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Abstract

A parallel tight-binding molecular dynamics with an order-N [O(NV))] algorithm is
implemented to perform large-scale simulation of nanostructured materials. The algo-
rithm is based on the Fermi-operator expansion of an electronic energy and force, and
we present its basic formalisms. Accuracy necessary for molecular-dynamics simulations
can be obtained by a proper truncation in the expansion. Parallel efficiency on a parallel
PC cluster shows nearly ideal scaling behavior with respect to the number of processors.
Applicability of the method to a silicon-carbide system is examined.

1 INTRODUCTION

Recent advances in parallel computing technology have enabled one to perform atomistic sim-
ulations with the system sizes accessible experimentally, i.e. 1~100 nanometer [1]. In many
cases, however, quantum simulations still suffer from its computational complexity which grows
rapidly with increasing the number of electrons (~ N3), and hence the range of system size in
the simulations is limited around a few thousand atoms even on massive parallel computers.
The order-N tight-binding (TB) algorithm, proposed recently by several groups [2], is one of
the most promising approaches to computer-aided design of nanostructured materials such as
semiconductor quantum devices [3] and nanophase ceramics [4]. Combining the method with
accurate parameterizations of the tight-binding Hamiltonian and repulsive interactions between
atoms, one can perform realistic quantum simulations of those materials in reasonable speed of
computing.

In this report, we describe an order-N [O(N))] algorithm of tight- binding molecular dynam-

ics (TBMD) for insulators and semiconductors, proposed originally by Goedecker and Colombo
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[5]. Parallel efficiency of the algorithm on a PC-based parallel machine is presented. The

method is applied to total-energy calculation of silicon carbide (SiC) crystals.

2 TBMD METHOD

2.1 TB Representation of the Total Energy

Given a system of Nom atoms with M, valence electrons each, one constructs an effective
one-electron Hamiltonian, H. The eigenstates, |¥,,), of the Hamiltonian are represented by a
linear combination of atomic orbitals, |@;4 ), so called LCAO method, where ¢ and « denote the
indices of an atom and its orbital, respectively. The eigenstates and the eigenvalues, €, of the

Hamiltonian are then obtained by diagonalizing the Hamiltonian matrix,

Hiajp = ($ia H i) (1)

The band-structure energy is then obtained by

By = 2;5anD (GZ;T#> ; (2)

where fgp, p, kp, and T are the Fermi-Dirac distribution function, the Fermi energy, the

Boltzmann constant, and an electronic temperature, respectively. The factor of two accounts
for spin degeneracy in a closed-shell orbital.

The diagonalization of the Hamiltonian matrix requires the computation that scales as
(Natom X Nbase)®. Thus the ordinary TB method has a computational bottleneck similar to the
one in other electronic-structure calculations such as the ab initio density-functional method
[6].

By introducing the Fermi matrix,

~

_ H—p
Fiajp = (@ia| frp ( T > |bia), (3)
the band-structure energy can be re-expressed as
By, = 2TI‘[HF] = 22 Z HiajﬂFjﬂia- 2 (4)
ia jB .

The total energy of the system is then obtained by

2
Etot - Z 21:_;' + Ebs + ErEp’ (5)

where p; represents the momentum of ith atom. E,., is the repulsive term that takes into ac-

count the core-core interactions and neglected contributions in Ej, to the true electronic energy
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such as a correction for double counting of electron-electron interaction. In a semiempirical TB
approach, E., is determined by fitting with known properties such as elastic constants and
phonon dispersions.

In a molecular-dynamics simulation, the force on each atom needs to be evaluated by dif-
ferentiating Ey, and E,., with respect to atomic coordinates. The Helmann-Feynman theorem
[6] allows one to calculate the electronic term (£?*) of the force as

0H
81',-

~£P* = 2Tr[—F]. (6)

2.2 Fermi-operator Expansion with Chevyshev Polynomials

The various functions with a restricted range of variables can be approximated accurately by

an interpolation with finite number of the Chevyshev polynomials defined as
T (z) = cos[m cos™(z)] (7)
for -1 <z <1(m=0,1,...,N,). They obey the recurrence relation
T (z) = 22T™ V() — T™?(z) (8)

with 7% (z) = 1 and T®(z) = z, and the orthogonality relation

”/ T(m) T(n)( )——(5 ()

l_a’;z - ¥mn-

The Chevyshev interpolation for a function f(z) is given by

Ny
f)m =2+ Y T (a), (10)

and the expansion coefficient at mth order is

(m) No
=2l - 2 S far ), )

V1—2z22

where z is the kth root of T("»)(z) = 0. Figure 1 depicts the Chevyshev interpolation of the
Fermi-Dirac distribution function (fpp) in the case of N, = 100. It shows that the interpolation
reproduces the original function with reasonable accuracy even near € = p. v

The Fermi matrix defined in Eq. (3) can also be approximated by the Chevyshev inter-
polation by replacing z with the matrix H in the above formulae and the polynomial Tm)
thereby represents the corresponding matrix. Truncation at a finite IV, reduces the compu-

tational complexity of O(IV®) in the exact diagonalization to O(N?) due to the finite number
of matrix-matrix multiplication in Eq. (8). Further reduction of the complexity to O(NV) is
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Fig. 1: Chevyshev interpolation of the Fermi-Dirac distribution function.
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Fig. 2: Parallelization in matrix(H)-matrix(7’) multiplication.
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obtained by truncating the matrix(H)-matrix(7T) multiplication at a physical distance between
elements. This approximation is especially effective for insulators and semiconductors [5]. (The
H matrix has an intrinsic nature of short-range interaction for these materials.)

This truncation in the matrix-matrix multiplication makes the code easy to be parallelized
since the computation of the T matrix is independent of those for the other column. The paral-
lelization is done simply by distributing the column of T" over processors, as shown schematically
in Fig. 2.

Using the Chevyshev interpolation, Ey, and the electronic occupation ne are calculated

approximately as

Np .
Eve = ¢ Z Z Hiajﬁsjﬂia + 2 Z Cm Z Z HiajﬁTj(g;iy (12)
i jf m=1 ia 783
Np ’
el = Qo Z Sicxia +2 Z Cm ZE(QT?ZU (13)
i m=1 ta

where S, ;5 is the overlap integral between the atomic orbitals. In an orthogonal TB model,

Siajp = 0iajs. During the simulations, the Fermi energy (i) needs to be adjusted so as to keep



O(N) Tight-Binding Algovithm for Lavge-Scale Moleculay Dynamics

S |-®-Exact|
S e O

CPU Time [sec.]
N
S
S

0 ool S Poaa 4 4o} . )

50 100 150 200 250 300
N

Fig. 3: CPU time vs. the total number of atoms. (N, = 50)

the identity ne = Natom X Npase (= the total number of electrons).

Figure 3 shows comparison between cpu times (on single processor) for calculating the band-
structure energy of crystalline silicon at the diamond structure by the present method and those
by the exact diagonalization. The TB parameters for the silicon crystal were taken from Ref.
[7]. The figure clearly shows significant speedup in the O(N) method over the exact method

with cubic scaling.

3 APPLICATION TO SiC SYSTEM: EFFICIENCY,
ACCURACY, AND PARALLELIZATION

We have applied the present method to silicon carbide (SiC) systems. Silicon carbide has
attracted great deal of attention as an enabling material for a variety of new semiconductor
devices in areas where silicon devices cannot effectively compete, including high-power high-
voltage switching applications and high temperature electronics. Nanophase SiC has shown [8]
unique properties such as high sinterability and enhanced toughness. Large-scale quantum sim-
ulation will be powerful tool to investigate theoretically microscopic processes in this material.
The TB parameters for SiC have been taken from Ref. [9]. The TB model chosen is based on an
sp® orthogonal basis set for valence electrons. It includes intra-atomic contribution to on-site
terms of the Hamiltonian matrix in order to reproduce accurately the bulk properties such as
the cohesive energy, the elastic constants, and the band structure at several polymorphs.

Figure 4 shows the total energy of the TB model for 3-SiC (zincblende st‘ructure) as a
function of the lattice parameter in the present method with N, = 50 and that in the exact
diagonalization. The largest error due to the truncation at 50th in the expansion is only on the
order of 1% of the total energy under large variation of volume.

Parallel efficiency of the method has also been examined on our eight-node parallel machine
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Fig. 4: Total energy per atom of 3-SiC vs. lattice parameter. (N, = 50; Lo = 4.434)

consisting of PC clones (Pentium II 400 MHz x4 + 450 MHz x4 with 256MB SDRAM each)
connected via a Fast Ethernet switch, shown in Fig. 5. Parallelization has been done using
a High-performance Fortran (HPF) compiler. Figure 6 shows cpu time as a function of the
number of processor in the calculations of Fy, of 64-atom system. Nearly ideal scaling can be

achieved in the present method.

4 CONCLUDING REMARKS

We have implemented and examined the O(N) TBMD algorithm for silicon carbide on the PC-
based parallel machine. The code has been fully parallelized and the accuracy can be controlled
by choosing the order of the Chevyshev polynomials. It has thus been shown that the present

method was suitable for large-scale TBMD simulations of nanostructured materials.
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Fig. 5: Eight-node parallel PC cluster connected via Fast Ethernet switch.
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Fig. 6: CPU time vs. number of processor. (N, = 50)
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