama University

This paper is posted at eScholarship@OUDIR : Okayama University Digital Information
Repository.

http://escholarship.lib.okayama-u.ac.jp/industrial engineering/46

Coevolutionary Genetic Algorithm for Constraint Satisfaction with
a Genetic Repair Operator for Effective Schemata Formation

Hisashi Handa*, Katsuyuki Watanabe**, Osamu Katai**,
Tadataka Konishi* and Mitsuru Baba*

Tsushima-naka 3-1-1, Okayama, 700-8530, JAPAN
{handa, konishi, baba}@sdc.it.okayama-u.ac.jp

Yoshida-Hommachi, Kyoto, 651-8501, JAPAN
{watanabe, katai}@symlab.sys.i.kyoto-u.ac.jp

*Dept. of Information Technology, Faculty of Engineering, Okayama University

**Dept. of Systems Science, Graduate School of Informatics, Kyoto University

ABSTRACT

In this paper, we discuss on new Coevolutionary Ge-
netic Algorithm for Constraint Satisfaction. Our ba-
sic idea is to explore effective genetic information in
the population, i.e., schemata, and to exploit the ge-
netic information in order to guide the population to
better solutions. Our Coevolutiona,ry Genetic Algo-
rithm (CGA) consists of two GA populations; the first
GA, called ”H-GA”, searches for the solutions in a giv-
en environment (problem), and the second GA, called
”P-GA” , searches for effective genetic information in-
volved in the H-GA, namely, good schemata. Thus,
each individual in P-GA consists of alleles in H-GA or
”don’t care” symbol representing a schema in the H-
GA. These GA populations separately evolve in each
genetic space at different abstraction levels and affect
with each other by two genetic operators: ”superposi-
tion” and ”transcription”. We then applied our CGA
to Constraint Satisfaction Problems (CSPs) incorpo-
rating a new stochastic ”repair” operator for P-GA
to raise the consistency of schemata with the (local)
constraint conditions in CSPs. We carried out two
experiments: First, we examined the performance of
CGA on various ”general” CSPs that are generated
randomly for a wide variety of ”density” and ”tight-
ness” of constraint conditons in the CSPs that are the
basic measures of characterizing CSPs. Next, we ex-
amined ”structured” CSPs involving latent ”cluster”
structures among the variables in the CSPs. For these
experiments, computer. simulations confirmed us the
effectiveness of our CGA.

1. INTRODUCTION

In this paper, we will introduce new Coevolution-

ary Genetic Algorithm for solving Constraint Satis-
faction Problems (CSPs). Our basic idea is to ex-
plore effective genetic information in the population,
i.e., schemata, and to exploit the genetic information
in order to guide the population to better solution-
s. Our Coevolutionary Genetic Algorithm (CGA) con-

sists of two GA populations; the first GA, called “H-
GA” (Host GA), searches for the solutions in a giv-
en environment (problem), and the second GA, called
“P-GA” (Parasite GA) , searches for effective genet-
ic information involved in the H-GA, namely, good
schemata. Thus, each individual in P-GA consists of
alleles in H-GA or “don’t care symbol” representing
a schema in the H-GA. These GA populations sepa-
rately evolve in each genetic space at different abstrac-
tion levels and affect with each other by two genetic
operators: “superposition” and “transcription”. The
superposition operator copies the genetic information
of a P-Individual, except for don’t care symbol, onto
one of H-Individuals in order to calculate the fitness of
the P-Individual, where, an H-Individual (“H-Indiv.”)
and a P-Individual (“P-Indiv.”) denote an individual
of H-GA population and an individual of P-GA popu-
lation, respectively. The transcription operator serves
as a mean for transmitting effective genetic informa-
tion from P-GA to H-GA. We then applied our CGA
to CSPs incorporating a new stochastic ”repair” opera-
tor for P-GA to raise the consistency of schemata with
the (local) constraint conditions in CSPs. Namely, in
the P-GA, each schema which stands for a subspace
in the solution space and is represented by a P-Indiv.
is moved towrds a legal subspace by the repair oper-
ator. Such schemata information guide the H-GA to
satisfiable solutions by transmitting effective schema-
t a information to H-GA by the transcription operator.
Our CGA eventually yields a high search ability due to
the ”symbiotic” co-evolution of these two populations.

Related works are as follows: Coevolutionary ap-
proach have been studied by many researchers [3], [16].
Especially, coevolutionary approach for solving Con-
straint Satisfaction Problems is proposed by Paredis

[15], [4]. He used two populations which has an in-
verse fitness interaction, more precisely, the predator-
prey relationship, between these populations. Al-
so, schemata-oriented search methods in evolutionary
computation have been adopted in several problem
solving methods such as Cultural Algorithms and S-

O-7803-5731-0/99/%10.00 01999 IEEE III -616

mailto:baba}@sdc.it.okayama-u.ac.jp
mailto:katai}@symlab.sys.i.kyoto-u.ac.jp

Fig. 1. An example of CSP: graph coloring problem

tochastic Schemata Exploiter [5], [6]. In Cultural Al-
gorithm, usual GA model is associated with a belief
space which is similar to the schema space and is used
to promote directed evolution of individuals with the
beliefs in the GA model. Our method is similar to
Cultural Algorithm in the sense that both methods
use additional mechanisms to promote the evolution
of usual GA. However, the specificity of our approach
is to use a coevolutionary mechanism.

In next section, introduce Constraint Satisfaction
Problems. Then, we explain our Coevolutionary Ge-
netic Algorithms for Constraint Satisfaction in Section
3. In Section 4, several computer simulations are ex-
amined and confirm us effectiveness of our approaches,
and finally, this paper is concluded.

2. CONSTRAINT SATISFACTION
PROBLEMS

Constraint Satisfaction Problems (CSPs) are a class
of problems consisted of variables and constraints on
the variables. Especially, a class of the CSPs such that
each of the constraints in the problems is related only
to two variables are called binary CSPs. In this pa-
per, we treat a class of discrete binary CSPs, where
the word discrete means that each variable is associat-
ed with a finite set of discrete values (labels) that are
candidate values of the variable. An example of the
graph coloring problem, one of binary CSPs, which is
one of the benchmark problems in CSP is delineated
in Fig. 1. As depicted in the figure, CSPs are defined
by (U,L,T,R) , where U , L , T and R denote a set
of units, a set of labels, unit constraint relations and
unit-label constraint relations, respectively. In this 3-
coloring problem, i.e., coloring with three colors, r, g
and b, for instance, the set U of units consists of the
nodes in the graph of the given problem. The elements
in the set L of labels denote three colors to be used.
The unit constraint relations T correspond to the edges
in the graph of the given problem. The unit-label con-
straint relation R is a set of 2-compound labels subject
to the constraint relations, where a 2-compound label
denote a tuple of labels attached to two variables that

are consistent with the unit-label constraint relations.
To solve CSPs is to search for solutions such that no
constraints are violated, where the graph representa-
tion of CSP in Fig. l (b) called Constraint Network is
often used.

We use two indices, tightness and density, for ana-
lyzing the difficulties of CSPs [l]. The tightness of an
edge ij is given as the ratio of the number of satisfying
2-compound labels (in unit-label constraint relations)
on the edge i j to the number of all 2-compound labels
on the edge ij. Furthermore, the tightness of a prob-
lem is given by the average value of tightness of the
edges in the problem. The density of a problem in-
dicates the proportion of constraint relations that ac-
tually exist between any pair of nodes. For instance,
in Fig. 1, the tightness of the edge X Y is calculat-
ed as follows: all the constraints on the edge X Y are

the number of all constraints on the edge X Y is equal
to 6. Furthermore, the number of 2-compound labels
on the edge X Y is the same as the product of the num-
ber of labels on each nodes, that is, 3 x 3. Hence, the
tightness of the edge X Y is calculated as 619 = 213
Also, the density of the problem is defined as the ratio
of the number of the unit constraint relations to the
number of all combinations of two nodes among four
nodes, namely, 5 / 4C2 = 5 / 6.

givenas { (r ,g) , (.,b)l (g , r) , (g , b) , @,.I, (h g)) , namely,

3. COEVOLUTIONARY GENETIC
ALGORITHM FOR CONSTRAINT

SATISFACTION

Framework
We adopt Coevolutionary Genetic Algorithm to

solve CSPs. As depicted in Fig.2, we have two GA
populations: H-GA (Host GA) and P-GA (Parasite
GA). The H-GA is a traditional GA, in other word-
s, it searches for good solutions in the given problem.
In this paper, as the traditional GA, we use SGA in-
cluding roulette wheel selection with elite strategy, t-
wo point crossover and normal mutation. The P-GA
searches for the good schemata in the H-GA. Each indi-

II-617

vidual in P-GA consists of the alleles of H-Indiv.’s, and
“*” representing a schema in the H-GA. As depicted
in the figure, two genetic operators, i.e., superposition
and transcription, play the role t.0 communicate (prop-
agate) genetic information between the H-GA and the
P-GA. These operators are described following subsec-
tions.

Superposition Operator
The individuals of the P-GA called P-individuals

(P-indiv.’s) represent schemata in the H-GA. Name-
ly, each P-indiv. consists of the alleles used in H-GA
and ‘k” (don’t care symbol), which represent a schema
in the H-GA. The superposition operator copies the ge-
netic information of a P-indiv.e xcept for “don’t care
symbol” (“*”), onto one of the individuals of H-GA
called H-individuals (H-indiv.’s) in order to calculate
the fitness of the P-indiv. Thus, the evolutionary pro-
cess of this layered population can be regard as a co-
evolution of individual at different levels of abstraction
(cf. Fig. 2).

Fitness Evaluation of P-GA
P-GA searches for useful schemata in H-GA. Here,

the useful schemata in H-GA may be defined as fol-
lows: (1) undiscovered useful schemata or simply (2)
useful schemata, i.e., those with high average fitness
values. If we can discover schemata denoted in (l),
the evolution of H-GA is promoted and guided into
satisfiable solutions by suggesting the genetic informa-
tion of the schemata. Also, from a point of view of
constraint satisfaction, useful schemata in the sense of
(2) are approximated by the evaluation of consistency
between the specified gene.

In this paper, we introduce three methods of the
fitness evaluation for P-indivduals, called (a) Host-

................. 5-zFa P-GA

H-GA

Fig. 2. Process of Coevolutionary Genetic Algorithm

Fig. 3. Mechanism of superposition operator

H- I ndiv.

(a) Host Dependent

Random-Sampled
Individual in the schem

(b) Random-Sampling

partial solution (schema)

Consistency check

(c) Constraint-Satisfaction
d

Fig. 4. Depictions of Fitness Evaluation for P-Indiv.

Depended, (b) Random-Sampled, and (c) Constraint-
Satisfaction, respectively. These methods are de-
scribed as follows:

(a) Host-Dependent If a schema information discov-
ered by P-GA is already discovered by H-GA, the
H-GA will receive no effective information from
this “discovery” by P-GA. Hence, we let P-GA to
search for “undiscovered” useful schemata in H-
GA, and the fitness evaluation of a P-indiv. is
given as follows: First, the fitness value Fj of a
P-indiv., say, j is calculated in the following way
where the fitness function of H-indiv. i and P-
indiv. j are represented as fi and Fj , respective-
ly. The superposing (superposition) operation of
each P-indiv. onto H-indiv.’s is carried out ntry
times. (i) First, ntry H-indiv.’s to be superposed
by P-indiv. j are randomly selected. (ii) These se-
lected H-indiv.’s are denoted as i l , i,, and the
resultant superposed H-indiv.’s are denoted as ;I,

P-indiv. j , the effect of each of the superposition
operations is evaluated as the contribution of the
superposition operation to each H-indiv. defined
as follows:

FA,, = max(o,j;, -jik), (I C = 1 , . .. ,n> .

.... in. (iii) Then, to calculate the fitness value of

, t r y

k = l

That is, “positive contribution” of this superposi-
tion operation. If the difference is negative, then
the contribution of this operation is regard to be
0.

(b) Random-Sampling Generally speaking, the fit-
ness value of a schema is calculated as the av-
erage fitness value of all individuals belonging to
the schema. It is difficult, however, t o calculate
the fitness values of all individuals when the order

[P-indiv.] * 1 * 3 2 *

[ordering]

(choosing allel which is minimizing],--,
the number of constraint violations
against “3“

the number of constraint violations

ke-order to original ordelring) * 4 * 3 1 *

Fig. 5 . Process of our Genetic Repair Operator for
P-indiv.

of schemata is small. In this manner, the fitness
value is calculated as follows: (i) First, new ge-
netic information IC is generated by substituting
“don’t care symbol” to alleles randomly selected.
Then, the fitness value of the genetic information
is calculated ntry times iteratively and the fitness
value of P-Indiv. is defined as the accumulation
of the fitness values, that is,

n t r y

k= 1

(c) Constraint-Satisfaction When we adopt GAS to
solve CSPs, we can regard schemata as partial
solutions, and can inspect the consistency of la-
bels involved in the partial solution whether con-
straints are satisfied or not. In this fitness e-
valuation method, the satisfaction difficulty of 2-
compound constraint between variables i, IC is de-
fined as follows:

- log & if constraint is violated
” a k = { log otherwise,

where, Tik denote the proportion of negative con-
straints. Hence, fitness of P-indiv. is given by

= f P i k ,
i ,k Esp(j)

where, sp(j) denote the set of specified gene loci
in certain P-indiv. However, it should note that
every partial satisfiable solutions are not always
contained in satisfiable solutions.

Transcription Operator
The transcription operator serves as means of trans-

mitting the effective genetic information searched by
the P-GA to the H-GA. This operator propagate ge-
netic information in P-GA to H-Indiv. by probabilisti-
cally replacing the original H-indiv. ik with superposed

H-indiv. ir;. The probability of applying the transcrip-
tion operation is given as

where f m a z and f m z n denote the maximum fitness val-
ue and the minimum fitness value in the H-GA, re-
spectively, and hence Pparaszte is set to be constant
such that 0 < Pparaszte < 1.

Genetic Repair Operator
P-GA is able to assemble good solutions from partial

solutions effectively, provided that such partial solu-
tions are consistent. Hence, we adopt Genetic Repair
Operator (GRO) to keep consistency of P-individual,
namely, partial solutions or schemata. As depicted in
Fig. 5, the processes of this operator are carried out as
follows: First, for each specified gene locus, the order-
ing of repair is randomly assigned, where a specified
gene locus denotes a gene locus which is not assigned
to ‘don’t care symbols’. The reason why the order-
ing is randomly assigned is to avoid converging into
certain local optima. Next, according to this ordering,
repair met hod based on consistency check is performed
such that the number of constraint violations between
a gene in the present order and genes in the previous
order is minimized.

In section 4, we will adopt two kinds of GRO as
the genetic operator of the P-GA, namely, the GRO
described above and GRO with mutation. The GRO
with mutation adopts the ordinal mutation operator
as pre processor of GRO in order to keep diverse and
consistent genetic information in the P-GA population.

4. EXPERIMENTAL RESULTS

In this paper, we carry out several experiments based
on various general CSPs that are generated random-
ly for a wide variety of “density” and “tightness” of
constraint conditions in the CSPs that are the basic
measures of characterizing CSPs and are described in
section 2. The general CSPs are randomly generated
as follows: First, specify the tightness and density in
the sense in section 2. Next, for all combination of t-
wo indices, decide whether unit constraint relation is
set to each of the pairs of variables by taking account
of the value of density. Finally, for all unit constraint
relations, the number of the unit-label constraint rela-
tionships is set to be directly proportional to the tight-
ness.

In first and second experiments, general CSPs with
50 variables such that the size of domains for each of
variables is set to be 10 are examined. Also, as GA
parameters, following settings are used: The popula-
tion size of SGA, H-GA and P-GA are set to be 200,
150 and 50, respectively. The GA parameters for the
SGA and the H-GA are set to be of the same value,

III-619

Fig. 6. Temporal behavior of the maximum firnss in the populations: SGA (1st COLUMN), CGA with
Host-Dependent (HD, 2nd COLUMN), CGA with Random-Sampling (RS, 3rd COLUMN) and CGA with
Constraint-Satisfaction (CS, 4th COLUMN); the horizontal, vertical and depth axes in these graphs denote
the variety of density and tightness, maximum fitness value and the number of generations

the probability P, of crossover, the probability P, of
mutation and the numbers of the elitist are set to be
0.8, 0.01 and 5, respectively. Those for the P-GA are
set to be P, = 0.8 and P, = 0.05. The elitist strategy
is not used in the P-GA. Also, the number of runs for
each of the tuple (tightness, densitg) is set to be 100.

First of all, we compare SGA with each of our C-
GAS using different fitness evaluation for P-indiv., i.e.,
host-dependent (HD) random-sampling (RS) and con-
straint satisfaction (CS), in terms of the changes of best
fitness for various values of density and tightness. In
this experiments, the GRO described in previous sec-
tion are not adopted. Fig. 7 shows simulation results
for this experiment. The graphs in this figure denote
the results for SGA, HD, RS and CS, respectively. The
horizontal, vertical and depth axes of these graphs in-
dicate the kinds of couples of density and tightness,
maximum fitness value in the SGA or H-GA population
for each generations, and the number of generations,
respectively. As depicted in this figure, our CGA with
HD outperforms the others. In tight problems, such
tendencies are notable. In loose constraint problems,
otherwise, the performance of them is almost similar.
The reason why such phenomena are observed is re-
garded as follows: it is easily possible that satisfiable
partial solutions are contained in satisfiable solution-
s in more tight problems. Moreover, it is difficult to
discover such satisfiable partial solutions in more tight
problems. That is, to find partial satisfiable solutions
is very significant in more tight problems. Our host-
dependent fitness evaluation method for the P-GA e-
valuates the "contribution" of a superposition opera-
tor.

Next, we apply GRO and GRO with mutation to the
CGA with HD. As depicted in Fig. 7, by applying the
GRO to P-GA, CSPs are solved quite effectively. The
GRO can discover partial satisfiable solutions rapidly,

Fig. 7. Temporal behavior of the maximum firnss
in the populations: HD with repair (HD+repair,
1st COLUMN) and HD with repair + mutation
(HD+repair+mut, 2nd COLUMN)

hence the performance of the CGA is improved ex-
tremely. Moreover, in loose constraint problems, the
GRO with mutation can solve CSPs effectively. It is
terrible difficult to solve such problems because, even if
we can find partial satisfiable solutions, it is rarely in-
volved in satisfiable solutions. Namely, almost optima
in such problems are not global optima, i.e., satisfiable
solutions, but local optima. However, by incorporating
a mutation operator into Genetic Repair Operator, the
P-GA population can keep both the diversity and the
consistency of genetic information.

Also, we investigate the sensitivity of the parameter
nt ry which denotes the number of the superposition
operators for a P-individual. A comparison based on
the changes of maritimum fitness in H-GA population
and P-GA population is shown in Fig. 8. As depict-
ed in this figure, the parameter ntry varies from 5 to
50 for the couple (density and tightness) = (70, 70).

m-620

Generations

Fig. 8. Experimental results on General CSP: the av-
erage value of maximum fitness in the 8-GA (UP-
PER) and the P-GA (LOWER)

The upper graph and lower graph in the figure denote
the changes of the maximum fitness in the H-GA pop-
ulation and the P-GA population, respectively. The
upper graph in this figure shows that the search per-
formances against various ntry are roughly the same
as each other. Because of computational effort, ntry is
set to be 5.

Finally, we examined “structured” CSPs involving
latent “cluster” structures among the variables in the
CSPs. That is, the variables in the CSPs are com-
posed of several tightly interconnected clusters that
are weakly connected with each other. As depicted
in Fig. 9, cluster structured CSPs used in this paper
are generated by two parameters p and q, where p de-
note a proposition which decides connectivity between
cluster CSPs, and q denote the tightness between two
variables in certain cluster CSPs. In this paper, the
parameters p and q are set to 30 and 80, respectively.
Our CGA can solve such structured problems very well
through detecting such clusters by naturally reflecting
them as P-Indiv.’s (schemata in H-GA) as depicted in
Fig. 10. The GRO with mutation might serve as a
mean of detector for latent schemata strucure.

5 . CONCLUSION

For various values of density and tightness, computer
simulations confirmed us the effectiveness of our CGA
in terms of the number of fitness evaluations and the
success ratio. Especially, for tight CSPs, the repair
operator worked quite effectively. In tight CSPs, it
is usually very difficult to discover satisfiable schema-
ta. Moreover, such satisfiable schemata involve useful
information in searching for satisfiable solutions, pro-
vided that such schemata could have been discovered.
The repair operator could discover such schemata quite
well.

Also, we examined “structured” CSPs involving la-
tent “cluster” structures among the variables in the C-
SPs. That is, the variables in the CSPs are composed

Fig. 9.

0.95

$ 0.8

ii
2 0.65
3

a S
c

A depiction of “latent”

U

structured CSPs

0 20 40 60 80 100
Generations

Fig. 10. the changes of maximum fitness in the H-GAS
and SGA for structured CSPs

of several tightly interconnected clusters that are weak-
ly connected with each other. Our CGA could solve
such structured problems very well through detecting
such clusters by naturally reflecting them as P-Indiv. ’s
(schemata in H-GA). We also examind various meth-
ods of evaluating the fitness values of P-Indiv.’~, which
elucidated the characteristics of our CGA.

References
E. Tsang: “Foundation of Constraint Satisfaction”, Aca-
demic Press, 1993.
D. E. Goldberg: “Genetic Algorithm in Search, Optimiza-
tion, and Machine Learning”, Addison-Wesley, 1989.
W. D. Hills: ‘To-Evolving Parasites Improve Simulated
Evolution as an Optimization Procedure”, Artificial Life

J. Paredis: “CO-evolutionary Constraint Satisfaction”,
Proc. of PPSN 111, pp.46-55, 1994.
R. G. Reynolds and C. Chung: “A Self-adaptive Approach
to Representation Shifts in Cultural Algorithms”, Proceed-
ings of the 3rd International Conference of Evolutionary
Computation, pp.94-99, 1996.
A. N. Aizawa: “Evolving SSE: A Stochastic Schemata Ex-
ploiter”, Proceedings of the 1st International Conference of
Evolutionary Computation, pp.525-529, 1994.
H. Handa, N. Baba, 0 . Katai, T. Sawaragi and T. Horiuchi:
“Genetic Algorithm involving Coevolution Mechanism to
Search for Effective Genetic Information”, Proceedings of
the 4th International Conference on Evolutionary Cornpu-
tation, pp.709-714, 1997.

11, pp.313-324, 1992.

E-621

