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Abstract 

This paper proposes a new generalized predictive con- 
trol (GPC) having new design parameters. In selecting 
the design parameters, the controller becomes a strongly 
stable GPC, that is, not only the closed-loop system is 
stable, but also the controller itself is stable. The pa- 
rameters are introduced by applying the coprime fac- 
torization approach and comparing Youla parametriza- 
tion of stabilizing compensators to  the controller by the 
standard GPC. 

1 Introduction 

Generalized predictive control (GPC) technique is first 
proposed by Clarke and others in 1987 [l]. The control 
technique has been accepted by many of practical en- 
gineers and applied widely in industry [2]. In applying 
to  industry, safty is the most important. For safety, it 
is desirable to  design a controller itself to  be stable in 
addition to  the closed-loop stability, that is, to design 
a strongly stable controller. The strongly stable con- 
troller ensures the boundedness of control input even 
when the feedback loop is cut by an accident. So far 
many papers concerned with the stability of GPC have 
been published, but most of the papers are devoted to  
obtain design methods ensuring the stability of closed- 
loop system [4]. And less attention is paid to  the design 
of strongly stable GPC. 

In this paper a method to  design a strongly stable 
GPC is proposed by extending a standard GPC. The 
method consists of three steps: The first step is to de- 
sign a GPC with the closed-loop to  be stable by stan- 
dard GPC technique. In the second step, the GPC ob- 
tained in step 1 is extended by adding new design pa- 
rameters. The parameters are introduced by compar- 
ing Youla parametrization[3] of coprimely factored sta- 
bilizing compensators to the controller by the standard 
GPC. At the last step, by selecting the newly introduced 
parameters in the extended GPC, the controller is made 
to be stable without changing the closed-loop stability. 

It will be shown that for any design parameters the ex- 
tended GPC has the same closed-loop poles to  the ones 

of the original standard GPC and also shown that, al- 
though the control input will change according to  the 
selection of parameters, the gradient of the objective 
function with respect to  control input is equal to  0. 
Hence for any values of the design parameters, the newly 
extended GPC keeps the closed-loop system to be sta- 
ble and the objective function of the original standard 
GPC to be minimal, the parameters are searched only 
in considering to  make the controller itself stable. 

Coprime factorization approach is used by Wams et 
al [5] in designing predictive control but their design 
method is t o  obtain closed-loop stability. 

Notations: z-'denotes backward shift operator: z-' 
y(t) = y(t - 1) and A = 1 - z-'. Polynomial and ratio- 
nal functions are distinguished by AIz-'] and A(z-'). 

2 Problem Statement and Standard GPC 

Consider a single-input single-output system given by 
CAlUMA model, 

where u(t)  is input, y(t) is output, k, is time delay, 
[ ( t )  is a white Gaussian noise with zero mean. A[z-'], 
B[z-'], C[z-'] are polynomials with degrees n, m, 1 and 
A[z-'], C[z-'] are monic. The followings are assumed; 

[A.1] The degrees n,m, 1 of A[z-'], B[z-'], C[z-'] and 
the time delay k, are known. For simplicity k, is as- 
sumed to be k, = 1. 
[A.2] In adaptive case, the coefficients of A[z-'], B[z-'] 
and C[z-'] are unknown, but the nominal values of the 
coefficients are known. 
[A.3] The polynomials A[z-'] and B[z- ' ] ,  A[z-'] and 
C[z-'] are coprime. And C[z-'] is stable. 

In standard GPC technique [I], the control objective is 
to  minimize the following objective function J ;  

j = N ,  j = O  

(2) 
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where the average is taken over the noise [ ( t ) ,  w(j )  
is reference input, NI and N2 are prediction horizons, 
Nu is control horizon and Aj ' s  are weighting factors 
on control inputs. For simplicity it is assumed that 
NI = l ,Nu = N2. 

In this section and the next section, non-adaptive case 
is considered. Hence the coefficients of A[z- '] ,  B[z- ']  
and C[z- ']  are assumed to be known. 

In order to compare the controller of the standard GPC 
to the most general compensator in Youla parametriza- 
tion in the next section, the controller structure of stan- 
dard GPC [l] is given. 

First, consider the following Diophantine equation for 
j = 1 ,2 , . . . ,Nz ;  

C[Z- ']  = A A [ z - ' ] E ~ [ z - ' ]  + z- 'F~[z- ']  (3) 

where Ej [z-'I, Fj [z-'1 are polynomials with degree j - 1 
and n, and Ej[z- ']  is monic. 

Using equations ( 1 )  and (3), the optimal estimate is 
obtained by 

s(t  + jlt) = E [YO + dl 
= [Fj[z- ']y( t )  + Ej[z- ']B[z- ']  

.Au(t + j - l ) ]  /C[Z- ']  (4) 

To separate the future values and past values of u(t) in 
(4), Ej[z- ']B[z- ']  is separated as 

Ej[z- ']B[z- ']  = c[z- ' ]Rj[z - ' ]  + z- js j[z- ']  (5) 

where Rj[z- ']  and Sj[z- ']  are polynomials with degree 
of j - 1 and n3 = max{rn,Z} - 1 and T O ,  T I ,  ... ,r j- l  are 
the coefficients of Rj[z- '] .  

Define the following signal hj ( t ) ,  vectors 9, U , h, E ,  w 
and matrices R, A as 

C[~- ' ]h j ( t )  1 Fj[z- ']y(t)  - S j [ z - l ] A ~ ( t  - 1) (6) 

$ =  

U =  

h =  

E =  

w =  

R =  

A =  

Then the estimate 9 and the objective function J of (2) 
are given in vector form: 

6 = Ru+h (14) 

J = E[  ( ~ u + h - w ) ~ ( ~ U + h - w )  
+uTAu ] + E [eT€]  (15) 

Solving the linear equation aE [ J ]  /au = 0 of U and 
extracting the first element of U ,  the optimal control 
input Au(t) t o  minimize J is obtained as 

Au(t) = P[z - ' ]w(~  + N2) - (Fp[z- ']g( t )  
+S,[z-']Au(t - 1)) /C[z-'] (16) 

P = [p11p2,"',pN2] 

= [I o ... 01 ( R T R + A ) - ' R T  (17) 

P[z- ']  = pjv, +pN2-'z-' + . . . +p1z-(N,-') (18) 
Fp[Z-'] = PlFl[Z-'] fpzF2[z- ']  + 

...  +PN,~Nz[z- l l  (19) 
Sp[z-'] = plSl[z- ']  +pzSz[z-'] + 

. . . + PNZ S N ,  [.-'I (20) 

Substituting the control input (16) into the system (l), 
and defining polynomial T[z- ']  as 

C[z- ']T[z- ']  = AA[z-']C[z- ']  + z-'D,[z-'] (21) 
Dj[z- ']  = A A [ z - ' ] S ~ [ Z - ' ]  + B[z- ']F,[ t - ' ]  
D,[z-'] = PlD1 [z-'1 + p2D2[z-'] + 

. . *  +PNzDN2[z-'] (22) 

we get the closed-loop system 

The transfer function of the controller (16) from w( t  + 
N2) to u(t) is 

C[z- ']P[z- '] /  ( C [ z - ' ] A  + S,[z- ']z- 'A) 

and it has unstable pole z-' = 1. If the feedback loop 
is cut by an accident, then the control input will be 
divergent, even when the closed-loop is stable. 

To solve this problem, we will introduce new de- 
sign polynomials in the controller (16) by compar- 
ing the most general stabilizing compensator, Youla 
parametrization form, to the controller (16). 

3 Extended GPC with design parameters 

For coprime factorization approach, the family of stable 
rational functions are considered; 

G d [ z - ' ]  : stable polynomial} (24) 
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The transfer function is given in the forrn of a ratio of 
rational functions in RH,, 

G ( z - ' )  = N ( z - ' ) / D ( z - ' )  (25) 

where N ( z - ' ) ,  D ( z - ' )  are rational functions iri R H ,  
and are coprime in each other. Then, all of the sta- 
bilizing two-degree-of-freedom compensator is given in 
Youla parametrization [3]; 

~ ( t )  = C l ( Z - ' ) W ( t  + N2) - C ~ ( Z - * ) Y ( ~ )  (26) 
C~(Z-') = (Y(2-l) - U(z - ' )N( t . - ' ) ) - 'K( z - ' )  (27) 
C2(z-') = ( Y ( z - ' )  - u ( z - ' ) N ( z - ' ) ) - ' ( X ( z - ' )  

+u( z - ' )D(z - ' ) )  (28) 

where U ( 2 - l )  and K ( z - ' )  are rational functions in 
R H ,  and are design parameters. X ( z - ' )  and Y ( z - ' )  
are also in R H ,  and the solutions of the following Be- 
zout equations; 

X ( z - ' ) N ( z - ' )  + Y ( z - ' ) D ( z - ' )  = 1 (29) 

We assume that GPC controller (16) for the given plant 
(1) is already designed and the weighting factor Xj 's  are 
chosen so that the closed-loop characteristic T[z- ' ]  is 
stable. Comparing the plant (1) to  (25), we can choose 
N(z - ' )  and D(z-')  in R H ,  as 

N(z - ' )  = z - 'B[z - ' ] /T[ z f ' ]  (30) 
D(z- ' )  = A[z-']/T[z- ']  (31) 

Substituting (30) and (31) into Youla parametriza- 
tion (26)-(28) and comparing the form (26)-(28) having 
U(z- ' )  = 0 to  the controller (16), we get relations; 

X ( z - 1 )  = F,[z-']/C[z-'] (32) 

K(z-1)  = P[z- ' ]  (34) 

Y(z- ' )  = (C[Z-'] + z-'S,[z-']) A /C[z - ' ]  (33) 

Since C[z-']  is assumed to be stable, X ( z - ' ) ,  Y ( z - ' )  
and K ( z - ' )  are in R H ,  By using Diophantine equa- 
tion (3), it is confirmed that N(z- ' ) ,  D(z - ' )  of (30), 
(31) and X ( z - ' ) ,  Y ( z - ' )  of (32), (33) satisfy Bezout 
equation (29). 

In order to  extend the controller (16), instead of choos- 
ing U ( z - l )  as U(z - ' )  = 0, we use U(z - ' )  as a newly 
introduced design parameter for the controller (16). To 
simplify the description of the controller, using new two 
design polynomials U,[z-'] and Ud[z-'], we use 

(35) 

Then substituting (30)-(35) into (26)-(28), we get a 
newly extended GPC; 

{ U ~ [ Z - ' ]  (C[Z-'] + z-'S,[Z-']) A 
- U, [ z -11 c [ z - ' 1  z - 1 B [ z - ' 1  } U( t )  
U d  [ z - ' 1  c [ z - '1 P[ z - 'I., ( t  + N2) 

= 

- (Ud[z- ' ]FP[~- ' ]  + U,[~-']C[Z-']A[Z-'])~(~) (36) 

To calculate this controller, we separate the leading 
term and the remaining terms in the polynomial multi- 
plied by u( t )  in the left-hand side of (36) as 

U ~ [ Z - ' ]  (C[Z-'] + z-'S,[Z-']) A 
-U,[Z- ' ]C[Z- ' ]Z- 'B[~- ' ]  = go+ z-'G'[z-'] (37) 

Then the controller (36) is calculated by 

1 
90 

1 .A[z- '])  y ( t )  - -G'[z-']u(t - 1) 
go 

u(t)  = -- (ud[z-']Fp[z-'] + U,[z-']c[z-'] 

+'Ud[~-']C[z-']P[z-']w(t + N2) (38) 

When Un[z-'] and Ud[z-'] are chosen as U,[z-'] = 0, 
Ud[z-l] = 1, the controller (36) or (38) coincides with 
the controller (16) designed by the standard GPC. 

Theorem 1: 
lowings hold; 

(i) The closed-loop system is given by 

90 

Using the controller (36) or (38), the fol- 

C[z-'1 + z-'S,[z-'] - a-'B[z-']C[z-'1 ( T [ z - l ]  T [ z - l ] A  

(39) 

(ii) For any U,[z-'] and Ud[z-'], the control input u( t )  
by (36) or (38) satisfies 

(iii) From (36), the poles of the controller itself are the 
roots of equation, 

Ud[t-'] (C[Z-'] + z-'S,[Z-']) A 
-U,[Z-~]Z-'C[Z-']B[Z-'] = 0 (41) 

Remark (i) From (39), it is shown that the transfer func- 
tion from w(t + N2) to  y(t) is equal to  the one by the 
standard GPC [l], and is independent of the choice of 
the design parameters Ud[z-'] and U,[Z-']. 

Remark (ii) The poles of the controller can be designed 
by selecting polynomials Ud[z-'] and Un[z-'] in (41), 
without changing the poles of the closed-loop system. 
We may design a strongly stable controller, by sequen- 
tially designing first Xj ' s  for the closed-loop poles (the 
roots of T[z - ' ]  = 0) to  be stable, second Un[z-'] and 
Ud[z-'] for the controller poles (the roots of (41)) to  be 
stable. 
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Proof. Equations (39) is derived from (3) and (30)-(36). 
The first element of U satisfying (40) is given by 

Au(t) = p T ( - h + w )  

p T w  = P[Z- ' ]w( t+Nz)  (44) 

Using (43), (44), (36) and the plant equation ( l ) ,  equa- 
tion (42) holds. Q.E.D. 

4 Adaptive Extended GPC 

In this section, under the assumption that only the nom- 
inal values of the coefficients of the system (1) are known 
and the true values are unknown, we will propose an 
adaptive GPC by adding a parameter identification law 
to the extended controller (38). First choose the design 
parameter Ud[z-'] and Un[2-'] so as that the poles of 
controller are stable using the nominal values of A[z-'] ,  
B[z-'] and C[z-']. Then the adaptive GPC consists of 
the following identification law and the controller (38) 
calculated using identified values &I ( t ) ,  . . . ,cl ( t )  in each 
sampling time. 

The identification law is; 

(45) 

&(t) = y(t) - e q t  - 1)1Ct(t - 1) 

d t )  = Y(t )  - eT(t)lCt(t - 1) 
e( t )  = [&'(t) ,  . . . , hn(t) ,  &(t) ,  * .  . , &,(t), 

$( t )  = [-y(t - l ) ,  . . . , - y ( t  - n) ,  u(t - I C , ) ,  . * .  , 

(47) 
(48) 

(49) ( t ) ,  . . . , 4 (t)iT 

~ ( t  - I C ,  - m),  ~ ( t  - l), . . . , ~ ( t  - Z ) I T  (50) 

where &l( t ) , . . . ,&( t )  are the identified value, X (0 < 
X 5 1) is a forgetting factor. 

Theorem 2: 
following assumptions [A.4] - [A.6] hold, 

[A.4] The nominal values of the coefficients are equal to 
the true values and Xj 's  are selected such that T[z - ' ]  is 
stable. 
[A.5] Transfer function C[z-'] - - IS strongly posit,ivc' 
real. 
[A.6] The signal $( t )  satisfies PE(Persist,ently Span- 

If the assumptions [A.l]-[A.3] and the 

A .  
2 

ning) condition, that is, the matrix 

l N  

N+m N t=' 
R = lim -x$(t - 1)@(t - 1) (51) 

is positive definite, 

then the tracking error e ( t )  = y(t) - w(t) converges to 
zero a.s.(almost surely, converge except on a set having 
probability zero). 

Proof. Using similar way by [6], it is proved that the 
error of parameter identification &t) = 0 - e( t )  and the 
error of output estimation, z ( t )  = ~ ( t )  - ( ( t )  converge 
to zero a.s.. Then the tracking error can be proved to 
converge from the fact that the error is expressed by 
@(t)  and z ( t ) .  Q.E.D. 

5 Example 

Consider a system and an objective function 

J = & ( y ( t  + j )  - w(t + j ) ) 2  + 2 ( h ( t  + j - 1))2 
j=1 j=1 

N2 = Nu = 5, X j  = 1 (53) 

and the reference input w ( t )  of a rectangular wave with 
amplitude 1.0 and period of 50 steps. 

The control law (16) by standard GPC [l] is 

-0.0802 - 0.0074~-' - 0 . 1 5 6 ~ - ~  - 0 . 3 7 6 7 ~ - ~  
1 - 0.90422-' - 0 . 0 9 5 8 ~ - ~  

u( t )  = 

+ 0 . 1 4 5 2 ~ - ~  
w(t + N2) 

-0.0908 - 0.33972-' - 0.04472-' 
1 - 0.9042~-' - 0 . 0 9 5 8 ~ - ~  Y ( t )  (54)  - 

and the closed-loop system is 

y(t) = 1 - 0.34962-I + 0.028r2  - 0.2032tr3 
+ 0 . 0 4 5 7 ~ - ~  + 0 . 6 3 7 6 ~ - ~  - 0 . 2 1 7 7 ~ - ~  

-0.0401~-' + 0.1166~-' - 0.06692C3 

u * ( t  + A-') 

+ J( t )  (33) 
1 + 0.09582-1 

1 - 0.34962-I + 0 . 0 2 8 ~ - ~  - 0.2032:~" 

Thc. polcs of the closed-loop systtmi are ; - I  = 1/0.712. 
1/(-0.181 f 0.503i) and stablc. But the pole of the 
cont,rollcr is 2 - l  = 1, 1/( -0.0958) and includcs unstable 
onc, so t,his contmller is not, strongly st ablt.. 
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Selecting the design parameters in the extended GPC 
controller (38) as U , l  = 1.0, U, = 0.4, the controller is 

-0.0802 - 0.0074~-' - 0 . 1 5 6 ~ - ~  - 0 . 3 7 6 7 ~ - ~  
1 - 1.10422-' + 0 . 5 0 4 2 ~ - ~  

U ( t )  = 

+ 0 . 1 4 5 2 ~ - ~  
w(t + N2) 

Y ( t )  (56) 
0.3092 - 0.0997~-' + 0 . 2 3 5 3 ~ - ~  

1 - 1.10422-' + 0 . 5 0 4 2 ~ - ~  
- 

and the closed-loop system is 

y ( t )  = 1 - 0.34962-1 + 0 . 0 2 8 r 2  - 0.2032r3 
-0.0401~-' + 0 . 1 1 6 6 ~ - ~  - 0 . 0 6 6 9 ~ ~ ~  

+ 0 .0457~-~  + 0 . 6 3 7 6 ~ - ~  - 0 . 2 1 7 7 ~ ~ ~  
w(t.+ 

1 - 1.10422-' + 0.50422-' 
+ 1 - 1.34962-1 + 0 .3776~-~  - 0.2312.r3 

+ 0.2032r4 t ( t )  (57) 

The poles of the closed-loop system from w(t  + N z )  to 
y(t) by this controller are not changed from t6e poles by 
(55). The poles of the controller are z-l = 1/(0.552 f 
0.447i), I z - ' ~  = 1/0.71 and are improved to be stable, 
that is, the controller is strongly stable. 

Assuming the coefficients of the plant (52) are unknown 
and the variance of noise is U = 0.025, computer simula- 
tions are conducted. In the simulations, the forgetting 
factor in (45)-(50) is X = 0.99, the initial value of r(0) 
is 1.01 and the initial values of identified coefficients are 
set to  be equal to  0.8 of the true values. 

Simulation results are shown in Fig.1 using the con- 
troller (16) by standard GPC [l], and Fig.2 with the 
controller (38) proposed in this paper. In Fig.2 the out- 
put without noise shown by dotted lines is same to  the 
one in Fig.1. This fact shows that the output response 
to reference input is not changed by introducing the de- 
sign parameters Un[z-'] and Ud[z-l]. 

In the simulations, the solid lines give the output re- 
sponses with noise and feedback cut at step t = 100. 
Fig.1 shows that the output by the controller (16) is di- 
vergent, whereas, the output in Fig.2 by the controller 
(38) stays bounded. 

6 Conclusion 

In this paper, the controller designed by GPC [l] is 
extended to a GPC including new design polynomials 
by using coprime factorization approach and comparing 
the most general two-degree-of-freedom compensator in 
Youla parametrization form. Without changing the re- 
sponse of output to reference input, the poles of the 
compensator can be changed by selecting the newly in- 
troduced design polynomials in the proposed controller. 

Figure 1: Control result by standard GPC 

Figure 2: Control result by extended GPC proposed in 
this paper 

To find parameter values giving the controller stable 
poles requires try-and-error method and to obtain a 
method finding the parameter values straightforwardly 
remains as a future work. 
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